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Abstract. We propose and analyse a game describing the interac-
tions between readers and publishers, with the aim of understanding
to what extent the strategic behaviour of the latter may influence the
quality of content publishing in the World Wide Web. For games with
identical publishers, we provide a wide characterization of the cases
in which pure Nash equilibria are guaranteed to exist, which mainly
depends on the number of publishers and, subordinately, on some
of the parameters we use to model their writing abilities. Then, for
any game possessing pure Nash equilibria, we show that the price of
anarchy is at most 2, even in presence of heterogeneous publishers.
Finally, we provide better and tight bounds for some special cases of
games with identical publishers.

1 Introduction

The digital revolution has dramatically changed the way in which
publishing is approached. The fact that digital contents can be created
and made available worldwide at an almost negligible cost grants an
opportunity to an uncountable number of potential publishers. At the
same time, huge profits can be raised, for instance through the selling
of advertising slots, once a sufficiently high popularity is reached. To
show some numbers, according to the stats publicised by WordPress,
which refer to blogs hosted on WordPress.com only, over 409 million
people access more than 20 billion pages each month, during which
about 70 million new posts are created [1]. Moreover, a report pub-
lished by ConvertKit on the state of the blogging industry in 2017
[9], states that professional bloggers reach an average yearly profit
of $138, 046. This makes online publishing a huge market, where
strategic and economic behavior comes naturally into play.

Within the range of all possible informative topics, there are usu-
ally some which, at a certain time, happen to be very popular and
attract the interest of lots of readers. Thus, in order to boost their pop-
ularity, publishers may be tempted to discuss “hot topics”, or simply
topics on which less competition with other publishers is expected,
even when they might not have the necessary competence to deal
with them, at the risk of releasing low quality contents. The objec-
tive of this work is to propose and analyse a game, that we call the
content publishing game, describing the interactions between read-
ers and publishers, with the aim of understanding to what extent the
strategic behaviour of the latter may influence the quality of content
publishing in the World Wide Web.

We represent the set of possible topics by the [0, 1] interval. Al-
though this may seem a rough approximation, it is a common choice
in the literature (see, for instance, [5]). We assume that there is a
set of players (the publishers) who want to publish a content. Each
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player is associated with a point in [0, 1] (her topic of expertise) rep-
resenting her competence. When a player produces a content on her
topic of expertise, she reaches a top quality, which is normalized to
1 for every player. As soon as the player departs from her topic of
expertise, the quality of the produced content starts decreasing ac-
cording to the distance from the topic of expertise scaled by a factor
α ∈ [0, 1], which we assume to be common to all players. In gen-
eral, the set of readers may be generated according to a probability
distribution in [0, 1], so that every reader is associated with a point
modelling her topic of interest. In this work, we shall restrict our at-
tention to the uniform distribution only. The satisfaction of a reader,
when accessing a content, is defined as the product between its qual-
ity and the distance of the content topic from her topic of interest.
Each reader will select the content maximizing her satisfaction. This
function aims at balancing the wish of a reader for contents that are
both interesting to her and of good quality. On the other hand, pub-
lishers aim at attracting as many readers as possible.

Beyond Hotelling: a New Model of Competitive Facility Loca-
tion. Content publishing games can also be interpreted as a natural
and interesting generalization of the classic Hotelling model for com-
petitive facility location. Hotelling games [15], in fact, are equivalent
to content publishing games with α = 0, i.e., games in which the
content quality does not affect the satisfaction of the readers. These
games suitably model scenarios in which sellers/players produce dif-
ferent types of goods and strategically focus on those attracting as
many customers as possible: the interaction between sellers and cus-
tomers generates a market in which sellers compete with each other
to maximize their profit. In general, a seller may be more specialised
in producing certain types of goods and less in other ones. There-
fore, in highly competitive and globalized markets, the quality of the
produced goods cannot be neglected when trying to model marketing
strategic behaviour. To accommodate this issue, we introduce a qual-
ity factor for each type of produced goods that generally depends on
the sellers’ abilities.

We point out that the content publishing model also fits with some
scenarios of party competition in politics, widely studied in [2]. In-
deed, each player can be seen as a political candidate, and her topic
of interest can model a political ideology, ranging from the far-left
(associated to 0) to the far-right (associated to 1). Instead of readers,
we have voters whose political ideology can range from the far-left to
the far-right (as for candidates), and each voter chooses the candidate
maximizing her satisfaction, according to her political ideology. Each
player/candidate can strategically choose a political party whose ide-
ology is slightly different from her personal one, with the aim of
maximizing the number of people voting her, and this turns into a
strategic behavior similar as that of the content publishing game.
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1.1 Our Contribution

Recall that, for α = 0, the content publishing game boils down to the
classic Hotelling model [15] for competitive facility location, whose
characterization required a considerable research effort [14, 11, 12].
Hence, it is legitimate to expect the achievement of a complete char-
acterization of the properties of the content publishing game to be
quite a challenging task. In this work, as a first step towards the un-
derstanding of this game, we mainly focus on the case of identical
publishers, all sharing the same topic of expertise p. Our results, sum-
marized in the following, show that even this basic version exhibits a
rich variety of complex situations.

Existence of Pure Nash Equilibria. We start by considering the
problem of determining the existence, and eventually uniqueness, of
pure Nash equilibria in content publishing games.

For identical publishers, we provide a wide characterization of the
cases in which pure Nash equilibria are guaranteed to exist, which
mainly depends on the number of publishers n and, subordinately,
on both the scaling factor α and the topic of expertise p. Our analysis
exploits the following fundamental property that holds if and only
if publishers are identical: in any strategy profile, the set of readers
who prefer the content released by a given publisher forms a (pos-
sibly empty) subinterval of [0, 1] (Lemma 1). This property allows
us to obtain a tight characterization of the utility that each publisher
gets in a given strategy profile (Lemma 4). By leveraging on this
characterization, we derive a set of necessary conditions that must be
satisfied by a strategy profile in order to be a pure Nash equilibrium
(Theorem 1). This theorem is then exploited to obtain both positive
and negative existential results.

It turns out that, for n = 2, there exists a unique pure Nash
equilibrium, with both players paired on a same topic depending
on both α and p (Theorem 2), while, for n = 3, a pure Nash
equilibrium never exists (Theorem 3). Both these results hold in-
dependently of the values of α and p. However, as the number of
publishers increases, dependence from these two parameters comes
into play. For n = 4, in fact, pure Nash equilibria are guaranteed
to exist only if one of the following five cases holds: (i) α = 0,
(ii) α ∈ [4/5, 1] and p ∈ [0, 5/4 − 1/α], (iii) α ∈ [4/5, 1] and
p = 3−1/α−

√
145/16− 6/α, (iv) α = 1 and p ∈ [1/4, 1/2], (v)

p = 1/2. In case of existence, the Nash equilibrium is unique (up to a
permutation of the players) and we give an exact formula for its com-
putation (Theorem 4). For n ≥ 5, existence of pure Nash equilibria
is always guaranteed in the two extremal cases of α ∈ {0, 1}, with
the set of equilibria forming an (n− 5)-dimensional polytope, inde-
pendently of the value of p (Theorems 5 [12] and 6). On the negative
side, we show that there exists an α∗ ∈ (0, 1) such that no game with
n ≥ 5 players admits a pure Nash equilibrium when 0 < α < α∗

(Theorem 7), and that, for any α ∈ (0, 1), there exists a positive in-
teger n∗ ≥ 2 such that no game with n > n∗ players admits a pure
Nash equilibrium (Theorem 8). This last result, in particular, shows
that α = 0 and α = 1 are the only two cases for which the existence
of pure Nash equilibria can be guaranteed in large games where the
number of players goes to infinity.

We point out that the structure of equilibria in content publish-
ing games exhibits some similarities with that of Hotelling games,
but there are some substantial differences. In Hotelling games, pure
Nash equilibria do not exist only for 3 players, and are completely
described by simple linear inequalities. In content publishing games,
instead, they may not exist even for n ≥ 4 players; furthermore, ex-
cept for the cases α = 1 or n = 2, the set of pure Nash equilibria

is generally determined by complex non-linear inequalities. Due to
these difficulties, we resort to a qualitative study of the structure of
equilibria to characterize some of their properties, such as existence
and uniqueness.

Efficiency of Pure Nash Equilibria. We also focus on the prob-
lem of evaluating the impact of strategic behaviour on the overall
quality of the published contents.

For each content publishing game admitting pure Nash equilibria,
we provide suitable bounds on the price of anarchy [17]. The social
function we adopt to measure the quality of a strategy profile is the
sum of the qualities (or, equivalently, the average quality) of the con-
tents released by the publishers. This allows us to quantify to what
extent the publishers’ strategic behavior impacts on the quality of the
documents populating the World Wide Web.

For games with identical publishers, we show the following tight
bounds. For n = 2 and n = 4, the price of anarchy is 3/2 and 10/7,
respectively (Theorems 9 and 10). For α = 0, as there is no degra-
dation in the quality of any published content, the price of anarchy is
trivially equal to 1 for any game. For α = 1, we show that it is equal
to
√

2 when the number of publishers tends to infinity (Theorems
11 (upper bound) and 12 (lower bound)). Due to Theorem 8, this is
enough to characterize the price of anarchy of large games.

More generally, for any game admitting pure Nash equilibria, we
show that the price of anarchy is at most 2 even in presence of het-
erogeneous players (Theorem 14). This result is obtained by deter-
mining a relaxed, but significant characterization of the properties
fulfilled by any pure Nash equilibrium for a content publishing game
with general players (Theorem 13).

Due to the lack of space, some proofs are omitted and left to the
full version of this paper.

1.2 Related Work
The Hotelling model for competitive facility location, which coin-
cides with the content publishing game when α = 0, has been intro-
duced in the seminal paper [15] and further investigated and extended
in [7, 14, 11, 12, 16, 21]. It admits a unique pure Nash equilibrium
for n = 2, 4, 5, no equilibria for n = 3, and infinitely many ones
for n ≥ 6, see [12]. A very similar model is that of Voroni games,
which have been addressed in [3, 10, 18]. Models for competitive fa-
cility location have been also studied in the political context of party
competition [2].

The content publishing game models the interactions between
publishers and readers in a direct way. A different approach, which
has been explored in the literature, assumes the presence of a medi-
ator, such as a search engine or a recommendation system, between
them. Several models about

Games with strategic publishers under the mediation of a search
engine fall within the field of search engine optimization [13]. In
these models, strategic modifications are performed by the authors of
a web content with the aim of improving the position the content will
occupy in the rankings generated by the search engine in response
to a sequence of queries. In [4], the characterization of the price of
anarchy of a game in which the search engine adopts the probability
ranking principle [20] is presented, while in [6], it is shown that any
learning dynamics converges to a pure Nash equilibrium.

Games with strategic publishers under the mediation of a recom-
mendation system have been recently considered in [5, 8] under a
mechanism design approach [19]. In [5], a recommendation system
is designed which, from the one hand, minimizes a metric called the
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intervention cost, and, from the other hand, induces a game whose
unique pure Nash equilibrium minimizes the social cost. In [8], in-
stead, a recommendation system based on the Shapley value is de-
signed so as to ensure fairness, stability, economic efficiency and fast
implementation.

Content publishing games exhibit some similarities with the
framework of valid utility games, introduced in [22]. The price of
anarchy of these games is known to be upper bounded by 2. How-
ever, content publishing games are not valid utility games and the
results achieved in [22], so as similar proof arguments, do not apply
to re-obtain the upper bound on the price of anarchy we achieve in
Theorem 14.

2 Model
A content publishing game G = (n, (pi)i∈[n], α) is defined by a
finite set [n] = {1, . . . , n} of n players, each having an expertise
pi ∈ [0, 1] representing the topic she is specialized in, and a param-
eter α ∈ [0, 1]. If player i publishes a content on topic x ∈ [0, 1],
she achieves a quality of qi(x) = 1− α|x− pi|. There are infinitely
many users, one for each point in [0, 1].4 A user located at point x
(i.e., interested on topic x), when accessing a content on topic t hav-
ing quality q, obtains a satisfaction equal to sx(t, q) = q·(1−|x−t|).
From now on, we shall refer to the user located at point x as to
user x. Given a strategy profile σ = (σ1, . . . , σn), where each
player i ∈ [n] publishes a content on topic σi, and a user x, de-
fine Px(σ) = argmaxi∈[n] {sx(σi, qi(σi))} as the set of players
publishing a content maximizing the satisfaction of x. Each user x
chooses the content maximizing her satisfaction (breaking ties uni-
formly at random), that is, the content published by any player be-
longing to Px(σ). With a little abuse of notation, we denote by
sx(σ) = sx(σi, qi(σi)), with i ∈ Px(σ), the satisfaction of user
x in σ. For each i ∈ [n], denote by Xi(σ) the set of users who
can potentially choose the content published by player i in σ, that is,
Xi(σ) = {x ∈ [0, 1] : i ∈ Px(σ)} and let µi(σ, x) be the proba-
bility that x chooses the content published by i, that is,

µi(σ, x) =

{
|Px(σ)|−1 if x ∈ Xi(σ),
0 otherwise.

The utility of player i in σ is defined as the fraction of users accessing
her content, i.e.,

ui(σ) =

∫ 1

0

µi(σ, x)dx

and each player aims at maximizing it.
A strategy profile σ is a pure Nash equilibrium if, for each i ∈ [n]

and for each t ∈ [0, 1], we have ui(σ) ≥ ui(σ−i, t). Denote by
NE(G) the set of pure Nash equilibria of game G.

To measure the quality of a strategy profile, we consider the overall
(or, equivalently, the average) quality of the published contents, de-
fined asQ(σ) =

∑
i∈[n] qi(σi). The price of anarchy ofG is defined

as PoA(G) = maxσ∈NE(G) {n/Q(σ)}, that is, as the worst-case ra-
tio between the maximum possible overall quality, which is equal to
n, and the overall quality of any pure Nash equilibrium.

3 Existence of Equilibria for Identical Players
In this section, we consider games with identical players, that is,
games where all publishers have the same topic of expertise p, which

4 This is equivalent to assuming that there is a finite set of users sampled
uniformly at random in the interval [0, 1].

yields the same quality function q(x) = 1−α|x−p|, and we denote a
content publishing game with identical players asG = (n, p, α). We
shall assume, without loss of generality, that p ∈ [0, 1/2] (indeed,
the case p ∈ [1/2, 1] can be treated in a symmetric way). Moreover,
as players are identical, every strategy profile is defined up to an or-
dering of the players. Hence, we also assume that, in every strategy
profile σ, we have σi ≤ σj for any i < j.

Given a user x and two topics y and z, with y ≤ z, define
δx(y, z) = sx(z, q(z)) − sx(y, q(y)). We say that z dominates y
(resp. y dominates z) if δx(y, z) > 0 (resp. δx(y, z) < 0) for any
x ∈ [0, 1]. Moreover, we say that a user x∗ is a separator for y
and z, with y < z, if δx(y, z) < 0 for any user x < x∗ (users
in [0, x∗) strictly prefer a content on topic y), δx(y, z) > 0 for
any x > x∗ (users in (x∗, 1] strictly prefer a content on topic z),
and δx∗(y, z) = 0 (user x∗ is indifferent between the two topics).
Let sep(y, z) be the function which, given two topics y and z with
y < z, returns the separator for y and z whenever it exists. For the
sake of simplicity and readability, we define sep(y, z) = 0 (resp.
sep(y, z) = 1) whenever z dominates y (resp. y dominates z). This
technicality does not alter the definition of the game, as the utility of
a player adopting a dominated strategy remains zero (the contribu-
tion of a single point in [0, 1] to the utility of a player is clearly equal
to zero), but guarantees that function sep is defined for any two top-
ics y and z, with y < z, as shown in the following lemma, where an
explicit formula defining function sep(y, z) is also provided.

Lemma 1. Fix a game G = (n, p, α) and two topics y and z, with
y < z. The following claims hold, with the interpretation that 1/α =
∞ when α = 0.

(a) Assume p < y. Then, sep(y, z) = min{1, y+z−p+1−1/α}
if y ≥ p−1+1/α, and sep(y, z) = α(y2+z2+y−z)−(y+z)(αp+1)

α(z+y−2p)−2

if y ∈ (p, p− 1 + 1/α).
(b) Assume z < p. Then, sep(y, z) = max{0, y+z−p−1+1/α}

if z ≤ p+1−1/α, and sep(y, z) = α(z2+y2+y−z)−(y+z)(αp−1)
α(z+y−2p)+2

if z ∈ (p+ 1− 1/α, p).
(c) Assume y ≤ p ≤ z. Then, sep(y, z) =

α(y2−z2−y(p−1)+z(p+1)−2p)+y+z
α(y−z)+2

.

Sketch of the Proof. Within this proof, in order to simplify our anal-
ysis, we assume that the definition of function δx(y, z) is extended
to the whole set of real numbers.
(a): By the assumption p < y < z, it follows that δx(y, z) < 0 for
each x ≤ y. To characterize the preference of a user x > y, we show
the following inequality:

∂

∂x
δx(y, z) > 0, ∀x ≥ y. (1)

To show (1), we distinguish between two cases:

• if x ≤ z, we have that ∂
∂x
δx(y, z) = −α(z + y) + 2αp + 2 ≥

2− z − y > 0;
• if x > z, we have that ∂

∂x
δx(y, z) = α(z − y) > 0.

Thus (1) is true. Because of (1), we have that function δx(y, z) is
increasing in [y,∞) and, since δy(y, z) < 0 and limz→∞ δz(y, z) >
0, it follows that function δx(y, z) admits exactly one zero x∗ ∈
[y,∞). Thus, as δx(y, z) < 0 for each x < x∗ and δx(y, z) > 0 for
each x > x∗, we have that sep(x, y) = min{x∗, 1}. The formula
of part (a) comes by computing x∗ in the two cases of x∗ ∈ [y, z]
and x∗ ∈ [z,∞), respectively, and noting that the first case happens
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when y ≤ p − 1 + 1/α and the second one happens when y ≥
p− 1 + 1/α (and in this last case x∗ ≤ 1).
(b): The proof uses similar arguments to case (a).
(c): First assume that p− y ≤ z − p. By the assumption y ≤ p ≤ z
and p − y ≤ z − p, it follows that δx(y, z) < 0 for each x <
p. At the same time, denoted ε1 := p − y and ε2 := z − p, we
have δ1(y, z) = −αz(z − p) + αy(p − y) + z − y = −αzε2 +
αyε1 + ε1 + ε2 ≥ 0, as αz ≤ 1. Thus, there exists x∗ ∈ [p, 1]
such that δx∗(y, z) = 0 and δx(y, z) > 0 for each x > x∗, i.e.,
x∗ ∈ [p, 1] is a separator for y and z. The formula of part (c) is
obtained by computing the unique zero of function δx(y, z) in the
cases in which x∗ ∈ [p, z] and x∗ ∈ [z, 1], respectively. Observe that
(z−y)(p−y) +y+ z−2p = (ε1 + ε2)ε1− ε1 + ε2 > 0 as ε1 ≥ 0,
ε2 ≥ 0, ε1 ≤ ε2 and ε1 + ε2 > 0, so that ε1 = 0 =⇒ ε2 > ε1.
Thus, the former case happens when α ≤ z−y

(z−y)(p−y)+y+z−2p
and

the latter case happens when α ≥ z−y
(z−y)(p−y)+y+z−2p

. As we have
z−y

(z−y)(p−y)+y+z−2p
= ε1+ε2

(ε1+ε2)ε1−ε1+ε2
≥ 1, the case of x∗ ∈ [p, z]

which requires α ≤ 1 always happens. The case of p − y ≥ z − p
can be shown by using similar arguments.

Observe that, from the above lemma, it follows that y can domi-
nate z only when p < y and p ≥ p− 1 + 1/α, while z can dominate
y only when z < p and z ≤ p+ 1− 1/α.

Next two lemmas give properties of function sep that we shall
widely exploit in the following.

Lemma 2. Fix a game G = (n, p, α) and a topic y. Then,

lim
ε→0+

sep(y − ε, y) = lim
ε→0+

sep(y, y + ε)

=


y if y ∈ [p+ 1− 1/α, p− 1 + 1/α],
2y − p+ 1− 1/α if y ≥ p− 1 + 1/α,
2y − p− 1 + 1/α if y ≤ p+ 1− 1/α.

By the previous lemma, given y ∈ [0, 1], we set sep(y, y) :=
limε→0+ sep(y − ε, y). Let T = {(y, z) : 0 ≤ y < z ≤
1 and sep(y, z) ∈ (0, 1)}.

Lemma 3. Function sep is continuous and non-decreasing in both
of its arguments. Furthermore, restricted to T , it is increasing in both
of its arguments.

Fix a strategy profile σ. Given an index i ∈ [n], let l(i) be the
index of the first player at the left of i adopting a different strategy,
with l(i) = 0 if σ1 = σi, and r(i) be the index of the first player at
the right of i adopting a different strategy, with r(i) = n+1 if σn =
σi. We define first as the maximum index i ∈ [n−1] such that σi is
not dominated by σr(i) and last as the minimum index i ∈ [n] \ {1}
such that σi is not dominated by σl(i). Clearly, first ≤ last, as
last < first implies that either σfirst dominates σlast and σlast
dominates σfirst: a contradiction. For the sake of conciseness, we
set first − 1 := 0, last + 1 := n + 1, and sep(σ0, x) := 0,
sep(x, σn+1) := 1 for each x ∈ [0, 1]. Next lemma characterizes
the set of users choosing the content published by every player in σ.

Lemma 4. Fix a strategy profile σ and a player i ∈ [n]. We
have Xi(σ) = ∅ if i /∈ {first, . . . , last} and Xi(σ) =
[sep(σl(i), σi), sep(σi, σr(i))] if i ∈ {first, . . . , last}.

Proof. First, we show that Xi(σ) = ∅ for each
i /∈ {first, . . . , last}. Towards this end, fix a player
i /∈ {first, . . . , last}. Assume i < first which implies
first > 1. By the definition of first, σr(i) dominates σi which

implies Xi(σ) = ∅. The case of i > last can be treated with a
symmetric argument.

Now fix a player i ∈ {first, . . . , last}. By Lemma
3, function sep is non-decreasing, so it follows that interval
[sep(σl(i), σi), sep(σi, σr(i))] is well defined. Thus, as we have
sep(σfirst−1, σfirst) := 0 and sep(σlast, σlast+1) := 1, we
get that the multi-set of intervals {Xfirst(σ), . . . , Xlast(σ)} real-
izes a partition of the [0, 1] interval. By the definition of separator,
we have Xi(σ) ⊆ [sep(σl(i), σi), sep(σi, σr(i))]. However, since
{Xfirst(σ), . . . , Xlast(σ)} realizes a partition of the [0, 1] inter-
val, it must necessarily be Xi(σ) = [sep(σl(i), σi), sep(σi, σr(i))].
In fact, if there exists a player i ∈ {first, . . . , last} such
that Xi(σ) ⊂ [sep(σl(i), σi), sep(σi, σr(i))], then there must
be a player j ∈ {first, . . . , last} such that Xj(σ) ⊃
[sep(σl(j), σj), sep(σj , σr(j))], which rises a contradiction.

For an interval I ⊆ [0, 1] (either open or closed) of left extreme
a and right extreme b, denote by |I| = b − a the length of I .
Given a strategy profile σ and a player i ∈ {first, . . . , last}, set
X̃i(σ) := [sep(σl(i), σi), sep(σi, σi)] the closed interval whose left
extreme coincides with the left extreme of Xi(σ) and its right ex-
treme is equal to limε→0+ sep(σi − ε, σi). The following theorem
gives necessary conditions that each pure Nash equilibrium must sat-
isfy (the proof is principally based on the previous lemmas, and due
to the lack of space, is omitted).

Theorem 1 (Equilibrium conditions for identical players). Fix a
game G = (n, p, α) and let σ be a pure Nash equilibrium for G.
The following properties hold:

(i) |Xi(σ)| > 0 for each i ∈ [n], i.e., first = 1 and last = n,
(ii) σ1 = σ2 and σn−1 = σn,
(iii) if σi = σi+1, then |X̃i(σ)| = |Xi(σ) \ X̃i(σ)| = 1

2
|Xi(σ)|,

(iv) there are at most two players selecting the same strategy,
(v) if σi = σi+1 and σj = σj+1 for some j > i+1, then |Xi(σ)| =
|Xj(σ)|,

(vi) σ1 > max
{

0, p
2

+ 1
2
− 1

2α

}
and σn < min

{
1, p

2
+ 1

2α

}
.

Furthermore, σ is a pure Nash equilibrium if and only if

(vii) ui(σ) = |[sep(σi−1, σi), sep(σi, σi+1)]| and
|[sep(σi−1, σi), sep(σi, σi+1)]| ≥ |[sep(σj , x), sep(x, σj+1)]|
for any i ∈ [n], j ∈ [n] ∪ {0} \ {i, i − 1}, x ∈ [σj , σj+1], and
[sep(σi−1, σi), sep(σi, σi+1)]| ≥ |[sep(σi−1, x), sep(x, σi+1)]|
for any x ∈ [σi−1, σi+1].

3.1 The Case n ≤ 4

In this subsection, we address games with at most four players. For
two players, there exists a unique pure Nash equilibrium.

Theorem 2 (Equilibria for two players). For any game G =
(2, p, α), there exists a unique pure Nash equilibrium σ such that:

σ1 = σ2 =

{
p
2
− 1

4
+ 1

2α
if 0 ≤ p ≤ 3

2
− 1

α
and 2

3
≤ α ≤ 1,

1
2

otherwise.

Proof. Consider a game G = (2, p, α). If σ is a pure Nash
equilibrium for G, by Theorem 1, we have that σ1 = σ2, and
1/2 = |[0, 1]|/2 = |X1(σ)|/2 = |X̃1(σ)| = sep(σ1, σ1).
Thus, we have that σ = (y, y) for some y ∈ [0, 1] such that
1/2 = sep(y, y). Conversely, if a strategy profile σ of G ver-
ifies σ = (y, y) and sep(y, y) = 1/2, we get 1/2 = 1 −
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sep(y, y) = |[sep(σ1, σ2), 1]| and |[0, sep(σ1, σ2)]| = sep(y, y) =
1/2, so that |[sep(σ1, σ2), 1]| = |[0, sep(σ1, σ2)]|. Observe that,
since |[sep(σ1, x), 1]| ≤ |[sep(σ1, σ2), 1]| = |[0, sep(σ1, σ2)]|
for any x ∈ [σ1, 1], and |[sep(σ1, σ2), 1]| = |[0, sep(σ1, σ2)]| ≥
|[0, sep(x, σ2)]| for any x ∈ [0, σ1], we have that the sufficient con-
dition of claim (vii) from Theorem 1 holds, and so σ is a pure Nash
equilibrium.

We conclude that, if the number of players is two, a strategy profile
σ is a pure Nash equilibrium if and only if σ = (y, y) for some
y ∈ [0, 1] and sep(y, y) = 1/2. First of all, observe that y ≥ p.
Otherwise, if y < p, player 2 gets a utility that is higher than 1−p by
deviating to strategy p. As u2(σ1, σ2) = 1/2 < u2(σ1, p), σ cannot
be a pure Nash equilibrium. Furthermore, by exploiting the definition
of sep(y, y), we have that either (a) 1/2 = sep(y, y) = 2y−p+1−
1/α ≥ y ≥ p, or (b) 1/2 = sep(y, y) = y ≤ p−1+1/α. (a) holds
if and only if inequalities 2y − p+ 1− 1

α
= 1

2
and 0 ≤ p ≤ y ≤ 1

2

are satisfied, which requires

y =
p

2
− 1

4
+

1

2α
, 0 ≤ p ≤ 3

2
− 1

α
,

2

3
≤ α ≤ 1. (2)

We also have that (b) holds if and only if inequalities y ≤ p− 1 + 1
α

and 0 ≤ p ≤ y = 1
2

are satisfied, which requires either:

y =
1

2
, 0 ≤ α ≤ 2

3
, 0 ≤ p ≤ 1

2
, or (3)

y =
1

2
,

2

3
≤ a ≤ 1,

3

2
− 1

α
≤ p ≤ 1

2
. (4)

By considering the union of (2), (3) and (4), the claim follows.

For three players, no game can ever admit a pure Nash equilibrium.

Theorem 3 (Equilibria for three players). For any game G =
(3, p, α), there is no pure Nash equilibrium.

Proof. Because of Theorem 1, claim (ii), we have that, for any pure
Nash equilibrium σ, it must be σ1 = σ2 = σ3. But this contradicts
Theorem 1, claim (iv). Thus, no strategy profile σ can be a pure Nash
equilibrium.

For four players, we give some necessary conditions on the exis-
tence of pure Nash equilibria depending on the mutual relationships
between α and p. Only two situations may happen: either there are
no equilibria, or there is a unique one (up to a permutation of the
players).

Theorem 4 (Equilibria for four players). For any game G =
(4, p, α), pure Nash equilibria exist only if one of the following cases
holds: (i) 4

5
≤ α ≤ 1 and 0 ≤ p ≤ 5

4
− 1

α
, (ii) 4

5
≤ α ≤ 1 and

p = −
√

145
16
− 6

α
+ 3 − 1

α
, (iii) α = 1 and 1

4
≤ p ≤ 1

2
, (iv)

p = 1
2

, (v) α = 0. Cases (i), (iii) and (v) are also sufficient ones.
Furthermore, pure Nash equilibria do not exist when α ∈ (0, 4/5)
independently of the value of p. In all cases of existence, there is a
unique pure Nash equilibrium σ defined as follows:

(a) σ1 = σ2 = p
2
− 3

8
+ 1

2α
and σ3 = σ4 = p

2
− 1

8
+ 1

2α
if (i) holds;

(b) σ1 = σ2 = 1
4

and σ3 = σ4 = 11
8
−
√

145
64
− 3

2α
if (ii) holds;

(c) σ1 = σ2 = p
2

+ 1
8

and σ3 = σ4 = p
2

+ 3
8

if (iii) holds;
(d) σ1 = σ2 = 7

8
− 1

2α
and σ3 = σ4 = 1

8
+ 1

2α
if (iv) holds and

4
5
≤ α < 1;

(e) σ1 = σ2 = 1
4

and σ3 = σ4 = 3
4

if (v) holds.

Corollary 1 (Equilibria for four players and α = 1). Any game
G = (4, p, 1) admits a unique pure Nash equilibrium.

Proof. The claim follows by combining cases (i) and (iii) from The-
orem 4.

3.2 The Case α ∈ {0, 1} and n ≥ 5

In this subsection, we consider the two extremal cases of α ∈ {0, 1}
for which a similar characterization is possible. For α = 0, the con-
tent publishing game boils down to the classical Hotelling game for
which the following theorem is known.

Theorem 5 (Equilibria for α = 0 (Fournier and Scarsini [12])).
Given a game G = (n, p, 0), with n ≥ 5, the set of pure Nash
equilibria of G forms an (n− 5)-dimensional polytope of Rn.

For the other case of α = 1, pure Nash equilibria are always guar-
anteed to exist as stated by the following theorem.

Theorem 6 (Equilibria for α = 1). Given a game G = (n, p, 1)
with n ≥ 5, the following facts hold:

(i) a strategy profile σ is a pure Nash equilibrium if and only if:
σi+1 − σi−1 ≥ σj − σj−1,

∀j ∈ [n− 1] \ {1, 2, i, i+ 1}, ∀i ∈ [n− 1] \ {1},
2σ1 − p = σ3 − σ1 = σn − σn−2 = 1− 2σn + p,
p
2
≤ σ1 = σ2 ≤ σ3 ≤ . . . ≤ σn−1 = σn ≤ p+1

2
;

(5)
(ii) the set of pure Nash equilibria of G forms an (n − 5)-

dimensional polytope of Rn.

3.3 The Case α ∈ (0, 1) and n ≥ 5

In this subsection, we consider the case of α ∈ (0, 1) and n ≥ 5 for
which we provide two negative results.

Theorem 7 (Equilibria for positive small values of α). There exists
a sufficiently small α∗, with 0 < α∗ ≤ 1/2, such that, for any game
G = (n, p, α) with n ≥ 5 and 0 < α < α∗, there is no pure Nash
equilibrium.

Proof. Assume by contradiction that, for any α∗ such that 0 <
α∗ ≤ 1/2, there exists a game G = (n, p, α) with n ≥ 5 and
0 < α < α∗ admitting a pure Nash equilibrium σ. Assume that
α∗ ≤ 1/2. Because of Lemma 2 and since α∗ ≤ 1/2, we have that
limε→0+ sep(σi − ε, σi) = σi for any player i ∈ [n].

Now, by symmetry, we assume without loss of generality that
σn−2 ≥ p, but with p ∈ [0, 1]. First of all, p 6= 1, otherwise
we would have that σn−2 = σn−1 = σn = 1, that is, more than
two players select the same strategy, thus contradicting Theorem 1.
Let x := σn−2 and z := σn−1. Observe that, by Theorem 1, we
get z = σn−1 = σn > σn−2 = x. Now we show that, if α∗

is sufficiently small, there exists a topic y with x < y < z such
that un−1(σ−(n−1), y) > un−1(σ), contradicting that σ is a pure
Nash equilibrium. By Lemma 4, we have that un−1(σ−(n−1), y) =
sep(y, z)−sep(x, y). By using the characterization of sep(y, z) and
sep(x, y) given in Lemma 1, we get that

∂

∂y
un−1(σ−(n−1), y) =

∂

∂y
(sep(y, z)− sep(x, y))

=
α

2
(−x+ z − 2)

+ α2 P (x, y, z, p, α)

(αx+ αy − 2αp− 2)2(αz + αy − 2αp− 2)2
, (6)
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where P (x, y, z, p, α) is a polynomial in its variables. Since α∗ ≤
1/2, αz+αy−2αp−2 = α(z−p)+α(y−p)−2 ≤ 1/2+1/2−2 =
−1 and, analogously αy + αx− 2αp− 2 ≤ −1, we have that

α2 P (x, y, z, p, α)

(αx+ αy − 2αp− 2)2(αz + αy − 2αp− 2)2

≤ α2P (x, y, z, p, α) ≤ α2M (7)

for some M > 0. Observe that such a value M exists since, as
P (α, p, x, y, z) is a continuous function defined on a compact set,
it admits a maximum. Observe that, by setting α∗ := 1/(2M) and
using (6) and (7), we get ∂

∂y
un−1(σ−(n−1), y) ≤ α

2
(−x+ z− 2) +

α2M ≤ α
2

(−x+ z − 2) + α2M = α
(

1
2
(−x+ z − 2) + αM

)
≤

α
(
− 1

2
+ αM

)
< α

(
− 1

2
+ α∗M

)
< 0. Hence, function

un−1(σ−(n−1), y) is decreasing in y ∈ (x, z), and we get
un−1(σ) = sep(z, z)− sep(y, z) = limε→0+ un−1(σ−(n−1), z −
ε) < un−1(σ−(n−1), y), for any y ∈ (x, z). Thus, if player n − 1
selects a strategy y with x < y < z, she improves her utility and that
contradicts the hypothesis that σ is a pure Nash equilibrium.

Theorem 8 (Equilibria forα ∈ (0, 1) and large values of n). For any
α ∈ (0, 1), there exists an integer n∗ ≥ 2 such that, each game G =
(n, p, α) with n > n∗ does not admit any pure Nash equilibrium.

Proof. To show the theorem, we need some preliminary lemmas.

Lemma 5. Given α ∈ [0, 1] and ∆ > 0, there exists a sufficiently
large integer n∗ > 0 such that, for any p ∈ [0, 1/2], any pure Nash
equilibrium σ of game G = (n, p, α) with n > n∗, and any interval
[a, b] ⊆ [p+ 1− 1/α, p− 1 + 1/α] ∩ [0, 1] with b− a ≥ ∆, there
exists a player i ∈ [n] such that σi ∈ [a, b].

Lemma 6. Given α ∈ (0, 1), p ∈ [0, 1/2], and w ∈ (p,min{1, p−
1 + 1/α}), there exists ∆ ∈ (0,min{1 − p,−1 + 1/α}) such that
|[sep(x,w), sep(w, z)]| > |[sep(x, y), sep(y, z)]| for any x, y, z
such that p < x < w < y ≤ z < p+ ∆ < min{1, p− 1 + 1/α}.

Now, we proceed with the proof of the theorem. Let α ∈ (0, 1),
and assume, by way of contradiction, that, for any n∗ > 0, there
exists p ∈ [0, 1/2] such that, for some n > n∗, there exists a pure
Nash equilibrium σ of gameG = (n, p, α). Let w ∈ (p,min{1, p−
1 + 1/α}) be an arbitrary real number, and let ∆ > 0 be the real
number defined as in Lemma 6, with respect to w. Observe that w is
well-defined since, as α ∈ (0, 1), interval (p,min{1, p− 1 + 1/α})
is non-empty.

By Lemma 5, we have that there exists n∗ > 0 such that,
for any n > n∗, any p ∈ [0, 1/2], and any pure Nash equilib-
rium σ of game G = (n, p, α), there exists a player i such that
p < σi−1 < σi ≤ σi+1 ≤ p + ∆ < min{1, p − 1 + 1/α}.
Indeed, by applying Lemma 5, one can show that there exist two
sufficiently large integers n∗1, n∗2 such that, for any pure Nash equi-
librium of G = (n, p, α) with arbitrary n > n∗1 and p ∈ [0, 1/2],
there exists at least a player choosing a strategy of σ belonging to
interval (p, w), and, for any pure Nash equilibrium of G = (n, p, α)
with arbitrary n > n∗2 and p ∈ [0, 1/2], there are at least two players
choosing a strategy of σ belonging to interval (w, p + ∆). Thus,
by setting n∗ := {n∗1, n∗2}, we have that, for any p ∈ [0, 1/2],
any n > n∗, any pure Nash equilibrium σ of G = (n, p, α),
by choosing i as the smallest index of a player selecting a strat-
egy of σ belonging to interval (w,min{1, p − 1 + 1/α}), we get
p < σi−1 < w < σi ≤ σi+1 ≤ p+ ∆ < min{1, p− 1 + 1/α}.

Since p < σi−1 < w < σi ≤ σi+1 ≤ p + ∆ <
min{1, p − 1 + 1/α}, and by exploiting the definition of ∆

given in Lemma 6, we have that |[sep(σi−1, w), sep(w, σi+1)]| >
|[sep(σi−1, σi), sep(σi, σi+1)]|. However, this inequality does not
satisfy the necessary condition given in claim (vii) of Theorem 1,
and this contradicts the assumption that σ is a pure Nash equilib-
rium. Thus, we necessarily have that, for any n > n∗ and p ∈ [1/2],
game G = (n, p, α) does not admit any pure Nash equilibrium, and
this shows the claim.

4 The Price of Anarchy for Identical Players

In this section, we focus on the price of anarchy for games with iden-
tical players.

4.1 The Case n ≤ 4

We start by considering games with few players. For two players, we
have the following result.

Theorem 9 (PoA for two players). Given a game G = (2, p, α), we
have that PoA(G) ≤ 3/2. Furthermore, there exists a game G =
(2, p, α) such that PoA(G) = 3/2.

Proof. From Theorem 2, we have an explicit formula to compute the
(unique) pure Nash equilibrium for the case of two identical players,
and then we can compute the price of anarchy over all the possible
values of α and p. Thus, by taking the maximum over α ∈ [0, 1] and
p ∈ [0, 1/2], we get 3/2 which is attained for α = 2/3 and p = 0,
and the claim follows.

For three players, we do not consider the price of anarchy since
pure Nash equilibria never exist (Theorem 3). For four players, the
price of anarchy is characterized by the following theorem.

Theorem 10 (PoA for four players). Given a game G = (4, p, α),
we have that PoA(G) ≤ 10/7. Furthermore, there exists a game
G = (4, p, α) such that PoA(G) = 10/7.

Proof. When the necessary conditions for the existence of a pure
Nash equilibrium given in Theorem 4 are satisfied, we have an ex-
plicit formula to determine the (unique) candidate equilibrium. This
gives an upper bound on the price of anarchy which can be computed
by taking the maximum over all values of α and p satisfying the con-
ditions. This value is 10/7 and is attained for α = 4/5 and p = 0
(case (i)). As for this case the conditions are also sufficient, it follows
that there exists a game realizing a price of anarchy of 10/7.

4.2 The Case of Large Games

Here, we consider games in which the number of players goes to
infinity. Because of Theorem 8, existence of pure Nash equilibria is
guaranteed only in the two extremal cases of α ∈ {0, 1}. Indeed, the
case of α = 0 is a trivial one as the quality of the content published
by any players is always equal to one, so that Q(σ) = n for each
strategy profile σ and the price of anarchy is 1 for any game. Hence,
we only focus on the case of α = 1. In Theorem 11, we show that,
for any arbitrarily small ε > 0, if the number of players is sufficiently
large, then the price of anarchy is at most

√
2+ε. Instead, in Theorem

12, we show that, for any arbitrarily small ε > 0 and any n∗ > 0,
there always exists a game with more than n∗ players having a price
of anarchy of at least

√
2− ε.
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Theorem 11 (PoA for α = 1 and n → ∞ (upper bound)). Given
p ∈ [0, 1/2], we have that lim supn→∞ PoA((n, p, 1)) ≤

√
2, i.e.,

for any ε > 0, there exists n∗ > 0 such that PoA((n, p, 1)) ≤
√

2+ε
for any n > n∗.

Proof. Fix p ∈ [0, 1/2]. The following lemma characterizes the
structure of a pure Nash equilibrium σ minimizing the overall quality
Q(σ)5, i.e., such that n/Q(σ) = PoA((n, p, 1)).

Lemma 7. Given n ≥ 5, let σ be a pure Nash equilibrium of
game G = (n, p, 1) minimizing the overall quality Q(σ). Set ∆ :=
σn−1 − σn−2. Then, the following conditions hold:

(i) there exists at most one strategy σh ≥ p and at most one strategy
σh−1 ≤ p with h ∈ [n−2]\{1, 2, 3}, such that 0 < σh−σh−1 <
∆;

(ii) there exist two strategies σu ≤ σv , with u, v ∈ [n − 1] \ {1},
such that, there are exactly two players selecting strategy σi if
i ≤ u or if i ≥ v, and exactly one player otherwise;

(iii) σi − σl(i) = ∆ for any index i ∈ [n− 1] \ {1, 2}, except for at
most two indices.

Now, by exploiting the structure of the pure Nash equilibria de-
fined in Lemma 7, we can compute lim supn→∞ PoA(n, p, 1).

Lemma 8. Fix p ∈ [0, 1/2]. For any n ≥ 5, let σn be a pure Nash
equilibrium minimizingQ(σn) in gameG = (n, p, 1). We have that:

lim sup
n→∞

PoA(n, p, 1) = lim sup
n→∞

n

Q(σn)

≤ max
a,b: p

2
≤a≤b≤ p+1

2

∫
[ p
2
, p+1

2 ]\[a,b] 2dx+
∫

[a,b]
1dx∫

[ p
2
, p+1

2 ]\[a,b] 2q(x)dx+
∫

[a,b]
q(x)dx

= max
a,b: p

2
≤a≤b≤ p+1

2

F (a, b, p), (8)

where F (a, b, p) :=
2(a− p

2 )+(b−a)+2( p+1
2
−b)∫

[ p
2
,
p+1
2 ]\[a,b]

2(1−|x−p|)dx+
∫ b
a (1−|x−p|)dx

.

The formula obtained in (8) can be interpreted as the price of anar-
chy of a continuous variant of the content publishing game in which
there are infinitely many players, the contribution of each player to
the overall quality is infinitesimally small, and each strategy profile
is a distribution on interval [0, 1]. According to formula (8), the pure
Nash equilibrium minimizing the overall quality within this setting
of continuous games, is a distribution with a density function µ de-
fined as µ(x) = 2 if x ∈ [p/2, a] ∪ [b, (p + 1)/2], µ(x) = 1 if
x ∈ (a, b)), and µ(x) = 0 otherwise.

Now, let F (a, b, p) as in Lemma 8. By (8), and by
standard calculations, we get lim supn→∞ PoA(n, p, 1) ≤
max

a,b: p
2
≤a≤b≤ p+1

2
F (a, b, p) = max0≤b≤ 1

2

4−4b
2b2−4b+3

=
√

2,

thus showing the claim.

Theorem 12 (PoA for α = 1 and n→∞ (lower bound)). We have
that lim supn→∞ PoA(n, 0, 1) ≥

√
2, i.e., for any ε > 0 and for

any n∗ > 0, there exists a game G = (n, 0, 1) with n > n∗, such
that PoA(G) ≥

√
2− ε.

Proof. For any integer t ≥ 1, let ∆(t) := 1
2(t+1)

, and let σn(t) be
the strategy profile of a game G = (n(t), 0, 1) such that the set of

5 Observe that, by Theorem 6, the set of pure Nash equilibria of game
G = (n, p, 1) is a compact set of Rn, and the overall quality is a contin-
uous function. Thus, by the Weierstrass Theorem, there exists a pure Nash
equilibrium minimizing the overall quality.

strategies played by some player is At := {σn(t),i : i ∈ [n(t)]} ={
∆(t)

2
+ h ·∆(t) : h ∈ [t] ∪ {0}

}
, and such that, given x ∈ At,

we have that |Px(σn(t))| = 2 if x ≥ 1 − 1√
2

or x = ∆(t)
2

, and
|Px(σn(t))| = 1 otherwise. Observe that the number n(t) of players
is univocally determined by the definition of strategy profile σn(t).
By Theorem 6, we get that strategy profile σn(t) is a pure Nash equi-
librium for any t ≥ 1. Given t ≥ 1, let h∗(t) be the smallest integer
h such that ∆(t)

2
+ h ·∆(t) ≥ 1− 1√

2
. By exploiting the definition

of σn(t), and by using standard arguments of mathematical analysis,
we get lim supn→∞ PoA(n, 0, 1) ≥ limt→∞

n(t)
Q(σn(t))

· ∆(t)
∆(t)

= 4−4b
2b2−4b+3

|b=1− 1√
2

=
√

2, thus showing the claim.

5 The Price of Anarchy for Heterogeneous Players

In this section, we bound the price of anarchy of any content publish-
ing game admitting pure Nash equilibria. Although we resort to the
relaxed equilibrium conditions given in the following theorem, this
is enough to obtain a general upper bound of 2.

Theorem 13 (Equilibrium conditions). For any game G =
(n, (pi)i∈[n], α) admitting a pure Nash equilibrium σ, the follow-
ing properties hold: (i) 0 < ui(σ) < 1 for any i ∈ [n], (ii)
max

{
0, pi

2
+ 1

2
− 1

2α

}
≤ σi ≤ min

{
1, pi

2
+ 1

2α

}
for any i ∈ [n].

Theorem 14 (Price of anarchy). For any game G =

(n, (pi)i∈[n], α), we have that PoA(G) ≤ min
{

1
1−α , 2

}
≤ 2, with

the interpretation that 1/0 :=∞.

Proof. Let σ be a pure Nash equilibrium of game
G. Given i ∈ [n], by Theorem 13, we have that, if
σi ≥ pi, the following inequalities hold: qi(σi) =
1 − α(σi − pi) ≥ 1 − αmin

{
1, pi

2
+ 1

2α

}
+ αpi ≥ 1 −

min
{
α, αpi

2
+ 1

2

}
+αpi = −min

{
−1 + α− αpi,−αpi2

− 1
2

}
=

max
{

1− α+ αpi,
αpi
2

+ 1
2

}
≥ max

{
1− α, 1

2

}
, where

the first inequality comes from Theorem 13. Analogously,
if σi < pi, we get qi(σi) = 1 − α(pi − σi) ≥ 1 +
αmax

{
0, pi

2
+ 1

2
− 1

2α

}
− αpi ≥ 1 + max

{
0, αpi

2
+ α

2
− 1

2

}
−

αpi ≥ max
{

1− αpi, 1− αpi
2

+ α
2
− 1

2

}
≥

max
{

1− α, 1− α
2

+ α
2
− 1

2

}
≥ max

{
1− α, 1

2

}
, where

the first inequality comes from Theorem 13. Thus, we have that
qi(σ) ≥ 1/2 for any i ∈ [n], and then the price of anarchy is
PoA(G) = n∑n

i=1 qi(σ)
≤ n

n·max{1−α, 12}
= 1

max{1−α, 12}
=

min
{

1
1−α , 2

}
≤ 2, with the interpretation that 1/0 :=∞, and this

fact concludes the proof.

6 Conclusions and Open Problems

We introduced the content publishing game, modelling interactions
between readers and publishers, to evaluate to what extent the strate-
gic behavior of the latter impacts on the quality of content publishing
in the World Wide Web. The most technical and challenging part of
our work has revealed to be the characterization of the set of pure
Nash equilibria as a function of the parameters of the game and, al-
though we provided a considerable amount of results, a complete pic-
ture is still missing, even for the case of identical publishers. Settling
this question constitutes a challenging open problem which would
likely provide further fundamental insights, also useful for the exact
quantification of the price of anarchy as a function of n, α and p.
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Furthermore, a better characterization of the set of pure Nash equi-
libria could also imply better bounds for the price of anarchy of the
content publishing game as function of the input parameters. By ex-
ploiting our results, we have an upper bound of 2 for heterogeneous
players, and relatively to identical players, we have tight bounds of
3/2, 10/7, and

√
2, for n = 2, n = 4, and (n, α)→ (∞, 1), respec-

tively. As the highest lower bound is 3/2 (attained by two identical
players), it would be interesting to close the gap between 3/2 and 2
for the price of anarchy in the general case of heterogeneous players.
Finally, we conjecture that the price of anarchy for identical players
decreases as the number of players increases.

Other interesting research directions would be to analyse distribu-
tions of users other than the uniform one, so as to model the presence
of hot topics catalysing the interest of a huge portion of readers; to
consider large games with a huge number of publishers whose top-
ics of expertise are drawn according to some probability distribution;
to relax the assumption of having a continuous space of topics; to
consider publishers with different writing abilities; to address users
interested in accessing multiple documents; to quantify the price of
stability for the cases in which pure Nash equilibria are not unique;
to focus on other social functions, such as the sum of the publishers’
utilities, the sum of the readers’ satisfactions, the minimum quality
of a released document, and so forth.

Under a more general viewpoint, we believe that our work intro-
duces an intriguing model of strategic interactions which may be
applied in several practical settings such as, for instance, marketing
strategies in business activities and shifting alliances in politics.
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