
Minimality and Comparison of Sets
of Multi-Attribute Vectors

Federico Toffano and Nic Wilson 1

Abstract. In a decision-making problem, there is often some un-
certainty regarding the user preferences. We assume a parameterised
utility model, where in each scenario we have a utility function over
alternatives, and where each scenario represents a possible user pref-
erence model consistent with the input preference information. With
a set A of alternatives available to the decision maker, we can con-
sider the associated utility function, expressing, for each scenario, the
maximum utility among the alternatives. We consider two main prob-
lems: firstly, finding a minimal subset ofA that is equivalent to it, i.e.,
that has the same utility function. We show that for important classes
of preference models, the set of so-called possibly strictly optimal
alternatives is the unique minimal equivalent subset. Secondly, we
consider how to compare A to another set of alternatives B, where
A and B correspond to different initial decision choices. We derive
mathematical results that allow different computational techniques
for these two problems, using linear programming, and especially,
with a novel approach using the extreme points of the epigraph of
the utility function.

1 INTRODUCTION

In a decision-making problem, there can be uncertainty regarding the
user preferences. Suppose that, in a particular situation, A is the set
of alternatives that are available to the decision maker. This is inter-
preted in a disjunctive fashion, in that the user is free to choose any
element α of A. However, as is common, we do not know precisely
the user’s preferences. The preference information available to the
system is represented in terms of a set of user preference models, pa-
rameterised by a set (of scenarios) W where, associated with each
scenario w ∈ W , is a (real-valued) utility function fw over alterna-
tives.

Each element w ofW is viewed as a possible model of the user’s
preferences that is consistent with the preference information we
know. If we knew that w were the true scenario, so that fw repre-
sents the user’s preferences over alternatives, then we would be able
to choose a best element of A with respect to fw leading to a util-
ity value UtA(w) = maxα∈A fw(α). However, the situation can be
ambiguous given a non-singleton set W of possible user models or
scenarios.

The setW incorporates what we know about the user preferences;
for example, if we have learned that the user regards alternative β as
at least as good as alternative γ, thenW will only include scenarios
w such that fw(β) ≥ fw(γ).

1 Insight Centre for Data Analytics, School of Computer Science
and Information Technology, University College Cork, Cork, Ireland
{federico.toffano,nic.wilson}@insight-centre.org

The utility function fw may be based on a decomposition of util-
ity, using, for example, an additive representation for a combinato-
rial problem (e.g., [23, 32, 25]). Also, fw(α) could represent the ex-
pected utility of alternative α given that w is the correct user model,
based on a probabilistic model with parameter w, for example in a
multi-objective influence diagram [15, 24, 26], with α corresponding
to a policy.

We consider, in particular, the following related pair of questions:

(1) Are there elements ofA that can be eliminated unproblematically?
In particular, is there a strict subset A′ of A that is equivalent to
A?

(2) Given a choice between one situation, in which the available alter-
natives are A, and another situation, in which alternatives B are
available, is A at least as good as B in every scenario?

Regarding (1), we need to be able to eliminate unimportant
choices, to make the list of options manageable, in particular, if we
want to display the alternatives to the user. We interpret this as find-
ing a minimal subsetA′ ofA such that UtA(w) = UtA′(w) for every
scenario w ∈ W .

Question (2) concerns a case in which the user may have a choice
between (I) being able to obtain any of the set of alternatives A, and
(II) any alternative in B (and thus, the user could obtain any alterna-
tive in A ∪ B). Sets A and B may correspond to different choices
X = a and X = b of a fundamental variable X , and determining
that A dominates B may lead us to exclude X = b, thus simplify-
ing the problem. For instance, A might correspond to hotels in Paris,
and B to hotels in Lisbon, for a potential weekend away. We want
to be able to determine if one of these clearly dominates the other;
if, for instance, A dominates B, then there may be no need for the
system and the user to further consider B, and, for example, may
focus on Paris rather than Lisbon. We interpret this task as deter-
mining if in every scenario the utility A is at least that for B, i.e.,
UtA(w) ≥ UtB(w).

The focus of this paper is to determine important properties of the
dominance and equivalence relations, and to derive computational
procedures, in order to find a minimal equivalent subset, and testing
dominance between A and B; we also determine properties and a
computational technique for a form of maximum regret, that can be
viewed as a degree of dominance, and which corresponds to setwise
max regret defined in [32]. The main computational procedures are
based on linear programming (LP), or, alternatively, a novel method
using the extreme points of the epigraph of the utility function (which
we abbreviate to EEU).

From the computational perspective we focus especially on the
case in which alternatives are represented as multi-attribute utility
vectors, based on a weighted average user preference model. Each
utility vector is then an element of IRp, representing a number p of

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

scales of utility (or objectives); each scenario w is a normalised non-
negative vector, with α <w β if and only if the weighted sum of α
with respect to w is at least that of β. An input preference of α over
β then leads to a linear constraint on the weights vector w, and we
can define the set of consistent preference modelsW as the convex
polytope generated by a set of input preferences of this form.

We show that for important classes of preference models, the set
of Possibly Strictly Optimal (PSO) alternatives is the unique mini-
mal equivalent subset. Furthermore, the PSO operator can be used
to filter query sets to avoid the potential of an inconsistent answer.

Section 2 gives the formal setup, defining dominance relations,
and giving basic properties. Section 3 discusses related work. Sec-
tion 4 considers the problem of reducing the size of a set A, whilst
maintaining equivalence. Section 5 defines a form of maximum re-
gret in this context, shows how it relates to dominance, and gives
properties that will be useful for computation. Section 6 discusses
the importance of the possibly optimal and possibly strictly opti-
mal alternatives in incremental preference elicitation. Section 7 de-
scribes the EEU method. Section 8 brings together the computational
techniques for the weighted multi-attribute utility case. Sections 9
and 10 describe the implementation and experimental testing, and
Section 11 concludes.

The online longer version [30] includes proofs, using auxiliary
lemmas, and further details about the experiments.

2 TERMINOLOGY AND BASIC PROPERTIES
We consider a (possibly infinite) set Ω of alternatives, and another set
U , the elements of which we call scenarios, that corresponds with the
set of user preference models. With each scenario w ∈ U is associ-
ated a utility function fw on Ω, i.e., a function from Ω to IR; this
gives rise to a total pre-order <w on Ω given by α <w β ⇐⇒
fw(α) ≥ fw(β), for α, β ∈ Ω.

We do not a priori assume anything about the functions fw; how-
ever certain mathematical results make additional assumptions, such
as continuity with respect to w. Of particular interest in this pa-
per is the case when fw(α) is a linear function of w, where U =
IRp for some p, and so fw(α) can be written as

∑p
i=1 αiw(i) =

(α1, . . . , αp) · w, for some reals αi, with αi representing how good
alternative α is with respect to objective/criterion i. Then α can be
identified with the vector (α1, . . . , αp) ∈ IRp.

For W ⊆ U we define relation <W on Ω by α <W β ⇐⇒
for all w ∈ W , α <w β. Thus, α <W β if and only if α is at
least as good as β in every scenario in W . We define �W to be
the strict part of <W , i.e., for α, β ∈ Ω, α �W β if and only if
α <W β and β 6<W α. Relation �W is transitive and acyclic. We
define equivalence relation ≡W to be the symmetric part of <W ,
given by α ≡W β if and only if α <W β and β <W α.

LetM be the set of finite subsets of Ω.

The utility function associated with A ∈ M: we define, for
w ∈ U , UtA(w) to be maxα∈A fw(α).

Dominance relation between sets: For subsetW of U , we define
binary relation <W∀∀∃ onM as follows. Consider any A,B ∈M.

• A <W∀∀∃ B if and only if for all w ∈ W and for all β ∈ B there
exists α ∈ A such that α <w β.

It is easy to see that A <W∀∀∃ B if and only if for all w ∈ W ,
UtA(w) ≥ UtB(w). Relation <W∀∀∃ is transitive and satisfies obvious

monotonicity properties with respect to A, B andW . We also have
A <W∀∀∃ B if and only if A <W∀∀∃ {β} holds for each β ∈ B.
Define equivalence relation≡W∀∀∃ by A ≡W∀∀∃ B if and only if for all
w ∈ W , UtA(w) = UtB(w). Thus, ≡W∀∀∃ is the symmetric part of
<W∀∀∃, with A ≡W∀∀∃ B if and only if A <W∀∀∃ B and B <W∀∀∃ A.

One can also consider a (strong form of) strict dominanceA�W∀∀∃
B defined as for all w ∈ W , UtA(w) > UtB(w); this corresponds
with the dominance relation defined in Definition 2 of [2].

Example. Let A = {(11, 1), (10, 4), (7, 5), (6, 6), (4, 7)} and
B = {(11, 2), (8, 5)} be sets of utility vectors of hotels in Paris
and Lisbon respectively. For example, the first value of each util-
ity vector could be a score for the location and the second value
could be a score for cleanliness, the higher the score, the bet-
ter. We assume linear utility functions with fw(α) = w · α. Let
U = {(w1, w2) : w1, w2 ≥ 0 & w1 + w2 = 1}, representing dif-
ferent normalised weightings of the two criteria. We assume that
the user has an associated weights vector that is unknown and we
want to recommend to the user a trip to Paris or Lisbon based on
her preferences on the available hotels. Suppose then that we ask
to the user her preference between the hotel with utility (10, 4)
and the hotel with utility (11, 2). An input preference of (10, 4)
over (11, 2) implies w · (10, 4) ≥ w · (11, 2) and so 2w2 ≥
w1 and thus, w1 ≤ 2

3
, leading to the set of scenarios W =

{(w1, w2) : w1 + w2 = 1 & 0 ≤ w1 ≤ 2
3
}. This example is illus-

trated in Figure 1, and it is easy to see that A <W∀∀∃ B since for
0 ≤ w1 ≤ 1

3
there is no line above the line associated to (4, 7) ∈ A,

and for 1
3
≤ w1 ≤ 2

3
there is no line above the line associated to

(10, 4) ∈ A, i.e., @β ∈ B s.t. fw(β) > UtA(w) for any w ∈ W .
Therefore in this case we can recommend to the user the trip to Paris.

Figure 1. fw(α) and fw(β) for each α ∈ A and β ∈ B, where
A = A′ ∪A′′ = {(11, 1), (10, 4), (7, 5), (6, 6), (4, 7)},

B = {(11, 2), (8, 5)} and
w ∈ W = {(w1, w2) : w1 + w2 = 1 & 0 ≤ w1 ≤ 2

3
}.

3 RELATED WORK
Multiattribute utility theory (MAUT) [23] involves numerical repre-
sentations of user preferences with respect to alternatives evaluated

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

over multiattribute spaces. Imprecisely specified multiattribute util-
ity theory (ISMAUT) [36] is one of the earliest attempt to deal with
parameterised utility information representing user preferences with
linear inequalities and reducing the set of alternatives to those that
are not dominated by any other alternative. Related research such as
[20] and [35], deals with similar issues.

A major division in recent work on parameterised user preference
models is whether a Bayesian model is assumed over the scenarios
(corresponding to the different user preference models), or if there is
a purely qualitative (logical) representation of the uncertainty over
scenarios, where all we represent is that the scenario is in a set
W . Bayesian approaches include [14, 9, 34, 8]. Work involving a
qualitative uncertainty representation includes [10, 32, 12, 25, 6].
Linear imprecise preference models, including those based on a
simple form of MAUT model, have been considered in work such
as [12, 28, 24, 22] including in a conversational recommender sys-
tem context [13, 32, 33].

In Section 4 we consider a number of operators representing
different notions of optimality. The set UDW(A), a natural gen-
eralisation of the Pareto-optimal elements, appears in many con-
texts, e.g., [25, 22]. Possibly optimal (also known as potentially op-
timal) elements have been considered in many publications, such
as [20, 1, 18, 19, 40, 3, 2, 5]. The Possibly Strictly Optimal set
PSOW(A) has been considered much less [39, 27, 38]. Regret-based
decision making has a long history, with recent work in AI includ-
ing [10, 12, 6]. We describe in Section 5 the relationship between the
dominance relation <W∀∀∃ and setwise max regret [32].

4 FILTERING A AND MINIMAL EQUIVALENT
SUBSETS

In this section we consider the question, raised earlier, regarding re-
placing A with an equivalent subset of A, i.e., filtering out elements
of A that are redundant.

We consider different natural operators for filtering (forms of
which have been studied in the literature), namely, UDW(A), which
removes strictly dominated alternatives from A, and POW(A),
which removes alternatives that are not possibly optimal, i.e., not
optimal with respect to any scenario in W , and a refined variation,
PSOW(A).

Setwise-minimal equivalent subsets: We may want to reduce A
to an equivalent subset that cannot be reduced any further. We define
SMEW(A) to be the set of subsets B of A that are setwise-minimal
equivalent to A, i.e., such that B ≡W∀∀∃ A and there does not exist
any strict subset C ofB such that C ≡W∀∀∃ A. Theorem 1 determines
when there is a unique such subset. In Section 4.2 we give a simple
method for determining setwise-minimal equivalent subsets.

Equivalence-free: we say that A (∈ M) is ≡W -free (or
equivalence-free) if for all α, β ∈ A, we have α 6≡W β. One can
reduce any A to an equivalence-free set A′ by including exactly one
element in A′ of each ≡W -equivalence class in A.

The Undominated Operator UDW : For A ∈ M we define
UDW(A) to be the set of α ∈ A such that there does not exist γ ∈ A
such that γ �W α. Thus, the element α of A is not in UDW(A) if
and only if there exists some γ ∈ A such that γ is at least as good as
α in every scenario, and strictly better in at least one scenario. The set
UDW(A) is a natural generalisation of the Pareto-optimal elements,

and is sometimes referred to as the set of undominated elements in
A.

4.1 The Operators POW and PSOW

Possibly Optimal Set POW(A): for each w ∈ U and A ∈ M we
define Ow(A) to be all elements α of A that are optimal in A in
scenario w, i.e., such that for all β ∈ A, α <w β. For W ⊆ U
we define POW(A) to be

⋃
w∈W Ow(A), the set of alternatives that

are optimal in some scenario, i.e., optimal for some consistent user
preference model.

Possibly Strictly Optimal Set PSOW(A): we define SOWw (A)
to be all elements α of A such that α �w β, for all β ∈ A with
β 6≡W α. These elements α are said to be strictly optimal in scenario
w. We then define PSOW(A), the set of possibly strictly optimal el-
ements, to be

⋃
w∈W SOWw (A), i.e., all the elements that are strictly

optimal in some scenario inW . For equivalence-free A, PSOW(A)
consists of all alternatives α ∈ A which are uniquely optimal in
some scenario w ∈ W (i.e., Ow(A) = {α}). It can be easily seen
that PSOW(A) ⊆ POW(A) ∩UDW(A).

Definition of OptAW(α): We define, for α ∈ A, OptAW(α) to con-
sist of all scenarios w ∈ W in which α is optimal, i.e., α ∈ Ow(A).
Thus, α ∈ POW(A) ⇐⇒ OptAW(α) 6= ∅. It can be seen that for
B ⊆ A, we have B ≡W∀∀∃ A if and only if

⋃
β∈B OptAW(β) =W .

Example continued: We have the set of undominated ele-
ments UDW(A) = {(10, 4), (7, 5), (6, 6), (4, 7)}. Abbreviating
w to just its first component w1 we have W = [0, 2

3
], and

OptAW(10, 4) = [1
3
, 2
3
]; OptAW(6, 6) = { 1

3
}, OptAW(4, 7) =

[0, 1
3
] and OptAW(11, 1) = OptAW(7, 5) = ∅. Thus, POW(A) =

{(10, 4), (6, 6), (4, 7)}. We have PSOW(A) = {(10, 4), (4, 7)}
and {(10, 4), (4, 7)} ≡W∀∀∃ A. The PSOW operator thus leads here
to stronger filtering than the POW operator. In Figure 1 we can see a
graphical interpretation of OptAW((4, 7)) = [0, 1

3
], i.e., w1 ∈ [0, 1

3
]

is an interval in which there is no line strictly above the line as-
sociated to (4, 7). We have (4, 7) ∈ PSOW(A) because for any
w1 ∈ [0, 1

3
) the line associated to (4, 7) is (strictly) above all the

other lines, and (6, 6) ∈ POW(A) because at w = 1
3

there is no line
(strictly) above the line associated to (6, 6). 2

Theorem 1 below gives some relationships between PSO, SME
and the dominance relation <W∀∀∃, for equivalence-free A. Any
setwise-minimal equivalent subset of A contains PSOW(A), the set
of possibly strictly optimal elements. The latter set is equivalent toA
if and only if there is a unique minimal equivalent subset, which is
thus equal to PSOW(A).

The condition that PSOW(A) is equivalent toA holds in the linear
multi-objective case considered in Section 8 below (see Theorem 2),
and so then PSOW(A) is the unique minimal equivalent subset of
A. Part (ii) implies that the relation <W∀∀∃ can be used for computing
PSOW(A).

Theorem 1 Assume that A (∈ M) is ≡W -free and let W ⊆ U .
Then the following hold:

(i)
⋂
B∈SMEW (A)B = PSOW(A);

(ii) PSOW(A) is the set of all α ∈ A such that A \ {α} 6<W∀∀∃ {α};
(iii) PSOW(A) ≡W∀∀∃ A if and only if SMEW(A) is a singleton, which

is if and only if PSOW(A) is the unique setwise-minimal equiva-
lent subset for A.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

4.2 Filtering
A simple way of generating a minimal equivalent subset of A is to
sequentially delete elements α of A that are not needed for main-
taining equivalence, i.e., are such that A \ {α} <W∀∀∃ {α}, since
then A \ {α} ≡W∀∀∃ A. This is what is done in the operation
Filterσ(A;<W∀∀∃) defined below, to produce a minimal equivalent
subset of A.2

For α ∈ A, define Filter(A,α;<W∀∀∃) to be A \ {α} if A \
{α} <W∀∀∃ {α}; otherwise it equals A.

Let us label A as α1, . . . , αn, where n = |A|. Formally the la-
belling is a bijection σ from {1, . . . , n} to A (so that σ(i) = αi),
and let Λ be the set of all labellings. We define Filterσ(A;<W∀∀∃)
iteratively as follows. We set A0 = A. For i = 1, . . . , n, we set
Ai = Filter(Ai−1, αi;<W∀∀∃). We then define Filterσ(A;<W∀∀∃) to
be An, i.e., the set remaining after iteratively deleting elements from
A that are dominated w.r.t. relation <W∀∀∃.

As the proposition below states, when applying the filtering oper-
ation Filterσ(A;<W∀∀∃), (i) equivalence is always maintained; and
(ii) we always obtain a minimal equivalent subset, and any such
subset can be achieved for some ordering. Part (iii) implies that
for any labelling σ we have Filterσ(A;<W∀∀∃) = PSOW(A) if
PSOW(A) ≡W∀∀∃ A.

Proposition 1 Let A ∈M and let σ be any labelling of A. Then we
have:

(i) A ≡W∀∀∃ Filterσ(A;<W∀∀∃) ⊆ A.
(ii) SMEW(A) = {Filterσ(A;<W∀∀∃) : σ ∈ Λ}.

(iii) If PSOW(A) ≡W∀∀∃ A then Filterσ(A;<W∀∀∃) = PSOW(A) for
any labelling σ.

4.3 PSOW(A) as unique minimal equivalent set
We show that in certain very important classes of problem we do have
PSOW(A) ≡W∀∀∃ A, leading (by Theorem 1) to PSOW(A) being
the unique setwise-minimal equivalent subset for equivalence-freeA.
The result below covers the linear case in which fw(α) = w · α, but
also much more general forms of utility function. This contrasts with
the general case in which PSOW(A) may well not be equivalent
to A; it is even easy to construct small discrete examples in which
PSOW(A) is empty; see e.g., Table 2 of [39].

Theorem 2 Let Ω = U = IRp and let W be a convex subset of
U . Assume that for each α ∈ Ω, {fw(α) : w ∈ W ′} is an ana-
lytic function of w, whereW ′ is the smallest affine space containing
W . Assume that A (∈ M) is ≡W -free. Then there exists a unique
setwise-minimal equivalent subset for A, i.e., SMEW(A) is a single-
ton, and this equals PSOW(A), which equals the set of elements α
of A such that OptAW(α) has the same dimension asW .

5 SETWISE MAX REGRET
The condition A <W∀∀∃ B states that in every scenario, the set of
alternatives A is at least as good as the set B. A natural related
numerical measure is setwise max regret SMRW(A,B), defined to
be supw∈W UtB(w) − UtA(w), which expresses how much worse
A could be than B, i.e., the maximum regret of choosing A over

2 One can define Filterσ(A;�W∀∀∃) analogously, using the strongly strict
version of the dominance relation, with the result being POW (A), irre-
spective of σ, and without requiring any conditions on A; see Algorithm 1
and Theorem 1 in [2].

B. When A ⊆ B, SMRW(A,B) equals the setwise max regret
SMR(A,W) defined in [32]; that paper defines a method that in-
volves finding a subset A of B (among a particular class of subsets,
e.g., all those of a fixed cardinality k) that minimises SMRW(A,B).3

A can then be considered as a maximally informative query, to be
used in an incremental elicitation process for finding an optimal el-
ement of B. SMRW(A,B) is closely related also to the notion of
setwise max regret defined in [4].

Regarding UtA(w) as the utility achieved from setA in scenariow
(and similarly, for UtB(w)), we have that SMRW(A,B) is the worst-
case loss of utility (or maximum regret) if we choose setA instead of
set B. For instance if A is a subset of B, and SMRW(A,B) is very
close to zero, then we might consider that A is a sufficiently close
approximation of B, simplifying the set of choices for the user. We
have SMRW(A,B) ≤ 0 if and only if A <W∀∀∃ B (see Proposition 2
below). The problem of computing SMRW(A,B) is thus strongly
related to that of determining A <W∀∀∃ B.

The definitions and results from earlier sections (apart from Sec-
tion 4.3), regarding <W∀∀∃, SME, PO, PSO and UD, depended only
on the orderings <w, for w ∈ W , and so were ordinal, in the sense
that they are not affected by any strictly monotonic transformations
of each function fw (which can be different for each w). However,
this is not the case for SMR, which has much weaker invariance prop-
erties.

We say that SMRW(A,B) is achieved if there exists w ∈
W such that UtB(w) − UtA(w) = SMRW(A,B), so that then
SMRW(A,B) = maxw∈W UtB(w) − UtA(w). We will mainly be
interested in situations in which SMRW(A,B) is achieved; this al-
ways happens, for instance, if for each α ∈ Ω, fw(α) is a continuous
function of w, andW is compact.

There are obvious monotonicity properties of SMRW(A,B) with
respect to W , A and B. We give some further basic properties of
the maximum regret function below. Parts (i) and (ii) give decom-
posability properties, with (i) being more useful computationally. (ii)
is a slight generalisation of Observation 4 in [32]. (iii) relates the
function SMRW with the relation <W∀∀∃, and (iv) with the Possibly
Optimal operator POW , and (v) with the Possibly Strictly Optimal
operator PSOW . Property (vi) enables pre-processing of the sets A
and B.

Proposition 2 Consider A,B ∈M andW ⊆ U .

(i) SMRW(A,B) = maxβ∈B SMRW(A, {β})
(ii) SMRW(A,B) = maxα∈PO(A) SMROptAW (α)({α}, B).

(iii) SMRW(A,B) ≤ 0 if and only if A <W∀∀∃ B.
(iv) If SMRW(A,B) is achieved then SMRW(A,B) ≥ 0 if and only

if POW(A ∪B) ∩B 6= ∅.
(v) For equivalence-free A, and α ∈ A, SMRW(A \ {α}, {α}) > 0

if and only if PSOW(A) 3 α.
(vi) If A′ ≡W∀∀∃ A and B′ ≡W∀∀∃ B then SMRW(A′, B′) =

SMRW(A,B).

6 IMPLICATIONS FOR INCREMENTAL
PREFERENCE ELICITATION

In recent years there has been considerable focus in the AI prefer-
ence community on incremental preference elicitation techniques, or

3 In contrast, in generating PSOW (B) we are finding a minimal subsetA of
B such that SMRW (A,B) = 0 (under appropriate assumptions, such as
those for Theorem 2).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

active learning, see e.g., [14, 10, 32, 34, 2, 5, 7]. We argue that the
notion of being possibly strictly optimal is important here.

Let α and β be alternatives. Preference model w is said to satisfy
a preference statement α ≥ β if fw(α) ≥ fw(β), i.e., α is at least as
good as β given w. For set of alternativesA the preference statement
α ≥ A means α ≥ β for all β ∈ A. Thus, for α ∈ A, w satisfies
α ≥ A if and only if (given w) α is a most preferred element in A,
α ∈ Ow(A), i.e., w makes α optimal in A. This holds if and only if
w ∈ OptAW(α).

In incremental elicitation a common strategy is to generate a small
set of alternatives A, and to ask the user which element of A is most
preferred. If they reply “α” then this is interpreted as α ≥ A. We
will then update W to the set of all w ∈ W such that α is a most
preferred option in A, i.e., we updateW to OptAW(α).

There can be forms of inconsistency, of different kinds, between
the user answers and the model we have of the user. We say that,
given set of preference modelsW , alternative α is a feasible answer
to query A if OptAW(α) is non-empty, i.e., there exists some user
preference model inW under which α is optimal in A.

We say that α is a strongly feasible answer to queryA (givenW) if
OptAW(α) has the same dimension asW . In the example in Figure 1,
with the query {(11, 1), (10, 4), (7, 5), (6, 6), (4, 7)}, the elements
(11, 1) and (7, 5) are infeasible answers, and (6, 6) is not strongly
feasible. The following result, which follows from Theorem 2, char-
acterises [strongly] feasible answers to queries.

Proposition 3 Consider A ∈M andW ⊆ U .

(i) α is a feasible answer to query A given W if and only if α ∈
POW(A).

(ii) Under the conditions of Theorem 2 on Ω, U , W and f we have
that α is a strongly feasible answer to query A given W if and
only if α ∈ PSOW(A).

If the user chooses α from A, and α is not a feasible answer to
A, then we get an inconsistency, since the updatedW will be empty.
Suppose now, on the other hand, α is not a strongly feasible answer
to A. We can still consistently updateW , so this is a less strong kind
of inconsistency; however, such an answer would still be seriously
troubling. For instance, supposeW ⊆ IRp, and consider any proba-
bility distribution overW , regarding which is the true user model w,
such that (as one would expect) the probability distribution is com-
patible with the measure of the sets. If α is not a strongly feasible
answer to query A then the probability that w is such that α ≥ A
holds would be zero (since OptAW(α) has then measure zero inW ,
being of lower dimension thanW). A choice, by the user, of αwould
hence correspond with an event of probability zero.

To ensure that every answer to a query A is feasible, we thus re-
quire that POW(A) = A. And, to ensure that every answer to A is
strongly feasible, we require that PSOW(A) = A, i.e., that every
element of A is strictly possibly optimal in A.

We thus argue that the standard methods for generating queries in
incremental preference learning should be modified to ensure that ev-
ery element in the query set is strictly possibly optimal.4 Since The-
orem 2 implies that PSOW(A) is non-empty, (and indeed equivalent
to A) we can therefore replace a potential query A by PSOW(A).

It is shown in [32, 33] that choosing a subset A, of the set of
available alternativesB, that maximises setwise regret SMRW(A,B)

4 Learning an inconsistency could in theory be useful information, allowing
the potential of updating the model in some way to restore consistency;
however, this would probably have a heavy computational cost, and in a
practical application, one will want to avoid the incremental elicitation pro-
cedure breaking down.

(among small subsets) is a desirable and well-founded choice for
an informative query. However, it can easily happen that, for such
a query A, we have PSOW(A) 6= A and even POW(A) 6= A. Such
a choice of A is then in danger of leading to an inconsistency, as
described above. Fortunately, one can easily solve this problem by
replacing A by PSOW(A), since if A maximises setwise regret then
PSOW(A) also maximises setwise regret (under the conditions in
Theorem 2 on Ω, U , W and f) because SMRW(PSOW(A), B) =
SMRW(A,B), by Theorem 2 and Proposition 2(vi).

7 EEU METHOD FOR TESTING A <W∀∀∃ B AND
COMPUTING SMRW(A,B)

Computing the extreme points of W can lead for the linear case to
an easy way of testing if α <W β (for α, β ∈ IRp): it is easy to
see that α <W β holds if and only if for each extreme point w of
W , we have w · (α− β) ≥ 0 [22]. Similarly, it follows immediately
that standard maximum regret over the convex polytope W can be
computed using the extreme points ofW , as observed e.g., in [29].
However, for setwise max regret it is not sufficient to consider the ex-
treme points ofW . Here we develop a novel extreme points method
for testing A <W∀∀∃ B and computing SMRW(A,B), by moving to a
higher dimensional space.

Given W , the utility function UtA(w) (over w ∈ W) can be
viewed as a subset ofW× IR, and we can testA <W∀∀∃ B by consid-
ering such subsets. Let us define Γ(W, A) ⊆ W × IR ⊆ IRp × IR
to be {(w, r) : w ∈ W, r ≥ UtA(w)}, i.e., the epigraph [11] of the
utility function UtA onW . IfW is convex and compact and for all
α ∈ A, fw(α) is a convex and continuous function of w ∈ W , then
Γ(W, A) is a closed convex set. We write Ext(Γ(W, A)) for the ex-
treme points of Γ(W, A).

The following result leads to two different ways of testingA <W∀∀∃
B. Firstly, we can compute the extreme points of both Γ(W, A) and
Γ(W, A ∪ B); by (ii), these two sets of extreme points are equal
if and only if A <W∀∀∃ B. Alternatively, we can test A <W∀∀∃ B,
using part (iii), after computing Ext(Γ(W, A)). We can compute the
pairwise max regret SMRW(A,B) as maxβ∈B SMRW(A, {β}) (see
Proposition 2), and use part (iv) below.

Theorem 3 Consider any finite subsets A and B of IRp, any β ∈
IRp, and any compact and convex subsetW of IRp, and assume that
for all α ∈ A∪B∪{β}, fw(α) is a convex and continuous function
of w ∈ W .

(i) A <W∀∀∃ B ⇐⇒ Γ(W, A) ⊆ Γ(W, B) ⇐⇒ Γ(W, A) =
Γ(W, A ∪B).

(ii) A <W∀∀∃ B if and only if Ext(Γ(W, A)) = Ext(Γ(W, A ∪B)).
(iii) A <W∀∀∃ B holds if and only if for all (w, r) ∈ Ext(Γ(W, A))

and for all β ∈ B we have fw(β) ≤ r.
(iv) SMRW(A, {β}) = max {fw(β)− r : (w, r) ∈ Ext(Γ(W, A))}.

Continuing the example, it can be seen from Figure 1 that
Ext(Γ(W, A)) = {(0, 7), (1

3
, 6)(2

3
, 8)}, where we are again abbre-

viatingw to just its first componentw1, so that e.g., (1
3
, 6) represents

the pair (w,UtA(w)) with w = (1
3
, 2
3
). Then, using Theorem 3(iv),

SMRW(A, {(5.5, 6.5)}) = max(−0.5, 1
6
,−2 1

6
) = 1

6
> 0; for in-

stance, the middle term in the max equals fw((5.5, 6.5)) − 6 =
1
3
· 5.5 + 2

3
· 6.5 − 6 = 1

6
. Therefore, A 6<W∀∀∃ {(5.5, 6.5)}, by

Proposition 2(iii). This illustrates the fact that it is not sufficient to
just consider the extreme points ofW .

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

8 THE CASE OF MULTI-ATTRIBUTE UTILITY
VECTORS

We now consider the situation in which we are especially interested,
where the alternatives in Ω are multi-attribute utility vectors. Let U
be the set of non-negative normalised vectors in IRp, so that, for all
w ∈ U , for all i = 1, . . . , p, wi ≥ 0, and

∑p
i=1 wi = 1. (Thus,

U is the unit (p − 1)-simplex.) Let Ω = IRp. For α ∈ Ω we define
fw(α) = α·w, i.e.,

∑p
i=1 wiαi. This leads to, for α, β ∈ IRp, α <w

β if and only if (α− β) · w ≥ 0. Also, UtA(w) = maxα∈A w · α.
We will assume W to be a closed polytope in IRp, which can

be defined using a finite set of linear inequalities. Given a finite set
Λ = {λi : i = 1, . . . , k} of vectors in IRp, and corresponding real
numbers ri, we can defineW to be the set of w ∈ U such that for all
i = 1, . . . , k, w · λi ≥ ri. In particular, such linear inequalities can
arise from input preferences of the form α is preferred to β, leading
to the constraint w · (α− β) ≥ 0.

This form of preferences has been studied a great deal; for in-
stance, UDW(A) consists of the non-dominated alternatives inA for
a multiobjective program (MOP) given a cone (with the cone gener-
ated as the dual of W) [41, 37, 17]. Without any additional prefer-
ences, so thatW is just the unit (p − 1)-simplex, <W is the Pareto
ordering on alternatives, and UDW(A) is set of Pareto-optimal alter-
natives, with the supported alternatives being also in POW(A).

In Section 7 we gave an EEU method for computing SMRW and
testing dominance; in Section 8.1 we give a straight-forward LP
method related to the approaches used in [32, 2, 4]. In Section 8.2
we give a result that enables one to compute the minimal equivalent
subset using the extreme points of the epigraph.

8.1 Linear Programming for Computing
SMRW(A,B), and Testing A <W∀∀∃ B

SMRW(A, {β}) is equal to the maximum value of x such that there
exists w ∈ IRp satisfying the constraints (i) w ∈ W; and (ii) for all
α ∈ A, w · (β − α) ≥ x. SinceW is a closed polytope, we can use
a linear programming solver to compute SMRW(A, {β}). Applying
this for each β ∈ A allows us to compute SMRW(A,B), and thus,
to test if A <W∀∀∃ B, using Proposition 2.

8.2 Using Extreme Points of Epigraph to Compute
Minimal Equivalent Subset

For the linear case, with α ∈ A, the set OptAW(α), consisting of
all w in W that make α optimal in A (see Section 4.1), is convex;
we abbreviate its set of extreme points Ext(OptAW(α)) to EAW(α).
Theorem 2 implies that PSOW(A) is the unique minimal equivalent
subset of an (equivalence-free) set A ∈ M, which can be shown to
consist of all α ∈ A such that there does not exist β ∈ A such that
OptAW(β) % OptAW(α). The following result shows that the condi-
tion OptAW(β) % OptAW(α) is (perhaps surprisingly) equivalent to
EAW(β) % EAW(α), and that EAW(α) can be computed by projecting
the extreme points of the epigraph, Ext(Γ(W, A)). This is the ba-
sis of our method, described in Section 9.1(II) below, for efficiently
computing the minimal equivalent set PSOW(A).

Proposition 4 Assume that W is a convex subset of IRp, and that
for w ∈ IRp, α ∈ IRp, fw(α) = w · α. Consider A ∈ M, w ∈ W ,
and α, β ∈ A.

(i) OptAW(α) ⊆ OptAW(β) ⇐⇒ EAW(α) ⊆ EAW(β).
(ii) EAW(α) = {w ∈ IRp : (w,w · α) ∈ Ext(Γ(W, A))}.

(iii) IfW is compact then dim(OptAW(α)) < |EAW(α)|.

9 THE STRUCTURE OF THE ALGORITHMS

In this section we make use of mathematical results in previous sec-
tions in developing computational methods for computing the mini-
mal equivalent set PSOW(A) and testing dominance between sets,
for the case of multi-attribute utility vectors, with the set of scenarios
W being a convex polytope, and with linear utility functions.

9.1 Computing Minimal Equivalent Set

Given A ∈ M, we aim to generate A′ ⊆ A with A′ ≡W∀∀∃ A, and
such that for strict subset A′′ of A′, A′′ 6≡W∀∀∃ A.

First we pre-process by eliminating elements of A not in
UDW(A). At the same time we can make A equivalence-free.
Theorem 2 implies that there exists a minimal equivalent set,
i.e., SMEW(A) has a unique element, say, A′, and this equals
PSOW(A). We have two methods for then computing A′.

(I) we use the approach Filterσ(A;<W∀∀∃) defined in Section 4.2. This
involves multiple (i.e., |A|) tests of the form A \ {α} <W∀∀∃ {α},
which can be achieved using a similar approach to 9.2 below, us-
ing an LP solver.

(II) For each α ∈ A we compute EAW(α) using Proposition 4(ii), by
computing the extreme points of the epigraph. We can eliminate
any element α such that |EAW(α)| ≤ dim(W), since Proposi-
tion 4(iii) would then imply that dim(OptAW(α)) < dim(W), and
thus, α /∈ PSOW(A), by Theorem 2. If for any α, β ∈ A with
α 6≡W β, EAW(α) ⊆ EAW(β), (so then OptAW(α) ⊆ OptAW(β))
then we know that α /∈ PSOW(A), and if those sets are equal
we know also that β /∈ PSOW(A). Now, any of these elements
can then be deleted from A, because of an incrementality prop-
erty of PSOW . We then continue until for all remaining elements
α, β ∈ A we have EAW(α) 6⊆ EAW(β), and then A = A′, the
unique element of SMEW(A), the set of possibly strictly optimal
elements.

9.2 Testing A <W∀∀∃ B

Our algorithm includes three steps of increasing complexity:

(1) Efficiently testing (a) a necessary condition A <W
0

∀∀∃ B, where
W0 = Ext(W) is the set of extreme points ofW; and (b) a suf-
ficient condition, whether there exists α ∈ A such that for all
w ∈ W0, fw(α) ≥ UtB(w); (the conditions can be tested to-
gether, by first computing UtB(w) for each w ∈ W0). If (a) is
false then we know that A 6<W∀∀∃ B (because of monotonicity
with respect to W); if (b) is true then we know that A <W∀∀∃ B
holds. If the necessary condition is false, or the sufficient condi-
tion is true, then we need go no further. The complexity of this
step is proportional to |A|+ |B|.

(2) Pre-processing by reducing the sets A and B; this step has com-
plexity proportional to |A||B|. We replace A by UDW(A) and B
by UDW(B). We then eliminate all elements β from B such that
for some α ∈ A, α <W β. IfB becomes empty then we can stop,
since we then have A <W∀∀∃ B.

(3) We determine whetherA <W∀∀∃ B holds using one of the methods
in Sections 8.1 and 7, i.e., doing either (a), (b) or (c) below:

(a) Using linear programming, as described in Section 8.1.

(b) Using Theorem 3(ii) and testing if Ext(Γ(W, A)) equals
Ext(Γ(W, A ∪B)).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

(c) Using Theorem 3(iii) and testing if fw(β) ≤ r for all β ∈ B
and for all (w, r) ∈ Ext(Γ(W, A)).

Although we focus on non-strict dominance, the same algorithms can
also be used to test the strongly strict dominance A �W∀∀∃ B given
as for allw ∈ W , UtA(w) > UtB(w). In particular, under the condi-
tions of Theorem 3, we have A�W∀∀∃ B ⇐⇒ SMRW(A,B) < 0,
which is if and only if for all (w, r) ∈ Ext(Γ(W, A)) and for all
β ∈ B we have fw(β) < r.

10 EXPERIMENTAL TESTING
We briefly summarise the results of our experimental testing; more
details are included in the longer version [30]. All experiments were
performed on a computer facilitated by a Core i5 2.70 GHz proces-
sor and 8 GB RAM. We used CPLEX 12.8 [21] as the linear pro-
gramming solver, and we used the Python library pycddlib [31] for
computing the extreme points of a polytope.

We consider the linear case, whereW is a subset of the unit (p−
1)-simplex which is an intersection of T half-spaces. Specifically, we
choose T (consistent) random user preferences of the form awi +
bwj ≥ cwk (meaning that the user prefers a units of wi and b units
of wj to c units of wk), like in [24]. The alternatives in the sets A
and B are integer utility vectors.

The pre-processing steps based on the UDW filtering were very
worthwhile, for both computing the minimal set in Section 9.1, and
in 9.2(2) for dominance; they reduce the sizes of the sets A and B
very considerably (see e.g., Table 2), making the algorithms much
faster overall, e.g., by an order of magnitude.

For cases in which dim(W) < 7, the EEU method 9.1(I) to com-
pute PSOW(A) was on average faster, and scaled better with the
cardinalities of sets A and B, than the LP method 9.1(II). However,
the situation dramatically reverses for dim(W) ≥ 7; this may well
be because the number of extreme points is much larger then. This is
illustrated by Table 1 along with the performance of the UDW filter-
ing, where each figure is an average over 100 random instances. We
also tested our algorithms with larger A such as |A| = 20,000, with
dim(W) = 5 and four user preferences giving an average execution
time over 100 experiments of 13 seconds for the UDW filtering, 22
seconds for the LP-based method and 6 seconds for the EEU method.

dim(W) UDW [s] LP[s] EEU[s] # extreme points

2 0.014 0.057 0.001 13.24
3 0.036 0.192 0.005 57.52
4 0.116 0.548 0.039 248.14
5 0.268 1.467 0.310 1024.74
6 0.439 3.062 2.103 3667.36
7 0.683 5.943 15.630 13483.87

Table 1. Execution times (in seconds) of methods to compute PSOW (A)
(Section 9.1), i.e., UDW filtering, EEU (I) and LP (II) (and number of

extreme points of the epigraph), w.r.t. dim(W) with |A| = 500 and 4 user
preferences.

We also tested our EEU approach against the standard LP ap-
proach to compute POW and also in this case it looks like that
EEU is faster for cases in which dim(W) ≤ 6. The performances
of EEU to compute POW are very similar to the performances of
EEU to compute PSOW shown in Table 1. With sets generated with
our random problem generator we observed that the PSOW filtering
removes around 5% more elements than POW .

Tables 2 and 3 give results for testing A <W∀∀∃ B (Section 9.2),
where each figure is an average over 100 instances in which the initial
test 9.2(1) was inconclusive (i.e., failed to determine whether or not
A <W∀∀∃ B holds), and the size of the set B after the UDW filtering
9.2(2) was greater than zero.

Table 2 shows how the input sets A and B were reduced by the
UDW filtering 9.2 (2). As we can see, increasing the size of dim(W),
the number of undominated elements increase and therefore the num-
ber of elements removed by the UDW filtering reduces.

dim(W) |A′| |B′| |B′′|
2 10.08 7.99 2.44
3 23.89 22.04 5.11
4 48.70 19.53 11.93
5 92.23 86.94 15.45
6 144.78 142.89 41.15
7 206.93 210.11 64.28

Table 2. Number of elements of A′ = UDW (A), B′ = UDW (B) and
B′′ = {β ∈ B′ : ∀α ∈ A, α 6<W β} w.r.t. dim(W) with

|A| = |B| = 500 and 4 user preferences.

Table 3 gives average execution time of the preliminaries steps and
the methods 3(a), 3(b) and 3(c) of Section 9.2. The checking of the
necessary and the sufficient condition in 9.2(1) were very effective:
on approximately 94% of the problems generated with our random
problem generator, the necessary condition failed, or the sufficient
condition succeeded, allowing the algorithm to stop in advance. On
average, method 3(c) seems to be faster than method 3(b), and the
LP method seems to the fastest for dim(W) ≥ 6. As for the previous
case, the EEU methods are much worse for the case of dim(W) = 7.

dim(W) NSc[s] UDW [s] TLP[s] TEPU[s] TEEU[s]

2 0.008 0.028 0.016 0.001 0.001
3 0.010 0.070 0.038 0.003 0.002
4 0.013 0.223 0.131 0.015 0.013
5 0.015 0.504 0.238 0.105 0.088
6 0.015 0.858 0.967 1.179 1.028
7 0.016 1.487 2.232 24.452 14.97

Table 3. Execution time of methods for testing the dominance A <W∀∀∃ B
(Section 9.2), i.e., testing the necessary and the sufficient condition (NSc)
(1), UDW filtering (2), TLP 3(a) and TEPU 3(b), TEEU 3(c) for testing
A <W∀∀∃ B, w.r.t. dim(W) with |A| = |B| = 500 and 4 user preferences.

11 DISCUSSION
We defined natural notions of equivalence and dominance for a
general model of sets of multi-attribute utility, and proved gen-
eral properties. Computationally we focused especially on the linear
(weighted sum) case and we proved that there is a unique setwise-
minimal equivalent subset of any (equivalence-free) set of utility
vectors A. This set then equals the set of possibly strictly optimal
alternatives PSO(A), and is a compact representation of the utility
function for A, giving the utility achievable with A for each sce-
nario. We show that filtering a query with the PSO operator avoids
the potential of inconsistency in the user response. Along with pre-
processing techniques we developed a linear programming method

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

for generating PSO(A), and a method based on computing the ex-
treme points of the epigraph of the utility function (EEU), as well
as related methods for testing dominance. We implemented the ap-
proaches and our testing on random problems showed that both meth-
ods scaled to substantially sized problems, with the EEU method be-
ing better for lower dimensions. Our methods can be directly applied
to reduce the set of utility vectors derived for a multi-objective in-
fluence diagram [24] or a multi-objective optimisation problem [25].
In the latter cases,A is derived from a combinatorial structure; in the
future we plan to consider further developments of the computational
techniques that make use of such combinatorial structures.

Although we focus on the case where fw(α) is linear in w, it
would be natural to develop computational procedures for non-linear
cases (perhaps e.g., [6]), based on our more general characterisation
results, such as Theorems 2 and 3 and Proposition 2.

A further natural application of our model and methods is for com-
puting the Value of Information [16] for a multi-objective influence
diagram. Each observable variable generates a Value of Information
function which is a utility function UtA, so different observable vari-
ables can be compared using the relation <W∀∀∃.

ACKNOWLEDGEMENTS
This material is based upon works supported by the Science
Foundation Ireland under Grant No. 12/RC/2289 and Grant No.
12/RC/2289-P2 which are co-funded under the European Regional
Development Fund.

REFERENCES
[1] Antreas D Athanassopoulos and Victor V Podinovski, ‘Dominance and

potential optimality in multiple criteria decision analysis with imprecise
information’, Journal of the Operational research Society, 48(2), 142–
150, (1997).

[2] N. Benabbou and P. Perny, ‘Incremental weight elicitation for multiob-
jective state space search’, in Proc. AAAI 2015, pp. 1093–1099, (2015).

[3] N. Benabbou and P. Perny, ‘On possibly optimal tradeoffs in multi-
criteria spanning tree problems’, in Proc. ADT 2015, volume 9346 of
Lecture Notes in Computer Science, pp. 322–337. Springer, (2015).

[4] N. Benabbou and P. Perny, ‘Solving multi-agent knapsack problems us-
ing incremental approval voting’, in Proc. ECAI-2016, pp. 1318–1326.
IOS Press, (2016).

[5] N. Benabbou and P. Perny, ‘Adaptive elicitation of preferences under
uncertainty in sequential decision making problems’, in Proc. IJCAI
2017, pp. 4566–4572, (2017).

[6] N. Benabbou, P. Perny, and P. Viappiani, ‘Incremental elicitation of
Choquet capacities for multicriteria choice, ranking and sorting prob-
lems’, Artif. Intell., 246, 152–180, (2017).

[7] N. Bourdache and P. Perny, ‘Active preference elicitation based on gen-
eralized gini functions: Application to the multiagent knapsack prob-
lem’, in Proc. AAAI-2019, (2019).

[8] Nadjet Bourdache, Patrice Perny, and Olivier Spanjaard, ‘Incremental
elicitation of rank-dependent aggregation functions based on bayesian
linear regression’, in Proc. IJCAI2019, pp. 2023–2029, (2019).

[9] Craig Boutilier, ‘A POMDP formulation of preference elicitation prob-
lems’, in AAAI/IAAI, pp. 239–246, (2002).

[10] Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans,
‘Constraint-based optimization and utility elicitation using the minimax
decision criterion’, Artificial Intelligence, 170(8-9), 686–713, (2006).

[11] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press, Cambridge, England, 2004.

[12] Darius Braziunas and Craig Boutilier, ‘Minimax regret based elicitation
of generalized additive utilities.’, in UAI, pp. 25–32, (2007).

[13] D. G. Bridge and F. Ricci, ‘Supporting product selection with query
editing recommendations’, in Proc. RecSys-2007, pp. 65–72. ACM,
(2007).

[14] U. Chajewska, D. Koller, and R. Parr, ‘Making rational decisions using
adaptive utility elicitation’, in Proc. AAAI2000, pp. 363–369, (2000).

[15] M. Diehl and Y. Haimes, ‘Influence diagrams with multiple objectives
and tradeoff analysis’, IEEE Transactions On Systems, Man, and Cy-
bernetics Part A, 34(3), 293–304, (2004).

[16] S. L. Dittmer and F. V. Jensen, ‘Myopic value of information in influ-
ence diagrams’, in Proc. UAI ’97:, pp. 142–149, (1997).

[17] M. Ehrgott and M. M. Wiecek, Mutiobjective Programming, 667–708,
Springer New York, New York, NY, 2005.

[18] M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh, ‘Elici-
tation strategies for soft constraint problems with missing preferences:
Properties, algorithms and experimental studies’, Artif. Intell., 174(3-
4), 270–294, (2010).

[19] Mirco Gelain, Maria Silvia Pini, Francesca Rossi, Kristen Brent Ven-
able, and Nic Wilson, ‘Interval-valued soft constraint problems’, Ann.
Math. Artif. Intell., 58(3-4), 261–298, (2010).

[20] Gordon B Hazen, ‘Partial information, dominance, and potential op-
timality in multiattribute utility theory’, Operations research, 34(2),
296–310, (1986).

[21] IBM ILOG. IBM ILOG CPLEX Optimization Studio, V12.8.0, 2017.
[22] S. Kaddani, D. Vanderpooten, J. M. Vanpeperstraete, and H. Aissi,

‘Weighted sum model with partial preference information: Application
to multi-objective optimization’, European Journal of Operational Re-
search, 260(2), 665–679, (2017).

[23] R. Keeney and H. Raiffa, Decisions with multiple objectives: prefer-
ences and value tradeoffs, Cambridge University Press, 1993.

[24] R. Marinescu, A. Razak, and N. Wilson, ‘Multi-objective influence di-
agrams’, in Proc. UAI-2012, pp. 574–583, (2012).

[25] R. Marinescu, A. Razak, and N. Wilson, ‘Multi-objective constraint op-
timization with tradeoffs’, in Proc. CP-2013, pp. 497–512, (2013).

[26] R. Marinescu, A. Razak, and N. Wilson, ‘Multi-objective influence di-
agrams with possibly optimal policies’, in Proc. AAAI-2017, pp. 3783–
3789, (2017).

[27] C. O’Mahony and N. Wilson, ‘Sorted-pareto dominance and qualitative
notions of optimality’, in Proc. ECSQARU’2013, pp. 449–460, (2013).

[28] A. Salo and R. P. Hämäläinen, ‘Preference programming – multicriteria
weighting models under incomplete information’, in Handbook of Mul-
ticriteria Analysis, pp. 167–187. Springer Berlin Heidelberg, (2010).

[29] Mikhail Timonin, ‘Robust optimization of the Choquet integral’, Fuzzy
Sets and Systems, 213, 27–46, (2013).

[30] Federico Toffano and Nic Wilson, Minimality and Comparison of
Sets of Multi-Attribute Vectors (Longer Version), http://ucc.insight-
centre.org/nwilson/MinimalitySetsLonger.pdf, 2019.

[31] Matthias C. M. Troffaes. pycddlib Python wrapper for Komei Fukuda’s
cddlib, https://pycddlib.readthedocs.io/en/latest/, 2018.

[32] P. Viappiani and C. Boutilier, ‘Regret-based optimal recommendation
sets in conversational recommender systems’, in Proc. RecSys-2009,
pp. 101–108. ACM, (2009).

[33] P. Viappiani and C. Boutilier, ‘Recommendation sets and choice
queries: There is no exploration/exploitation tradeoff!’, in Proc. AAAI-
2011. AAAI Press, (2011).

[34] Paolo Viappiani and Craig Boutilier, ‘Optimal Bayesian recommen-
dation sets and myopically optimal choice query sets’, in Proc. NIPS
2010, pp. 2352–2360, (2010).

[35] Martin Weber, ‘Decision making with incomplete information’, Euro-
pean journal of operational research, 28(1), 44–57, (1987).

[36] C. White, A. P. Sage, and S. Dozono, ‘A model of multiattribute
decision-making and trade-off weight determination under uncer-
tainty’, IEEE Transactions on Systems, Man, and Cybernetics, 14(2),
223–229, (1984).

[37] M. Wiecek, ‘Advances in cone-based preference modeling for decision
making with multiple criteria’, Decision Making in Manufacturing and
Services, 1(1-2), 153–173, (2007).

[38] N. Wilson and A.-M. George, ‘Efficient inference and computation of
optimal alternatives for preference languages based on lexicographic
models’, in Proc. IJCAI 2017, pp. 1311–1317, (2017).

[39] N. Wilson and C. O’Mahony, ‘The relationships between qualitative
notions of optimality for decision making under logical uncertainty’, in
Proc. AICS-2011, (2011).

[40] N. Wilson, A. Razak, and R. Marinescu, ‘Computing possibly optimal
solutions for multi-objective constraint optimisation with tradeoffs’, in
Proc. IJCAI-2015, (2015).

[41] P. Yu, ‘Cone convexity, cone extreme points, and nondominated solu-
tions in decision problems with multiobjectives’, Journal of Optimiza-
tion Theory and Applications, 14(3), 319–377, (1974).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

