
Lifted Marginal Filtering for Asymmetric Models by
Clustering-based Merging

Stefan Lüdtke1 and Marcel Gehrke2 and Tanya Braun2 and Ralf Möller2 and

Thomas Kirste1

Abstract. Recently, Lifted Marginal Filtering (LiMa) has been pro-

posed, an efficient exact Bayesian filtering algorithm for stochastic

systems consisting of multiple, (inter-)acting entities where the sys-

tem dynamics is represented by a multiset rewriting system (MRS).

The core idea is to represent distributions over multisets more effi-

ciently than by complete enumeration, by exploiting exchangeability

that naturally arises due to the MRS dynamics. However, due to sys-

tem dynamics or observations of individuals, symmetry can break

over time, requiring to resort to the original, much larger representa-

tion.

In this paper, we propose a method to retain the lifted representa-

tion in LiMa. The method identifies groups of lifted multiset states

that describe a sufficiently similar distribution of ground multiset

states for affording a representation by a single lifted state. Techni-

cally, we propose a novel distance measure for lifted states that does

not require to completely ground the distribution first, and show how

such a single representative for a group of lifted states can be com-

puted. We show empirically that the error induced by this approach is

significantly smaller than by limiting the representational complexity

conventionally by sampling.

1 Introduction

Many AI tasks like Human Activity Recognition or network analysis

involve modeling stochastic systems that consist of multiple, inter-

acting agents or objects. Such systems can be modeled by dynamic

statistic relational models, like Dynamic Markov Logic Networks

[16], Parameterised Probabilistic Dynamic Models [10], CPT-L [27],

or Relational Gaussian Models [4]. They specify dynamic probabilis-

tic models on a more abstract level than by complete enumeration

of each random variable and dependency, e.g. by combining first-

order logic with a probabilistic semantics. For such models, inference

on the ground level is typically intractable due to the large number

of random variables and factors, and the exponential complexity of

ground inference algorithms. Therefore, ground inference methods

typically resort to approximation, e.g. by some form of particle fil-

tering [21]. Alternatively, lifted inference methods [23, 16] have been

devised, which exploit the symmetries in the models by performing

computations only once for groups of symmetric random variables.

A major obstacle that prevents the application of lifted inference

methods to stochastic systems is that symmetries can break over time

1 Institute of Visual & Analytic Computing, University of Rostock, Germany,
email: {stefan.luedtke2, thomas.kirste}@uni-rostock.de

2 Institute of Information Systems, University of Lübeck, Germany,
email: {gehrke, braun, moeller}@ifis.uni-luebeck.de

such that no symmetries can be exploited anymore and inference al-

gorithms need to operate on the ground distribution.

Lifted Marginal Filtering (LiMa) [18] is such a lifted recursive

Bayesian filtering algorithm for multi-entity systems (consisting of

multiple, (inter-)acting entities, like agents or objects), where the sys-

tem dynamics is described by a Multiset Rewriting System (MRS).

MRSs can directly model complex interactions of entities that cannot

be expressed compactly in other formalism, like dynamic Bayesian

networks. LiMa avoids the combinatorial explosion by using a suit-

able factorized representation of distributions over multisets such

that some factors can be represented in a parametric way rather than

by samples or by complete enumeration (conceptually similar to the

Rao-Blackwellized particle filter [5]), as illustrated in the following

example:

Example 1 We are modeling a multi-agent activity recognition sce-

nario, where agents can move in an office environment. The goal is to

estimate the location of each agent. As long as none of the agents has

been observed individually, the random variables that represent the

location of agents are exchangeable, and a compact representation

for that exchangeable distribution can be used. However, when we

obtain individual evidence for one of the agents, say Alice, the distri-

bution over the random variables (RVs) that describe Alice must be

handled individually, which increases the representational complex-

ity. If a different agent is observed each time, the representational

complexity increases over time, until the representation is completely

ground.

Fortunately, the difference between observed and not observed

agents typically reduces over time, due to the system dynamics.

Thus, intuitively, when the agents become sufficiently similar again,

we can approximately retain the abstract representation by conflat-

ing those similar agents. In this paper, we show how this simple idea

is formally realized in LiMa. Specifically, the approach is conceptu-

ally based on [11], where sufficiently similar factors are combined

into a single parfactor: First, groups of lifted states that afford a

representation by a single lifted state (that follow certain indepen-

dence assumptions, Section 3.1) are identified by a clustering-based

approach. Afterwards, a single representative state is computed for

each cluster.

We provide two non-trivial extensions to this approach to account

for the fact that LiMa maintains distributions over multisets, instead

of conventionally over tuples: We introduce a novel distance measure

for lifted multiset states that does not require to compute a ground

distribution, based on the idea that the distance of multisets can be

defined as the summed pairwise distance of entities under the op-

timal association of entities from the two multisets (known as Pro-

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

crustes distance in statistical shape analysis [6], Section 3.3). Fur-

thermore, we show how to compute a single representative state for

a group of lifted states, by introducing additional independence as-

sumptions that hold only approximately in the original distribution

(Section 3.4).

We show empirically that by using this algorithm, a compact rep-

resentation can be retained (i.e. inference complexity does not grow

indefinitely), while the induced error is substantially lower than by

limiting the representational complexity conventionally by sampling,

as done in particle filtering (Section 5). To the best of our knowledge,

this is the first approach that allows lifted filtering in systems with

MRS dynamics in situations where no exact symmetries are present.

2 Lifted Marginal Filtering

In this section, we give a brief introduction to LiMa, a lifted recur-

sive Bayesian filtering algorithm based on multiset rewriting. Due to

lack of space, we only describe a subset of the algorithm here that is

sufficient for discussing the merging algorithm later on in Section 3

– for a more complete description of LiMa, we refer to [18].

We start by introducing some background on multiset rewriting

systems (MRS) and describe how Bayesian filtering can be realized

for MRS. Next, we show how distributions p(x) over multisets x
can be factorized, such that some factors are (i) conditionally inde-

pendent, and (ii) each of the factors represents an exchangeable dis-

tribution. This allows a more efficient representation of p(x) on the

parametric level instead of the instance level. Finally, we show how

Bayesian filtering can be performed directly on this representation,

without computing the original, much larger distribution first.

2.1 Multiset Rewriting Systems

Entities and Multisets Let E be a set of entities (also called

species). A multiset (over E) is a map x : E → N from enti-

ties to multiplicities. For entities e1, . . . , ek ∈ E and multiplicities

n1, . . . , nk ∈ N where ni > 0 we write Jn1e1, . . . , nkek K to de-

note the multiset where the multiplicity of ei is ni, and the multiplic-

ities of all entities not listed is 0. Multisets are used for describing

the state of the dynamic system, and thus, in the following, we use

the terms state and multiset interchangeably.

Here, it is sufficient to only consider flat entities (i.e. that are atoms

with no internal structure), although all following definitions can be

extended in a straightforward way to allow for entities that are key-

value maps, which allows to model situations where entities have a

rich internal structure or even continuous properties.

Actions The system dynamics is described by actions. An action

a is a triple (c, f, w), where c is a sequence of preconditions, f is an

effect function and w is a weight.

It is useful to formulate the preconditions as constraints, i.e.

boolean functions on entities. The idea of applying an action to a

state is to bind entities to the preconditions. Specifically, one entity is

bound to each element in the sequence of preconditions. A sequence

of entities e = 〈e1, . . . , en〉 is compatible to a constraint sequence

c = 〈c1, . . . , cn〉 when e and c have the same length, and for each

i, ei satisfies ci. We call a pair (a, e) of action a and sequence of

entities e (that is compatible to the constraints of a) an action in-

stance. An action instance can be applied to a multiset state x when

all entities are contained in the state, i.e. items(e) ⊑ x.

The effect function f manipulates the lifted state based on the

bound entities. Specifically, the posterior state x′ of applying an ac-

tion instance to a state x is obtained by applying the effect function

f of a to x and the bound entities: x′ = apply((a, e), x) = f(e, x).
We will only consider simple effects here that replace each of the

bound entities e in x by a different entity e′. For example, the effect

of the action goLeft is that e′ is one location further to the left than e.

Compound Actions In the scenarios we are concerned with, all

entities can act simultaneously between observations. Formally, this

is expressed by a maximally parallel MRS [1]. In such a system,

each state transition is described by a parallel execution of a multiset

of action instances, called compound action. A compound action k is

compatible to a state x, if each action instance in k is compatible to

x, and the multiset of all bound entities is contained in x.

Probabilistic MRS For Bayesian filtering, we are interested in

probabilistic MRSs, where a distribution of compound actions is de-

fined for each state.

The probability p(k|xt) of a compound action, given a state x de-

pends on the weights of the individual actions, and the multiplicity of

the compound action (the number of ways the entities from x can be

assigned to the action instances). For more details, see [19].

Probabilistic MRS are typically used for simulation studies, where

sample trajectories are drawn as follows: Given a state x, calculate

all compatible compound actions and their probabilities, sample one

of them, apply it to x and iterate this process for the resulting state

x′.

2.2 Bayesian Filtering and Problem Statement

We are concerned with Bayesian filtering (also called recursive

Bayesian estimation) for MRSs. That is, the goal is to estimate the

posterior distribution p(Xt|y1:t) of the hidden system state xt at

time t from the previous posterior p(Xt−1|y1:t−1) and an observa-

tion yt. We assume that the system dynamics is a first-order Markov

chain, i.e. it can be described by a transition model p(Xt+1|xt).
Specifically, the compound action distribution p(k|st) described

above directly induces a transition model via p(xt+1|xt) =
∑

k 1(apply(k, xt) = xt+1) p(k|xt).
Furthermore, we assume that the observation yt only depends on

the state xt. The observation model p(yt+1|Xt+1) can be, for exam-

ple, formulated in terms of features of the state (like existence of an

entity with a certain property value). That is, the observation model

is a set of tuples (c, y, p) where c is a constraint that needs to be sat-

isfied in the state xt, y is the observation, and p is the corresponding

observation likelihood.

Estimation of the posterior can be decomposed into two steps: The

prediction step calculates the distribution after applying the transition

model, i.e.

p(Xt+1|y1:t) =
∑

xt

p(Xt+1|Xt=xt) p(Xt=xt|y1:t). (1)

Afterwards, the correction step computes the posterior distribution

by employing the observation model p(yt+1|Xt+1):

p(Xt+1|y1:t+1) =
p(yt+1|Xt+1) p(Xt+1|y1:t)

p(yt+1|y1:t)
(2)

The question that arises here is how to efficiently represent a cate-

gorical distribution p(Xt|y1:t) of multiset states. This is not straight-

forward, as the number of multisets can easily grow very large: When

k is the overall number of entities in the multiset, and n is the num-

ber of possible different entities, then there are
(

n+k−1
k

)

= (n+k−1)!
k! (n−1)!

different multisets, such that representing p(Xt|y1:t) by a set of tu-

ples (xi, pi) is infeasible.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Figure 1: Example illustrating the semantics of lifted states. The probability
of a ground state x is obtained by marginalizing over all serializations of x.

2.3 Lifted Representation

A more efficient representation of a distribution p(xt|y1:t) over mul-

tisets xt can be devised by making use of (conditional) independence

and exchangeability. Note that, as opposed to conventional distribu-

tions over tuples, exploiting independence and exchangeability is not

straightforward for distributions over multisets: Naively, the multi-

sets are treated as atoms, so the resulting univariate distribution does

not allow any factorization. Conceptually, we define a distribution

over tuples, and then explicitly marginalize over all orders of a tu-

ple to define the probability of the corresponding multiset (similar to

[9]). Interestingly, this distribution can be represented in such a way

that the representation is still a multiset (which allows to perform

multiset rewriting directly on that representation).

The following example describes the intuition on that representa-

tion; a more formal description is given below.

Example 2 Consider a distribution of the multisets x1 = J 2A K,

x2 = J 1A, 1B K and x3 = J 2B K with p(x1) = p(x3) = 0.25 and

p(x2) = 0.5 (where A,B ∈ E). The idea is that such a distribution

can be decomposed into independent factors for each entity1. In this

example, the (marginal) probability of both entities of being A is 0.5,

and their probability of being B is also 0.5. The overall distribution is

then represented by a multiset of representations of those factors. In

the example, both factors are distributed according to the categorical

distribution C(A:0.5, B:0.5)2. Thus, overall, the distribution can be

represented as the multiset J 2 C(A:0.5, B:0.5) K.

We call such a multiset a lifted state. More formally, a lifted state

s ∈ S is a multiset of representations R of factors, i.e. S = R → N.

Such a representation r ∈ R can be a table or a set of parameters.

For example, the string “N (0, 1)” can represent the univariate nor-

mal distribution with µ = 0 and σ = 1. We denote the distribution

represented by a representation r as pr .

A lifted state s defines a distribution of ground states x by the

following generative process: Fix an order of the factors in s, and

denote the i-th factor in s by pi(·|s). Then, for each factor pi, sam-

ple a value, and collect all the values in a multiset. In the resulting

multiset, there is no information about which value has been sampled

from which factor. That is, for the closed-form expression of the dis-

tribution induced by a lifted state, we have to consider all possible

associations of values and factors.

1 Note that in the general formulation described in [18], a single factor can
describe the distribution of properties of multiple entities, i.e. there can be
dependencies between entities.

2 We denote categorical distributions where value A has probability pA, value
B has probability pB etc. as C(A:pA, B:pB , . . .).

Specificially, we serialize the ground states x (arrange the ele-

ments in a sequence), and define the distribution via marginalizing

over all possible serializations. More formally, let items(xσ) be the

multiset obtained by combining all elements in the sequence xσ into

a multiset. We call xσ a serialization of x when items(xσ) = x. For

example, the state x = J 2A, 1B K has three serializations: xσ1
=

(A,A,B), xσ2
= (A,B,A) and xσ3

= (B,A,A). We denote the

set of all serializations of x as Σx, i.e. Σx = {xσ|items(xσ) = x}.

The probability of a serialization xσ , given a lifted state s, is sim-

ply the product of the individual probabilities of the i-th value of xσ

(denoted as x
(i)
σ) in distribution pi:

p(xσ|s) =
n
∏

i=1

pi(x
(i)
σ |s), (3)

where n is the length of serialization xσ . A distribution of lifted

states describes a distribution of ground state serializations via

p(xσ) =
∑

s

p(s) p(xσ|s). (4)

Thus, this distribution is a mixture, with mixture components p(xσ|s)
and mixture weights p(s). Finally, the distribution over ground states

x is obtained by marginalizing over all serializations of x (each seri-

alization describes an order in which the values in x could have been

sampled):

p(x) =
∑

σ∈Σx

p(xσ) (5)

It is sometimes convenient to switch the sums in Equations 4 and 5,

such that we can also describe the distribution of ground states that

is induced by a lifted state s as p(x|s) =
∑

σ∈Σx
p(xσ|s). We call

the elements in the lifted state lifted entities, and we call region(s) =
{x|p(x|s) > 0} the region of s.

An example illustrating the semantics of lifted states is shown in

Figure 1: The probability of ground state x = J 2A, 1B K, given the

lifted state s = J 2C(0.7, 0.3), 1C(0.1, 0.9) K is obtained by sum-

ming the probabilities p(xσ|s) of all serializations xσ of x.

2.4 Lifted Bayesian Filtering

Prediction Due to the fact that lifted states are still multisets, mul-

tiset rewriting can in principle be applied directly to the lifted states.

Thus, generating the original, much larger representation of p(x) can

be avoided. Specifically, we need to be able to perform two opera-

tions: (i) Testing whether a constraint is satisfied for an element of

a lifted state s (i.e. for a representation of a distribution of entities),

and (ii) applying an effect to a lifted state.

We say that a constraint is satisfied for a representation r when

it is satisfied for all entities that have a non-zero probability in pr .

Applying simple effects (as described above) to lifted states is also

straightforward: An effect that maps each entity e to an entity e′ can

be applied to a categorical distribution pr by performing the same

mapping to the probabilities of pr . The following example illustrates

how constraints and effects are applied to lifted states.

Example 3 Consider the action left, with the precondition e 6= A,

i.e. the entity e is not already at the leftmost position A, and which

has the effect that the entity moves one position to the left. This ac-

tion is, for example, compatible to both of the entities in the lifted

state s = J 1C(A:0, B:0.5, C:0.5), 1C(A:0, B:0, C:1) K. Thus, the

compound action J 2left K can be applied to s, leading to the pos-

terior state s′ = J 1C(A:0.5, B:0.5, C:0), 1C(A:0, B:1, C:0) K (see

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Figure 2: Illustration of the transition semantics: Applying the compound
action J 2 left K to state J 1C(A:0, B:0, C:1), 1C(A:0, B:0.5, C:0.5) K leads
to the posterior state J 1C(A:0, B:1, C:0), 1C(A:0.5, B:0.5, C:0) K.

Figure 3: Illustration of a split that is necessary due to the precondition of
action left.

Figure 2). The action is, on the other hand, indeterminate for the en-

tity C(A:0.7, B:0.3, C:0) – for part of the support of the distribution,

the precondition is true, and for a part of the support, the precondition

is false. This entity thus requires a split, explained below.

Correction The correction step weighs all ground states x by

the observation likelihood p(y|x). When p(y|x) is identical for all

x ∈ region(s), the lifted state s can be weighed by p(y|x) directly,

instead of generating all groundings. When a constraint-based obser-

vation model, as described in Section 2.2, is used, this property can

be checked directly and can be established by splitting. For example,

suppose that room A of the office is equipped with a presence sensor

that is active when at least one agent is in that room, and has a certain

false positive and false negative rate. This observation model can be

formalized using the constraint-based formalism with the constraint

e == A. As for the actions, the constraints can be checked directly

on the lifted states s.

Splitting When testing constraints for lifted states, a constraint

can be satisfied for just some part of the region of a lifted state,

and not satisfied for the remaining part. For example, the pre-

condition cleft of the action left (from Example 3) is inde-

terminate for the entity C(A:0.7, B:0.3, C:0) in the state s =
J 1 C(A:0, B:0, C:1)1 C(A:0.7, B:0.3, C:0) K. More generally, the

ground states x ∈ region(s) form partitions based on how many

entities in x satisfy c.

In such situations, splitting operations need to be performed. Split-

ting a state s on a constraint c results in a set S = {(si, pi)}
N
i=1 of

weighted lifted states (i.e. a categorical distribution), such that (i) for

each si ∈ S, all ground states x ∈ region(si) lie in the same parti-

tion regarding c, and (ii) S describes the same distribution of ground

states as s, i.e.
∑N

i=1 p(x|si) = p(x|s). Conceptually, this procedure

is similar to splitting in Lifted Probabilistic Inference [23].

How splitting is done exactly depends on the kind of distribution

that the split is concerned with. In [18], splitting for multivariate hy-

pergeometric distributions is discussed.

For the case considered in this paper (all entities in a lifted

state are representations of categorical distributions), splitting

can be performed separately for each entity: Assume that we

want to split an entity e in s that represents the categorical

distribution with C(. . . , V :pv, . . .) on an equality constraint of

the form e == V . Splitting results in two lifted states s1 and

s2 with weights pv and (1 − pv) that are identical to s, except

that e is replaced by e1 and e2, respectively, where in e1, only

V is possible, and in e2, V has probability of 0 (and the prob-

abilities of the other values are re-normalized). For example,

splitting s = J 1 C(A:0, B:0, C:1)1 C(A:0.7, B:0.3, C:0) K
on the constraint e == A yields the states s1 =
J 1 C(A:1, B:0, C:0), 1 C(A:0, B:0, C:1) K and s2 =
J 1 C(A:0, B:1, C:0), 1 C(A:0, B:0, C:1) K with p(s1|s) = 0.7
and p(s2|s) = 0.3 – see Figure 3. To split s completely, this

procedure is performed recursively for each entity in s. In the

worst case, after splitting, all lifted entities consist only of singleton

distributions, i.e. splitting can lead to a complete grounding of the

representation.

3 Merging

In this section, we present the main technical contribution of this

paper: A systematic way to reduce the representational complexity of

a distribution of lifted multiset states, by identifying subsets of lifted

states that can be (approximately) represented by a single lifted state.

We call this procedure merging.

3.1 Problem Statement

As outlined above, splitting increases the representational complex-

ity of the filtering distribution, in the worst case leading to complete

a grounding of the distribution over time, thus canceling the benefits

of the lifted representation.

However, our intuition is that due to the fact that each lifted state is

propagated individually through the transition model, the Kullback-

Leibler divergence (KLD) between each pair of lifted states will de-

crease, and thus there is a chance for finding a set of lifted states that

are “sufficiently similar” so that they can be represented by a sin-

gle lifted state. In the following, we show how to make use of this

intuition.

Specifically, the goal is to identify subsets G ⊆ S of lifted states,

such that the ground distribution induced by G can be approximated

by a single lifted state. Formally, a subset G of the lifted states de-

scribes the following ground distribution (by Equations 4 and 5):

p(x|G) =
1

p(G)

∑

σ∈Σx

∑

s∈G

p(s) p(xσ|s) (6)

with p(G) =
∑

s∈G p(s). Now, we assume that the distribution

p(xσ|G) = 1/p(G)
∑

s∈G p(s) p(xσ|s) factorizes into indepen-

dent factors (this assumption will allow us to represent the distri-

bution by a single lifted state, shown below). Note that this is an

additional assumption to the requirement for lifted states made in

Equation 3, where we assumed that the distributions p(xσ|s) is con-

ditionally independent on s, whereas here, the distribution p(xσ|G)
must be fully independent (in the group G). Using this assumption,

the sum and product can be switched:

p̃(x|G) =
1

p(G)

∑

σ∈Σx

∑

s∈G

p(s)

n
∏

i=1

pi(x
(i)
σ |s)

=
∑

σ∈Σx

n
∏

i=1

∑

s∈G

p(s)

p(G)
pi(x

(i)
σ |s)

(7)

The interesting fact that can be observed now is that this distribution

can be described by a single lifted state sG, that contains the factors

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

pi(x
(i)
σ |sG) =

∑

s∈G

p(s)
p(G)

pi(x
(i)
σ |s): Each of those factors can be

directly computed from the states s ∈ G, i.e. instead of maintaining

all states s, only the single state sG needs to be maintained.

Here, the contraction theorem by Boyen and Koller (Theorem 3

in [2]) applies, which states that propagating the distributions p and

p̃ through the transition model leads to a constant-factor decrease in

their KLD. Thus, the error (in terms of KLD) between the true dis-

tribution p and approximate distribution p̃ cannot grow indefinitely.

However, the error can still be large, depending on how well p̃ ap-

proximates the true distribution p, i.e. how well the independence

assumptions hold in p. Thus, our goal is to identify subsets G such

that the independence assumptions hold (approximately) in p(xσ|G).
Note that this problem is a special case of the problem of simplifying

a mixture model, where the lifted states are the mixture components.

3.2 A Special Case: Independence by Identity

A specific case where p(xσ|G) factorizes exactly occurs when for

all lifted states sj ∈ G, the factors pi(x
(i)
σ |sj) are identical (i.e. the

lifted states all describe the same ground distribution p(xσ|sj)). In

this case, the factors do not depend on the state sj , but just on the

group G, i.e. for each j, p(x
(i)
σ |sj) = p(x

(i)
σ |G). Therefore,

p(x|G) =
1

p(G)

∑

σ∈Σx

∑

s∈G

p(s)
n
∏

i=1

pi(x
(i)
σ |s)

=
1

p(G)

∑

s∈G

p(s)
∑

σ∈Σx

n
∏

i=1

pi(x
(i)
σ |G)

=
∑

σ∈Σx

n
∏

i=1

pi(x
(i)
σ |G) = p̃(x|G).

(8)

In this paper, we are concerned exactly with this case: We identify

groups G of lifted states that all describe (approximately) the same

distribution of ground states, and then represent those groups by a

single lifted state by assuming independence between the factors.

Later, we show a slightly more general case, where not all i-th factors

must be (approximately) identical, but there is a mapping between

the factors such that they are identical. Overall, the algorithm works

as follows:

(i) Compute pairwise distances of ground distributions induced by

lifted states.

(ii) Find groups G of lifted states with similar ground distributions

(by clustering).

(iii) Compute a single representative sG for each group.

In the following, we discuss how steps (i) and (iii) of the algorithm

can be computed efficiently, without requiring to compute the ground

distribution first.

3.3 Distance Measures for Lifted States

We start by discussing how the distance between ground state distri-

butions induced by lifted states s1 and s2 can be computed efficiently.

Naively, we can directly compute the ground distributions p(X|s1)
and p(X|s2) (via Equation 5, or by repeated splitting), and then

compute the distance of these distributions, e.g. using the Jensen-

Shannon divergence (JSD)

JSD(p, q) =
1

2
D(p,m) +

1

2
D(q,m), (9)

s2 = [,]

s1 = [,]s1 = [,]2C(0.8,0.2) 1C(0.1,0.9)

s2 = [,]2C(0.8,0.2) 1C(0,1)

da1 = 0 da1 = 0.036

da1 = 2 * 0 + 0.036

2C(0.8,0.2) 1C(0.1,0.9)

2C(0.8,0.2) 1C(0,1)

da2 = 0
da2 = 0.423

da2 = 0 + 0.275 + 0.423

da2 = 0.275

d(s1,s2) = min(da1,da2) = 0.036

Figure 4: Example of the marginal Procrustes distance. Edges represent the
pairing of the entities; the marginal distance of the entities is shown next
to the edges. In this example, two pairings a1 and a2 are possible, leading
to different distance values. The Procrustes distance is the minimal distance
value.

where m = 1
2
(p + q) and D is the Kullback-Leibler divergence

(KLD)

D(p, q) = −
∑

x

p(x) log
q(x)

p(x)
. (10)

However, computing the distance this way is highly inefficient, as it

requires to ground the distribution completely. Thus, our goal is to

derive an (approximate) measure of lifted state distance, that does

not require to compute the ground distribution.

For distributions that decompose into independent factors, the

KLD can be computed on the factors: D(p, q) = D(p1, q1) +
D(p2, q2) for p(x, y) = p1(x) p2(y) and q(x, y) = q1(x) q2(y).
However, this fact cannot be exploited in our case, as the ground

distribution does not factorize directly, but involves summing over

serializations (see Equation 5).

Instead, we employ the following intuition: To compare two lifted

states s1 and s2, we perform a pairwise comparison of the entities

in s1 and s2, and define the overall distance of the states as the

summed pairwise distance of entities, given an optimal association

of the entities. First, we define a bijective function a, that maps the

factors p1i from s1 to the factors p2j from s2 (for now, assume that a
is given, we will later discuss how to obtain such a function). For ex-

ample, for the lifted states s1 = J 2〈C(0.8, 0.2〉), 1〈C(0.1, 0.9〉 K and

s2 = J 2〈C(0.8, 0.2〉), 1〈C(0, 1〉 K shown in Figure 4, two distinct

ways to map their factors exist: Either a1(p
1
1) = p21, a1(p

1
2) = p22,

a1(p
1
3) = p23, or a2(p

1
1) = p23, a2(p

1
2) = p22, a2(p

1
3) = p21.

For each pair of factors p1 ∈ s1 and p2 ∈ s2, the JSD of their

(marginal) distributions can be computed. The overall distance d of

s1 and s2 is the sum of the individual JSDs, i.e.

da(s1, s2) =
∑

p1∈s1

JSD(p1, a(p2)). (11)

The intuition here is that there is an optimal association of the enti-

ties with minimal error that defines the overall distance. In statistical

shape analysis, this intuition is formalized by the Procrustes distance

[6]. It measures the distance between two sets of points and is defined

as the minimal distance between the sets of points, for all possible

Euclidean transformations (reflections, rotations and translations) of

one of the sets. A closely related concept is used in the multi-target

tracking literature when comparing true and estimated targets, known

as optimal sub-pattern assignment distance [25]. For computing the

distance between two lifted states, we can employ the same idea, by

using the minimal distance over all possible entity mappings:

d(s1, s2) = min
a

da(s1, s2) (12)

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

We call the distance d the marginal Procrustes distance between s1
and s2. An example is shown in Figure 4: For the states s1 and s2
shown in the figure, two distinct ways to map their entities exist, lead-

ing to distances da1
and da2

. The Procrustes distance is the minimum

of those distance values.

Note that when there are n distinct entities (species) in s1 and s2,

there are n! possible mappings a. Still, an optimal mapping can be

obtained in O(n3) using the Hungarian algorithm [22]. The distance

d can be approximated in constant time by drawing a constant num-

ber of samples from the mappings a, and taking the minimal distance

of all samples.

3.4 Finding a Single Representative

After computing all pairwise state distances, sets of states that are

“sufficiently similar” (that afford a representation by a single lifted

state) are determined by DBSCAN [7], a density-based clustering

algorithm. In principle, any clustering algorithm could be used for

this step. We choose a density-based clustering approach here, as this

way, we do not need to specify the number of clusters in advance,

and do not need to make a-priori assumptions about the shape of the

clusters. For each cluster G of lifted states, a single representative sG
needs to be computed.

Equation 7 already indicates how to compute sG: Each factor in

sG is computed as pi(x
(i)
σ |sG) =

∑

s∈G

p(s)
p(G)

pi(x
(i)
σ |s). However,

this way, it is assumed that the i-th factor (using some canonical or-

dering) of all states s ∈ G is used to compute the factor pi(x
(i)
σ |sG).

However, as already discussed above, the entities (i.e. the factors) do

not have a meaningful order, and thus we can use any association of

the entities to compute the new factors. In fact, the optimal associa-

tion of entities (such that the overall distance of the states is minimal)

has already been computed for the Procrustes distance above (Equa-

tion 12).

More formally, let ajk be the mapping between the factors of si
and sk with minimal Procrustes distance. Given a set of set of lifted

states G = {s1, . . . , sn}, the factors pi(x
(i)
σ |sG) are computed as

follows:

pi(x
(i)
σ |sG) =

∑

sj∈G

p(s)

p(G)
aij(pi)(x

(i)
σ |s) (13)

For the categorical distributions considered here, this sum can again

be represented as a categorical distribution. For example, consider

the states shown in Figure 4, and suppose that G = {s1, s2} needs to

be merged. Suppose that p(s1) = 0.4 and p(s2) = 0.1. The associ-

ation a1 leads to the minimal Procrustes distance. Therefore, we ob-

tain p1(x
(1)
σ |sG) = p2(x

(2)
σ |sG) ∼ C(0.8, 0.2) and p3(x

(3)
σ |sG) ∼

0.4/0.5 C(0.1, 0.9) + 0.1/0.5 C(0, 1) = C(0.08, 0.92) and thus

sG = J 2〈C(0.8, 0.2)〉, 1〈C(0.08, 0.92)〉 K.

4 Experimental Evaluation

The goal of the experimental evaluation is to (a) investigate the er-

ror (in terms of JSD) that is induced by merging, in relation to the

decrease in representational complexity (i.e. number of maintained

lifted states), and (b) the runtime of the merging algorithm.

We use the simple scenario introduced in Example 1 for evalu-

ation, where n ∈ {1, . . . , 5} entities move in 4 rooms (the num-

ber of ground states in this scenario is exponential to the number

of entities). Entities can either stay at their current location (ac-

tion noop) or move to the room to the left (action left), when

●

●●●●●●

0.100

0.010

0.001

0 20 40

Posterior states

J
S

D

●

●

0

1

2

3

4

2 3 4 5

Entities

ru
n
ti
m

e
 (

s
)

algorithm ● merge−ground merge−marginal−all merge−marginal−single pruning

Figure 5: Left: Tradeoff between error (in terms of JSD) and representational
complexity of the distribution (i.e. the number of lifted states). All merging
algorithms provide the same approximation quality, and pruning leads to a
higher error for a given representational complexity. Right: Overall runtime
of the different merging algorithms with respect to number of entities in the
state (which has an exponential effect on state space size).

they are not already at the leftmost room. We set the lifted state

Jn C(0.4, 0.3, 0.2, 0.1) K as initial state (where n is the number of

entities), and performed up to t = 20 prediction operations. In this

scenario, no observations are used (i.e. no correction step was per-

formed), as this would only add another layer of complexity that is

not necessary for investigating the research question considered here.

For evaluating (a), we compute the JSD between the true and ap-

proximate distribution (that is obtained by repeatedly performing

merging after each prediction), for different maximum numbers of

maintained states. Furthermore, we compare merging with the con-

ventional, sampling-based method to reduce the number of states in

particle filtering: Sampling a fixed number of states from the distri-

bution p(xt|y1:t) and using these samples as an approximate repre-

sentation of the distribution. Specifically, we use the optimal (in the

sense of least squared error) and unbiased resampling algorithm for

categorical distributions presented in [8] that avoids state duplicates

(also called pruning in this context), for which we also compute the

JSD between the true and approximate distributions.

Note that the merging procedure does not require to set the num-

ber of posterior states a priori, whereas the pruning algorithm needs

to be provided with that number. Thus, to allow a fair comparison

between merging and pruning, we proceed as follows: For a given

state distribution p(xt|y1:t) and ǫ value of DBSCAN, merging is per-

formed, resulting in a number n of posterior states. Then, pruning is

performed, where the number of posterior states is set to n.

To assess (b), we compare the runtime of three merging algo-

rithms, that are different only in the employed distance measure:

The (exact) JSD of the ground distribution (ground), the marginal

Procrustes distance by considering all distinct mappings of entities

(marginal-all), and the marginal Procrustes distance by consid-

ering only a single, random mapping (marginal-single). Here,

merging is attempted for a set of lifted states that has been obtained

by 10 prediction steps from the initial state.

5 Results

Figure 5 (right) shows the runtime of the different merging algo-

rithms. The computationally most expensive operation in all cases

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

merging pruning

5 10 15 20 5 10 15 20

0.00

0.05

0.10

0.15

0.20

t

J
S

D

eps

0.25

0.5

0.75

1

1.5

2

Figure 6: Development of JSD between original distribution and approxi-
mated distribution over time, when repeatedly performing approximation op-
erations (merging or pruning) at each time step during inference. Merging
achieves a lower error than pruning (in terms of JSD).

is computing all pairwise state distances. We see that using the

ground and marginal-all distances quickly becomes infeasi-

ble, as they both have exponential runtime (with respect to the num-

ber of entities).

Next, we investigate the size of the error that is induced by merg-

ing in comparison to the size of the error induced by pruning. Fig-

ure 5 (left) shows the ground JSD between a merged (or pruned)

distribution and the original (true) distribution, in relation to the

number of allowed posterior states. The true distribution has been

obtained by performing 10 prediction steps from the initial state

J 3C(0.4, 0.3, 0.2, 0.1) K, which is represented by 56 lifted states. In

general, allowing fewer posterior states naturally leads to a larger er-

ror, and allowing 56 states leads to a JSD of 0. For a given number of

allowed posterior states, merging achieves a lower JSD than pruning

(note the logarithmic scale of the plot). Furthermore, the JSD does

not depend on the chosen distance measure. Thus, it is sufficient

to compute the pairwise state distances via marginal-single

(which is fastest), and still achieve a better approximation quality

than by pruning.

Figure 6 shows the development of the JSD between the original

and the approximated distribution over time, when either perform-

ing pruning (right) or merging based on the marginal-single

distance. The overall error does not grow indefinitely, which is a di-

rect consequence of the contraction theorem [2]. The plot shows that

merging achieves a lower JSD than pruning for a given representa-

tional complexity, even when it is repeatedly applied during filtering.

6 Related Work

Several approaches for inference in relational dynamic models have

been devised. These methods are based on two general principles:

Rao-Blackwellization (representing some factors of the distribution

on the parametric level, instead of explicitly or by samples), and

Lifted Inference (grouping redundant/symmetrical factors of a graph-

ical model into a single representation). Examples of methods that

make use of Rao-Blackwellization are the Logical Particle Filter

[30], Stochastic Relational Processes [27], and the Relational Parti-

cle Filter [12]. Methods for inference in dynamic systems that make

use of Lifted Inference include the Lifted Dynamic Junction Tree

(LDJT) algorithm [10], and the Relational Kalman Filter [4]. All of

these methods potentially suffer from the increase in representational

complexity over time due to system dynamics or observations. That

is, a parametric distribution must be replaced by an explicit represen-

tation or samples, or a lifted representation becomes ground.

For such dynamic inference approaches, only few methods have

been devised to approach this problem. For the relational Kalman fil-

ter, a method has been proposed that regroups Gaussian potentials

that have been split by averaging their covariance matrices [3]. The

method devised for the LDJT algorithm [11] is more closely related

to our approach: It restores a lifted representation by identifying sim-

ilar factors by density-based clustering and cosine distance function

(as factors that are scaled differently can still be similar). We also use

density-based clustering to find mergeable components, but need to

account for the fact that LiMa is handling multisets, which requires a

novel distance measure, and a novel method to merge the multisets.

More generally, in the Lifted Inference literature, methods for re-

taining compact representation have been devised [29, 26]. They

work by identifying (approximate) symmetries (graph automor-

phisms) in the graphical model, e.g. by using color passing algo-

rithms [17], or low-rank matrix approximations [28]. Unfortunately,

such methods are not directly applicable here, as they work on the

graphical model representation of the distribution, but the multiset

rewriting-based system dynamics considered here cannot be repre-

sented compactly by a graphical model that exhibits the symmetrical

structure (which is why we devised the lifted multiset representation

in the first place).

The merging problem discussed here is a special case of mixture

model simplification, where the lifted states are the mixture compo-

nents. However, in contrast to existing methods, we are concerned

with a discrete state space, i.e. the mixture components (the lifted

states) are discrete distributions of ground states. Thus, methods that

rely on the fact that the mixture components are continuous distri-

butions (e.g. that require Gaussian mixtures [14, 13] or work by fit-

ting smooth distributions that best approximate a set of mixture com-

ponents [31]) cannot be used directly. Furthermore, computing dis-

tances between mixture components is typically simple in continuous

domains: For example, the KLD between Gaussian mixture compo-

nents can be computed in closed form [24]. Instead, the challenging

aspect in our case is to efficiently compute distances between mixture

components.

7 Discussion

In this paper, we proposed a method for keeping the distribution rep-

resentation of Lifted Marginal Filtering compact (and thus inference

efficient). The method identifies groups of lifted states that repre-

sent a sufficiently similar ground distribution, as for such a group,

the marginal distributions of the entities are (approximately) inde-

pendent, and thus it can be approximated by a single lifted state. We

showed empirically that this approach results in a lower approxima-

tion error than pruning, when the same number of states is retained.

In this paper, we only considered the special case where a group of

states affords a representation by a single lifted state because of suf-

ficiently similar ground distributions. We believe that this is a com-

mon case that will be sufficient for many practically relevant filtering

problems. Furthermore, the approach is not limited to categorical dis-

tributions as factors in lifted states, as discussed here, but can be ap-

plied to all distributions where the group factors shown in Equation

13 can be represented compactly.

However, in general, states that represent completely different dis-

tributions can also afford a representation by a single lifted state,

e.g. when they represent different “regions” of some parametric dis-

tribution. A practically relevant case are distributions over permuta-

tions, which arises e.g. when tracking identities of multiple, interact-

ing agents or objects [20]. In such cases, it can be necessary to find

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

a specific subset of states that afford a unifying representation. How-

ever, checking all subsets of lifted states is clearly infeasible. Further

classifying the cases where mergeable subsets can be identified effi-

ciently is an interesting direction for future research.

For the case of filtering distributions over permutations, efficient

approximate methods for limiting the representational complexity al-

ready exist, that work by employing methods from noncommutative

Fourier analysis to obtain a low-frequency approximation [15]. Com-

bining such methods with the methods proposed here could be one

of the next step towards an efficient Bayesian filtering algorithm for

large, dynamic relational models with symmetry breaks.

REFERENCES

[1] R. Barbuti, F. Levi, P. Milazzo, and G. Scatena, ‘Maximally Parallel
Probabilistic Semantics for Multiset Rewriting’, Fundamenta Informat-

icae, 112(1), 1–17, (2011).
[2] Xavier Boyen and Daphne Koller, ‘Tractable inference for complex

stochastic processes’, in Proceedings of the Fourteenth conference on

Uncertainty in artificial intelligence, pp. 33–42, (1998).
[3] J. Choi, E. Amir, T. Xu, and A. Valocchi, ‘Learning Relational Kalman

Filtering.’, in Proceedings of the Twenty-Ninth AAAI Conference on Ar-

tificial Intelligence, pp. 2539–2546, (2015).
[4] J. Choi, A. Guzman-Rivera, and E. Amir, ‘Lifted Relational Kalman

Filtering.’, in Proceedings of the Twenty-Second International Joint

Conference on Artificial Intelligence, pp. 2092–2099, (2011).
[5] A. Doucet, N. De Freitas, K. Murphy, and S. Russell, ‘Rao-

Blackwellised particle filtering for dynamic Bayesian networks’, in
Proceedings of the Sixteenth Conference on Uncertainty in Artificial

Intelligence, pp. 176–183. Morgan Kaufmann Publishers Inc., (2000).
[6] IL Dryden and KV Mardia, Statistical analysis of shape, Wiley, 1998.
[7] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.,

‘A density-based algorithm for discovering clusters in large spatial
databases with noise.’, in Kdd, volume 96, pp. 226–231, (1996).

[8] Paul Fearnhead and Peter Clifford, ‘On-line inference for hidden
markov models via particle filters’, Journal of the Royal Statistical So-

ciety: Series B (Statistical Methodology), 65(4), 887–899, (2003).
[9] Peter A Flach, Elias Gyftodimos, and Nicolas Lachiche, ‘Probabilistic

reasoning with terms’, Linkoping Electronic Articles in Computer and

Information Science, 7(011), (2002).
[10] Marcel Gehrke, Tanya Braun, and Ralf Möller, ‘Lifted Dynamic Junc-

tion Tree Algorithm’, in Proceedings of the International Conference

on Conceptual Structures, pp. 55–69. Springer, (2018).
[11] Marcel Gehrke, Tanya Braun, and Ralf Möller, ‘Taming Reasoning

in Temporal Probabilistic Relational Models’, in Proceedings of the

24th European Conference on Artificial Intelligence (ECAI 2020). IOS
Press, (2020).

[12] T. Geier and S. Biundo, ‘Approximate online inference for dynamic
markov logic networks’, in 23rd IEEE International Conference on

Tools with Artificial Intelligence, pp. 764–768. IEEE, (2011).
[13] Jacob Goldberger, Hayit K Greenspan, and Jeremie Dreyfuss, ‘Simpli-

fying mixture models using the unscented transform’, IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 30(8), 1496–1502,
(2008).

[14] Jacob Goldberger and Sam T Roweis, ‘Hierarchical clustering of a mix-
ture model’, in Advances in Neural Information Processing Systems,
pp. 505–512, (2005).

[15] J. Huang, C. Guestrin, and L. Guibas, ‘Fourier Theoretic Probabilistic
Inference over Permutations’, Journal of Machine Learning Research,
10, 997–1070, (June 2009).

[16] K. Kersting, B. Ahmadi, and S. Natarajan, ‘Counting belief propaga-
tion’, in Proceedings of the 25th Conference on Uncertainty in Artificial

Intelligence, pp. 277–284, (2009).
[17] Kristian Kersting, Martin Mladenov, Roman Garnett, and Martin

Grohe, ‘Power iterated color refinement’, in Twenty-Eighth AAAI Con-

ference on Artificial Intelligence, (2014).
[18] Stefan Lüdtke, Max Schröder, Sebastian Bader, Kristian Kersting, and

Thomas Kirste, ‘Lifted Filtering via Exchangeable Decomposition’, in
Proceedings of the 27th International Joint Conference on Artificial In-

telligence, (2018).
[19] Stefan Lüdtke, Max Schröder, and Thomas Kirste, ‘Approximate prob-

abilistic parallel multiset rewriting using mcmc’, in Joint German/Aus-

trian Conference on Artificial Intelligence (Künstliche Intelligenz), pp.
73–85. Springer, (2018).

[20] Stefan Lüdtke, Kristina Yordanova, and Thomas Kirste, ‘Human ac-
tivity and context recognition using lifted marginal filtering’, in Pro-

ceedings of the 15th Workshop on Context Modeling and Recognition

(CoMoRea), pp. 83 – 88, (2019).
[21] D. Nitti, T. De Laet, and L. De Raedt, ‘Probabilistic logic program-

ming for hybrid relational domains’, Machine Learning, 103(3), 1–43,
(2016).

[22] Christos H. Papadimitriou and Kenneth Steiglitz, Combinatorial Opti-

mization: Algorithms and Complexity, Prentice-Hall, Inc., 1982.
[23] D. Poole, ‘First-order probabilistic inference’, in Proceedings of the

18th International Joint Conference on Artificial Intelligence, pp. 985–
991, (2003).

[24] Andrew R Runnalls, ‘Kullback-leibler approach to gaussian mixture
reduction’, IEEE Transactions on Aerospace and Electronic Systems,
43(3), (2007).

[25] Dominic Schuhmacher, Ba-Tuong Vo, and Ba-Ngu Vo, ‘A consistent
metric for performance evaluation of multi-object filters’, IEEE trans-

actions on signal processing, 56(8), 3447–3457, (2008).
[26] Parag Singla, Aniruddh Nath, and Pedro M Domingos, ‘Approximate

lifting techniques for belief propagation’, in Twenty-Eighth AAAI Con-

ference on Artificial Intelligence, (2014).
[27] I. Thon, N. Landwehr, and L. De Raedt, ‘Stochastic relational pro-

cesses: Efficient inference and applications’, Machine Learning, 82(2),
239–272, (February 2011).

[28] Guy Van den Broeck and Adnan Darwiche, ‘On the complexity and
approximation of binary evidence in lifted inference’, in Advances in

Neural Information Processing Systems, pp. 2868–2876, (2013).
[29] Deepak Venugopal and Vibhav Gogate, ‘Evidence-based clustering for

scalable inference in markov logic’, in Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, pp. 258–
273. Springer, (2014).

[30] L. Zettlemoyer, H. Pasula, and L. Kaelbling, ‘Logical particle filtering’,
in Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, (2008).

[31] Kai Zhang and James T Kwok, ‘Simplifying mixture models through
function approximation’, IEEE Transactions on Neural Networks,
21(4), 644–658, (2010).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

