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Abstract. We consider a way of generating voting rules based on a
random relation, the winners being alternatives that have the high-
est probability of being supported. We define different notions of
support, such as whether an alternative dominates the other alter-
natives, or whether an alternative is undominated, and we consider
structural assumptions on the form of the random relation, such as
being acyclic, asymmetric, connex or transitive. We give sufficient
conditions on the supporting function for the associated voting rule
to satisfy various properties such as Pareto and monotonicity. The
random generation scheme involves a parameter p between zero and
one. Further voting rules are obtained by tending p to zero, and by
tending p to one, and these limiting rules satisfy a homogeneity prop-
erty, and, in certain cases, Condorcet consistency. We define a lan-
guage of supporting functions based on eight natural properties, and
categorise the different rules that can be generated for the limiting p
cases.

1 INTRODUCTION
Aggregation of agent preferences is an important issue in multi-agent
systems [26], as well as for human agents; in particular, given a fi-
nite set of alternatives A and some representation of agent prefer-
ences, one may need to choose an alternative that fits best with the
preferences. The use of voting rules has been suggested for this task
e.g., [20, 5]. Here we consider as input a weighted binary relation v
that expresses a non-negative degree of preference v(x, y) of alterna-
tive x over alternative y. The output is one or more winner, i.e., best
alternative. For instance, in a standard voting scenario in which each
agent totally orders the alternatives, the value v(x, y) can be defined
as the number n(x, y) of agents that prefer x to y (or it could be
some strictly monotonic function of n(x, y)). The form of input in-
formation v is very flexible: in a multi-agent setting, it is not always
desirable to assume that each agent expresses a total order on alterna-
tives [17]; this may not fit with the natural preference representation
for the agent; in addition the agent may not want to reveal so much
information about their preferences; also, v could be generated by a
profile of other forms of relation, such as partial orders, or total pre-
orders; or with a weighted relation being expressed by each agent;
furthermore, the representation v also allows the possibility of some
agents being assigned a greater degree of importance than others.

We develop in this paper a framework for aggregating multi-agent
preferences, including many interesting instances (i.e., different ag-
gregation methods), based on a novel probabilistic model; we sketch
the idea in the next few paragraphs. Our approach is based on using
the weighted relation v to pick a random binary preference relation
between alternatives. The numerical support for an alternative x is
the chance that the randomly picked relation R (logically) supports
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x, i.e., Pr(R ∈ Spx), where Spx is defined to be the set of relations
that support x. The output is the set of winners, i.e., the set of alter-
natives with maximal numerical support. Many different notions of
logical support are possible, leading to different definitions of Spx,
and thus of winner.

In the paper we show that we can achieve desirable properties of
the social choice rule by assuming particular properties of the sup-
porting function. We say that x is dominating in relation R if R con-
tains the set Ox = {(x, y) : y 6= x}, so that x is preferred to every
other alternative with respect to preference relation R. We say that
the supporting function Sp satisfies the property Opt if Spx only
contains relations R in which x is dominating. In this case, R sup-
ports x only if x is dominating in relation R. We say that Sp satis-
fies property Ud if R ∈ Spx implies x is undominated in R, i.e.,
R ∩ Dx = ∅, where Dx = {(y, x) : y 6= x}, so no alternative
dominates x. We consider sufficient conditions for desirable prop-
erties on the voting rule. In particular, if Sp satisfies both Opt and
Ud then we show that the voting rule satisfies natural monotonicity
and Pareto properties. This therefore gives a method for generating
a large family of voting (and other aggregation) rules that have some
good properties.

The random generation method for relation R involves an input
parameter p between 0 and 1. If v(x, y) = 1 then the chance that
random relation R does not contain the pair (x, y) is 1 − p. More
generally, the chance that (x, y) 6∈ R is equal to (1 − p)v(x,y). If
v(x, y) = K then one can imagine K independent Boolean random
variables each with chance p of being true; the chance thatR contains
the pair (x, y) is the chance that any of K random variables is true;
thus there areK = v(x, y) independent chances to ensure that (x, y)
is in the random relation, each with a probability p of succeeding.

A way to ensure a homogeneity property (in which a linear rescal-
ing of the input v makes no difference) is to consider the result of
tending p to either 1 or 0. We show that the set of winners is still
always non-empty and that we obtain somewhat simpler structures
determining the voting rules.

As well as properties Opt and Ud we consider a weaker form
TOpt of property Opt, (relating to whether x is dominating in the
transitive closure of R) and OOpt, which means that, for R ∈ Spx,
R only contains elements of the form (x, z), i.e., R ⊆ Ox. We also
consider structural properties that restrict the form of the relation:
asymmetry, acyclicity, connex, and transitivity properties. We con-
sider a simple language L of logical support, based on these eight
properties, with a supporting function being generated by a subset
of the eight properties. We completely characterise the voting rules
for the language, for the p → 0 case, and for the p → 1 case in
which v is non-zero, leading to seven different voting rules in each
case: see Theorem 3 and Theorem 4. We show, in particular, that the
p → 1 cases lead to a number of well-known voting rules: Borda,
the Kemeny rule, Tideman’s rule, and maximin.
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Section 2 defines the framework, with Section 3 giving some gen-
eral properties of the generated social choice rules. Section 4 consid-
ers the limit cases as p tends to 0 or 1. Sections 5 and 6 include the
classification theorems of the rules generated by the language L for
the p→ 0 and p→ 1 cases, respectively. Section 7 discusses related
work, with Section 8 concluding.

A short version of this paper appeared as an extended abstract [24].

2 RULES FROM RANDOM RELATIONS
In this section we define the formalism that takes the input weighted
relation v and generates a set of winners. The other parameters are
a number p ∈ (0, 1), which is used in the picking of the random
relation, and, for each alternative x, a set of relations Spx that sup-
port x. The winners are the alternatives with highest chance of be-
ing supported. We define some natural properties that can be used
to generate Spx, and we show that for certain very special cases of
supporting sets Spx, the value of p does not affect the winners.

2.1 Random relations on alternatives
The set A represents a finite set of alternatives. Define ∆ = A ×
A \ I = {(x, y) : x, y ∈ A, x 6= y}, where (x, y) ∈ I ⇐⇒
x = y. Thus, a subset of ∆ is an irreflexive binary relation on al-
ternatives. We define V to be the set of all functions v from ∆ to
the non-negative reals. An element v of V is intended to represent
some degree of preference for alternative x over alternative y. For
instance, in a voting scenario, it could represent the number of voters
preferring x to y, in which case the v will (as well as having cer-
tain other properties) be balanced i.e., for all (x, y), (w, z) ∈ ∆,
v(x, y) + v(y, x) = v(w, z) + v(z, w).

We generate a random irreflexive binary relation R, based on pa-
rameter p ∈ (0, 1), as follows. For each (x, y) ∈ ∆ we (indepen-
dently) omit (x, y) from R with chance (1− p)v(x,y), so the proba-
bility that R contains (x, y) equals 1− (1− p)v(x,y). Based on this,
the chance Prvp({R}) that the randomly chosen relation is equal to
a particular R (⊆ ∆) is defined as follows:

Prvp({R}) =
∏

(x,y)∈R

(1− (1− p)v(x,y))×
∏

(x,y)∈∆\R

(1− p)v(x,y).

Thus if v(x, y) means the number of voters preferring x to y, then
each such vote gives (independently) a chance p of ensuring that R
contains (x, y). Let Ωv be the set of pairs (x, y) in ∆ for which
v(x, y) is non-zero, i.e., {(x, y) : x, y ∈ A, x 6= y, v(x, y) 6= 0}. If
R 6⊆ Ωv then Prvp({R}) = 0: as one would expect, if v(x, y) =
0 then there is zero probability of picking a random R containing
(x, y).

Example 1 Consider the set of alternatives A = {a, b, c, d} and
v ∈ V represented by the following table, with e.g., v(a, b) = 5; v
may, for example, arise from a profile with eight voters: two voters
with preference order a > b > c > d, and three voters with each
of a > b > d > c and c > b > d > a, so that then v(x, y) is the
number of voters preferring x to y, for different alternatives x and y.

v(x, y) a b c d

a − 5 5 5
b 3 − 5 8
c 3 3 − 5
d 3 0 3 −

Let R equal Ob, which is defined to be {(b, a), (b, c), (b, d)}.
Let q = 1 − p and let r equal

∑
(x,y)∈∆\Ob

v(x, y) = 32. Then

Prvp({R}) equals (1− qv(b,a))(1− qv(b,c))(1− qv(b,d))qr , that is,
(1− q3)(1− q5)(1− q8)q32. �

The following simple technical result implies that increasing p cor-
responds to a scaling up of v (since λ > 1 ⇐⇒ p′ > p):

Proposition 1 Let p, p′ ∈ (0, 1), let v ∈ V , and let v′ = λv for
some real λ > 0. If (1 − p′) = (1 − p)λ then for all R ⊆ ∆,
Prv

′
p ({R}) = Prvp′({R}).

2.2 Supporting functions
We assume that for each alternative x ∈ A, we have a rule for deter-
mining whether or not relationR supports x, and we define Spx to be
the set of all relations R that support x. Thus, for each x ∈ A, Spx
is a set of subsets of ∆. We define SP to be the set of supporting
functions [over A], i.e., the set of functions Sp that associate with
each alternative x a non-empty set Spx of irreflexive binary relations
on A (so that ∅ 6= Spx ⊆ 2∆). There are lots of different ways of
defining supporting functions. We give some basic instances below.

We first define for alternative x ∈ A:

• Dx = {(y, x) : y ∈ A \ {x}}, the set of pairs in which x is dom-
inated; and

• Ox = {(x, y) : y ∈ A \ {x}}, the set of pairs in which x is dom-
inating.

Basic supporting functions Ud, Opt, TOpt and OOpt: For al-
ternative x ∈ A, we define:

• Udx = {R ⊆ ∆ : R ∩Dx = ∅}, i.e., the set of all irreflexive
relations R in which x is undominated.

• Optx = {R ⊆ ∆ : R ⊇ Ox}, the set of R in which x directly
dominates all other alternatives.

• TOptx = {R ⊆ ∆ : Tr(R) ⊇ Ox}, which contains all R
whose transitive closure contains Ox. Thus, R ∈ TOptx if and
only if every other alternative is reachable from xw.r.t.R, viewing
R as a directed graph on alternatives.

• OOptx = {R ⊆ ∆ : R ⊆ Ox}, which only contains subsets of
Ox.

2.3 Defining winners W Sp
p (v), given p ∈ (0, 1)

Given v ∈ V , a supporting function Sp ∈ SP , and a value p ∈
(0, 1), we consider, for each alternative x, the probability Prvp(Spx)
of Spx, i.e.,

∑
R∈Spx

Prvp({R}). This generates a social choice rule
in the obvious way: we define the associated set of winners,W Sp

p (v),
to be the set of alternatives x that maximise Prvp(Spx), so that x ∈
W Sp
p (v) if and only if for all alternatives y, Prvp(Spx) ≥ Prvp(Spy).

Example 1 continued: Suppose we define Spx to be Udx for
x ∈ A; with this definition, relation R supports b if and only if b
is not dominated in R, i.e., there exists no pair of the form (x, b) in
R. In other words, R ∈ Spb if and only if R ⊆ ∆ \Db, where Db =
{(a, b), (c, b), (d, b)}. Thus, Prvp(Udb) =

∑
R⊆∆\Db

Prvp({R}),

which can be shown to be equal to
∏

(x,y)∈Db
qv(x,y) = qs

where s =
∑

(x,y)∈Db
v(x, y) = 8. Similarly, Prvp(Uda) = q9,

Prvp(Udc) = q13, and Prvp(Udd) = q18. This shows that whatever
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value is chosen for p ∈ (0, 1), b is the unique winner, since it has the
highest probability of being supported: Prvp(Udb) > Prvp(Udx) for
x 6= b.

Suppose we instead define Spx to be Udx ∩ Optx for all x ∈ A.
Now Spx contains all relations R in which (i) x is undominated and
(ii) x dominates the other alternatives, i.e., allR such that Ox ⊆ R ⊆
∆\Dx. It can be shown that Prvp(Spb) = (1−q3)(1−q5)(1−q8)q8

and Prvp(Spa) = (1 − q5)3q9. With e.g., p = 0.5, this makes b the
unique winner; actually, b is the unique winner unless p is very small
(less than around 0.0693), when a becomes the winner.

In fact, Proposition 2 below implies that defining Spx = Udx
leads to the Borda voting rule for any value of p. We will see later
(see the discussion of case (v) of Theorem 4) that for p close to 1,
defining Spx = Udx ∩ Optx still generates the Borda voting rule.
Varying the definition of Spx leads to other voting rules; with p
tending to 1, Spx = Optx generates the maximin rule; if we add
the condition that R is asymmetric we obtain the Tideman rule,
and adding either acyclicity or transitivity conditions leads to the
Kemeny rule (see Section 6). �

2.4 Generating supporting functions

Basic structural properties As, Ac, C and T: Along with the basic
supporting functions Ud, Opt, TOpt and OOpt defined above, we
can also consider properties that restrict the form of the relations R.
A structural property is then just a set of subsets of ∆. We define the
structural properties As (asymmetry), Ac (acyclicity), C (connex)
and T (transitivity) as follows, where R is an arbitrary subset of ∆
(i.e., an arbitrary irreflexive relation on A).

• R ∈ As ⇐⇒ [(x, y) ∈ R⇒ (y, x) /∈ R].
• R ∈ Ac ⇐⇒ R is acyclic.
• R ∈ C ⇐⇒ ∀(x, y) ∈ ∆, (x, y) ∈ R or (y, x) ∈ R.
• R ∈ T ⇐⇒ (x, y), (y, z) ∈ R and x 6= z⇒ (x, z) ∈ R.

Generation of Sp from a set of properties: The basic supporting
functions can be treated as properties of a supporting function: for
Sp ∈ SP , we say that Sp satisfies supporting function Z if for all
x ∈ A, Spx ⊆ Zx. Similarly, Sp satisfies structural property Z if
for all x ∈ A, Spx ⊆ Z.

Let Γ be the union of a non-empty set of supporting functions
Γ1 and a set of structural properties Γ2. We say that supporting
function Sp is generated by Γ (Sp = Sp(Γ)) if for all x ∈ A,
Spx =

⋂
Z∈Γ1

Zx ∩
⋂
Z∈Γ2

Z. The definition implies that Sp(Γ)
satisfies each element of Γ. For x ∈ A we abbreviate (Sp(Γ))x to
Spx(Γ). For example, consider Sp generated by {Opt,C,Ac}, i.e.,
by the supporting function Opt and the pair of structural properties
C and Ac; then Spx = Spx({Opt,C,Ac}) is the set of strict to-
tal orders on A in which x is the top element, since relation R is in
Spx({Opt,C,Ac}) if and only if it is in Optx ∩ C ∩ Ac, where
R ∈ C ∩ Ac means that it is a strict total order, and R ∈ Optx
implies that x dominates the other alternatives. Below, especially in
Sections 5 and 6, we analyse rules generated by the basic supporting
functions (from Section 2.2) and by the basic structural properties
defined above.

2.5 Two rules that are independent of p
For most supporting functions Sp, the choice of p affects the set
of winners, often very considerably.2 However, here we show that
2 This is illustrated by the contrasting results in Sections 5 and 6.

choosing Sp to be either Ud or OOpt leads to rules that are indepen-
dent of p, both being extensions of the Borda voting rule [7, 28]. They
are both instances of cases in which a set Spx consists of all relations
R that are subsets of some set Sx. If Sp = Ud then Sx = ∆ \ Dx

and the winners are those x that minimise v+(Dx) =
∑
z 6=x v(z, x),

which is the sum of votes against x. If we define Sp as OOpt
then Sx = Ox and the winners are those elements maximising
v+(Oz) =

∑
z 6=x v(x, z), the sum of votes for x. (For balanced

v, the two rules are equivalent.)
Note that in such cases the best alternatives x are those for which

there existsR ∈ Spx that maximises v+(R) amongR ∈
⋃
z∈A Spz ,

where v+(R) =
∑

(x,y)∈R v(x, y). This holds more generally for
rules based on tending p to one, explored in Sections 4 and 6.3

Proposition 2 Suppose that for each x ∈ A, Spx is of the form
{R : R ⊆ Sx} for some Sx ⊆ ∆. Then, Prvp(Spx) = (1 −
p)v

+(∆) × (1 − p)−v
+(Sx), and x ∈ W Sp

p (v) if and only if
x ∈ argmaxzv

+(Sz). In particular, we have x ∈ WUd
p (v) if and

only if x ∈ argminzv
+(Dz), and x ∈ WOOpt

p (v) if and only if
x ∈ argmaxzv

+(Oz).

2.6 V-rules and voting rules

Define a V-rule to be a function W from V to 2A \ {∅}. Thus, for
any Sp ∈ SP and p ∈ (0, 1), W Sp

p (i.e., the function v 7→W Sp
p (v))

is a V-rule.
We can generate a voting rule from a V-rule (and in particular,

from W Sp
p ) in different ways. Let us define a voting rule (over set of

alternatives A) to be a function from the set P of profiles over A to
2A \ {∅}, where a profile over A is finite sequence of total orders
over A. For profile π ∈ P , define π∗ ∈ V by π∗(x, y) equalling the
number of voters who prefer x to y. Given a V-rule W , the function
π 7→ W (π∗) is a voting rule. We say that v ∈ V is profile-based
if there exists a profile π ∈ P such that v = π∗. Clearly if v is
profile-based then it is balanced.

Other transformations from profiles to V lead to other voting
rules. In particular, for real ε > 0, define πε to be π∗ + ε, so
that ∀(x, y) ∈ ∆, πε(x, y) = π∗(x, y) + ε. More generally, for
strictly monotonic f on the non-negative reals we define πf ∈ V by
πf (x, y) = f(π∗(x, y)). Of particular interest is the case in which
f(0) > 0, since then πf , like πε, is a non-zero element of V , i.e.,
πf (x, y) > 0 for all (x, y) ∈ ∆.

3 GENERAL PROPERTIES OF V-RULE W Sp
p

Various properties of voting rules have been studied, as ways of judg-
ing how intuitive a particular voting rule is, e.g., [28, 19, 15, 21]. We
consider versions of these properties for V-rules. We discuss neu-
trality, homogeneity, two versions of Pareto properties, and a mono-
tonicity property. (Anonymity is clearly not an issue here, since V
makes no reference to individual voters.)

To address neutrality, we consider the function τx,y that switches
labels x and y, where x and y are two different elements of A.

For v ∈ V , and x 6= y ∈ A, we define vx,y to be v with the la-
bels of x and y exchanged, i.e., τx,y on pairs followed by v. We say
that V-rule W is neutral if for all v ∈ V and (x, y) ∈ ∆, W (vx,y)
is equal to τx,y(W (v)), i.e., W (v) with the labels of x and y ex-
changed.

3 For the proofs, making use of many auxiliary results, see [25].
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We say that supporting function Sp ∈ SP is neutral if for all
different x, y ∈ A, we have R ∈ Spy ⇐⇒ τx,y(R) ∈ Spx. Being
neutral is a very natural property for Sp; in particular, Sp is neutral if
it is generated by any of the basic supporting functions and structural
properties (see Sections 2.2 and 2.4); in particular, any element of the
language L considered later is neutral.

Proposition 3 (Neutrality) Let Sp be a neutral element of SP .
Then for any p ∈ (0, 1), W Sp

p is a neutral V-rule.

Homogeneity: We say that V-rule W is homogeneous if for any real
λ > 0 and any v ∈ V , W (λv) = W (v). Proposition 1 implies
that W Sp

p being homogeneous is equivalent to the condition that for
all p′ ∈ (0, 1) and all v ∈ V , W Sp

p′ (v) = W Sp
p (v), i.e., indepen-

dence of the rule with respect to p (which also means that W Sp
p is

homogeneous for one value of p in (0, 1) if and only if it holds for
all values of p). Proposition 2 hence gives examples of homogeneous
rules, since it relates to rules that are independent of the value of p.

We now consider properties that relate to the Pareto Principle for
voting rules, stating that a Pareto dominated alternative is not a win-
ner (where x Pareto dominates y if every agent agrees that x is better
than y).

Firstly, it is convenient to define a notion of null elements of V , in
which no alternative is supported.
Definition of Spvx, and null elements of V: We abbreviate Spx∩2Ωv

to Spvx. Given Sp ∈ SP , we say that v is null for Sp if for all x ∈ A,
Spvx = ∅, i.e., if 2Ωv

∩
⋃
x∈A Spx = ∅; otherwise, we say that v is

non-null for Sp. If v is null for Sp then each Spx has zero probability
(Prvp(Spx) = 0 for all alternatives x, since Prvp is zero outside 2Ωv

)
so trivially every alternative is a winner, i.e., W Sp

p (v) = A (for any
p ∈ (0, 1)).

The constraints chosen on the V-rule in Propositions 4 and 5 relate
to the fact that if x Pareto-dominates y according to profile π then
π∗(x, y) > π∗(y, x) = 0, and for all z ∈ A \ {x, y}, π∗(x, z) ≥
π∗(y, z) and π∗(z, x) ≤ π∗(z, y) (where π∗ is the V-rule defined in
Section 2.6, with π∗(x, y) being the number of voters who prefer x
to y).

Proposition 4 (Pareto-1) Suppose that Sp satisfies Opt (i.e., for all
x ∈ A, Spx ⊆ Optx) and consider any y ∈ A and v ∈ V . Assume
that for some x ∈ A \ {y}, v(y, x) = 0. Then Spvy is empty, and so,
Prvp(Spy) = 0. Hence, if v is non-null for Sp then y /∈W Sp

p (v).

Proposition 5 (Pareto-2) Suppose that Sp is neutral and satisfies
Opt and Ud, and let x 6= y be elements ofA. Assume that v satisfies
the following properties: v(x, y) > v(y, x), and for all z ∈ A \
{x, y}, v(x, z) ≥ v(y, z) and v(z, x) ≤ v(z, y). Then, either Spvy is
empty or for any p ∈ (0, 1), Prvp(Spx) > Prvp(Spy). Hence, if v is
non-null for Sp then y /∈W Sp

p (v), and thus, y is not a winner.

We give simple sufficient conditions for a natural monotonicity
property: if Sp satisfies Opt and Ud and x is a winner, and we only
increase votes for x and only decrease votes against x, then x remains
a winner:

Proposition 6 (Monotonicity) Let x ∈ A and assume that Sp sat-
isfies Opt and Ud, and that v and v′ are such that for all z 6= x,
v′(x, z) ≥ v(x, z) and v′(z, x) ≤ v(z, x), and v and v′ are equal on
all other elements of ∆. Let y ∈ A \ {x}. If Prvp(Spx) > Prvp(Spy)

then Prv
′
p (Spx) > Prv

′
p (Spy); and, if Prvp(Spx) ≥ Prvp(Spy) then

Prv
′
p (Spx) ≥ Prv

′
p (Spy). Assume that x ∈ W Sp

p (v). Then x ∈
W Sp
p (v′), and if v′ is not null for Sp, we have W Sp

p (v′) ⊆W Sp
p (v).

Let us say that voting rule U (on A) satisfies the Pareto property
if x /∈ U(π) (i.e., x is not a winner) whenever profile π (∈ P) and
alternative x (∈ A) are such that there exists y with π∗(x, y) = 0
(all voters prefer y to x). We say that U satisfies monotonicity if
x ∈ U(π) implies x ∈ U(π′) ⊆ U(π) whenever π, π′ ∈ P and
x ∈ A are such that π′ is equal to π on all voters except one in which
the position of x is improved without changing the relative positions
of other alternatives.

The following result shows that we can obtain, with our frame-
work, voting rules that satisfy monotonicity and the Pareto prop-
erty, in a very wide range of different ways: by choosing any value
p ∈ (0, 1), and any supporting function Sp that satisfies the two ba-
sic properties Opt and Ud, and by choosing any strictly monotonic
function f in the generation of the V-rule from the profile π (see Sec-
tion 2.6). Condition f(0) > 0, ensuring that πf is always non-null,
avoids exceptions to do with null cases (cf. Propositions 4, 5 and 6).

Proposition 7 Consider any p ∈ (0, 1), and any strictly monotonic
function f on the non-negative reals with f(0) > 0, and assume that
Sp ∈ SP satisfies Opt and Ud. The voting rule π 7→ W Sp

p (πf )
satisfies monotonicity, and, if Sp is neutral, it satisfies the Pareto
property.

4 LIMIT CASES WHEN p → 1 OR p → 0

As well as considering fixed value of p ∈ (0, 1), we can also con-
sider the effect of tending p to zero or one. An advantage of this
is that it leads to rules that are homogeneous, in that multiplying
v by a positive scalar will not affect the result (this can be seen as
a consequence of the property expressed by Proposition 1). There
are different ways of generating such limiting functions. A first idea
might be to consider, for alternative x, the limit of Prvp(Spx) as p
tends to 1 (or 0). However, it can easily happen that e.g., for all
x ∈ A, limp→1 Prvp(Spx) = 0, which will lead to a trivial so-
cial choice rule which excludes no alternatives. An alternative is to
consider if limp→1

Prvp(Spx)

Prvp(Spy)
≥ 1 for all alternatives y. Although

this is often reasonable, there are cases where it can be less decisive
than one would like. Instead, to compare alternatives x and y we use
Qv,pSp (x, y), defined below. We define, for x 6= y,

Qv,pSp (x, y) =
Prvp(Spx \ Spy)

Prvp(Spy \ Spx)
=

∑
R∈Spx\Spy

Prvp(R)∑
S∈Spy\Spx

Prvp(S)
.

We have that Qv,pSp (x, y) = 1/Qv,pSp (y, x). The ratio is defined to be
∞ if the denominator is zero and the numerator is non-zero; if both
numerator and denominator are zero, then Qv,pSp (x, y) is defined to
be 1. This happens when Prvp(Spx \ Spy) = Prvp(Spy \ Spx) = 0.

The winners set W Sp
p (see Section 2.3) can also be expressed in

terms of the function Qv,pSp (x, y): for any p ∈ (0, 1), x ∈ W Sp
p (v) if

and only if for all alternatives y, Qv,pSp (x, y) ≥ 1.

4.1 Winners When p → 1 and p → 0

Consider any given supporting function Sp and any weighted rela-
tion v ∈ V . We define V-rules W Sp

→1(v), W
Sp
→1(v) and W Sp

→0(v)
as follows, where Sp is an arbitrary supporting function, and v is a
weighted relation; x ∈ A is an alternative.

• x ∈ W Sp
→1(v) if and only if for all y ∈ A \ {x},

limp→1 Q
v,p
Sp (x, y) ≥ 1. Alternative x is then said to be a strong

(p→ 1)-winner [given Sp and v].
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• x ∈ W
Sp
→1(v) if and only if for all y ∈ A \ {x},

limp→1 Q
v,p
Sp (x, y) > 0. Then x is a weak (p → 1)-winner.

W
Sp
→1(v) is a somewhat less decisive social choice rule than

W Sp
→1(v); clearly, we always have W Sp

→1(v) ⊆W Sp
→1(v).

• x ∈ W Sp
→0(v) if and only if for all y ∈ A \ {x},

limp→0 Q
v,p
Sp (x, y) ≥ 1, and x is said to be a (p→ 0)-winner.4

Naturally, the set W Sp
→1(v) of strong (p → 1)-winners is a subset of

W
Sp
→1(v), the set of weak (p → 1)-winners. Effectively, the strong

winners are generated by a tie-breaking over the weak winners. For
examples of this, see the discussion of parts (ii) and (iii) of Theorem 4
below.

v+ and v×: We will define some notation that allows the expression
of characterisations of the different kinds of winners. For R ⊆ ∆ re-
call that v+(R) equals

∑
(x,y)∈R v(x, y). Informally, we will some-

times refer to v+(R) as the sum of votes for R. Similarly, we define
v×(R) to be the number

∏
(x,y)∈R v(x, y).

We write Spvx,y for Spvx \ Spvy , where Spvx = Spx ∩ 2Ωv

.
For the p → 1 case, we define gvx,y(Sp), abbreviated to gx,y , to

be max {v+(R) : R ∈ Spvx \ Spvy}, where the max of an empty set
is here defined to zero. Define hvx,y(Sp) (abbreviated to hx,y) to be
|{R ∈ Spvx,y : v+(R) = gx,y}|.

Relating to the p → 0 case, for Ω ⊆ ∆ we define Nv
x,y(Sp)

(usually abbreviated to Nx,y) to be min {|R| : R ∈ Spvx,y}, where
the min over an empty set is here defined to be ∞. We define
Evx,y(Sp) =

∑
R∈Spv

x,y, |R|=Nx,y
v×(R).

The strong (p → 1)-winners, and the (p → 0)-winners, can be
shown to be the undominated elements in A with respect to the ir-
reflexive relations �v,Sp

→1 and �v,Sp
→0 (respectively), defined as follows.

For different x, y ∈ A,
x �v,Sp
→1 y ⇐⇒ limp→1 Q

v,p
Sp (x, y) > 1.

x �v,Sp
→0 y ⇐⇒ limp→0 Q

v,p
Sp (x, y) > 1.

The two theorems below characterise the winners, in terms of gx,y
and hx,y for the p→ 1 cases, and in terms of Nx,y and Ex,y for the
p → 0 cases. Roughly speaking, the weak (p → 1)-winners x are
those such that Spvx contains a relation R maximising v+(R); and
(very roughly speaking) the (p → 0)-winners x are those such that
Spvx contains a relation R minimising cardinality, and then maximis-
ing the sum over minimal cardinality sets R of v×(R).

Theorem 1 For any v ∈ V and Sp, relation �v,Sp
→1 is transitive, and

sets W Sp
→1(v) and W

Sp
→1(v) are non-empty. W Sp

→1(v) equals the set
of alternatives that are undominated with respect to relation �v,Sp

→1 ,
i.e., x ∈W Sp

→1(v) if and only if x ∈ A and there does not exist y ∈ A
with y �v,Sp

→1 x. For x, y ∈ A, we have x �v,Sp
→1 y ⇐⇒ gx,y > gy,x

or [gx,y = gy,x and hx,y > hy,x].

Theorem 2 For any v ∈ V and Sp, relation �v,Sp
→0 is transitive, and

W Sp
→0(v) is non-empty. W Sp

→0(v) equals the set of alternatives that
are undominated with respect to relation �v,Sp

→0 . For x, y ∈ A, we
have x �v,Sp

→0 y ⇐⇒ Nx,y < Ny,x or [Nx,y = Ny,x and Ex,y >
Ey,x].

4 One could also define x to be a weak (p → 0)-winner, if for all y ∈ A\{x},
limp→0 Qv,pSp (x, y) > 0. However, it turns out that this is a less interesting
definition, because then the winners, although dependent on Ωv , do not
otherwise depend on v, so that, e.g., changing a non-zero value v(y, z) to
another non-zero value will not change the set of winners.

Unary supporting functions: characterising winners is simpler if
the supporting function Sp is unary, i.e., for any different alternatives
x and y, the best relations in Spx are not in Spy . For the p→ 1 case,
the best relations are those maximising v+. For the p → 0 case,
similar remarks apply, but with the best relations having minimal
cardinality.

4.2 The language L

As shown in Section 2.4, a set Γ of basic properties generates
a supporting function Sp(Γ), thus leading to a V-rule. We de-
fine L to be the set of all subsets Γ of the set of properties
{OOpt,Opt,TOpt,Ud,As,Ac,T,C} that contain at least one of
{OOpt,Opt,TOpt,Ud} (else Spx(Γ) is independent of x) and
such that Γ does not include both OOpt and C (the latter pair being
incompatible, which would make each Spx(Γ) empty). In Sections 5
and 6 we analyse this language for the limit cases.

4.3 Some properties for limit cases
The neutrality, Pareto and monotonicity properties for p ∈ (0, 1)
(Propositions 3, 4, 5 and 6) in Section 3 extend to the p → 1 and
p→ 0 cases.

Proposition 1 implies the following:

Proposition 8 For any Sp ∈ SP , V-rules W Sp
→1, W

Sp
→1 and W Sp

→0

are homogeneous.

In addition we have a sufficient condition for the Condorcet property
for the p → 1 case. First, define transformation ωx, by ωx(R) =
(R \ Dx) ∪ Ox. Thus, ωx turns R into a relation ωx(R) in which
x is undominated and dominates all other alternatives. We say that
ω respects Sp, if for all y 6= x and for all R ∈ Spy we have
ωx(R) ∈ Spx. Thus, for X ∈ {OOpt,Opt,TOpt,Ud}, ω re-
spects X if R ∈ Xx ⇒ ωx(R) ∈ Xx. For structural property X ,
such as X ∈ {Ac,As,T,C}, we say that ω respects X if R ∈ X ⇒
ωx(R) ∈ X . For many natural Sp, we have ω respects Sp; in fact ω
respects X for each X ∈ {Opt,TOpt,Ud,Ac,As,T,C}, and any
Sp generated by a subset of these.

The condition v(x, y) > v(y, x) expresses a direct preference for
x over y. The result below roughly states that if x is directly preferred
to every other alternative and ω respects Sp, and that Sp satisfies the
asymmetry property then x is the unique weak (p→ 1)-winner.

Proposition 9 (Condorcet property for (p→ 1)) Assume that ω
respects Sp and that Sp satisfies As. Suppose x ∈ A, and for
all other alternatives y ∈ A \ {x}, v(x, y) > v(y, x). Then
x ∈ W

Sp
→1(v), i.e., x is a weak (p → 1)-winner. If, in addition, v

is non-null and for all y ∈ A \ {x}, Spy ∩ Optx ∩ Udx = ∅ then
W Sp
→1(v) = {x}.
Suppose that Γ ∈ L, and that Γ 63 OOpt and either Γ 3 As or

Γ 3 Ac. Then x is the unique (p→ 1)-winner for Γ and non-null v.

The extra condition that Spy ∩ Optx ∩ Udx = ∅ is a very weak
one, just saying that R does not support y if x is undominated in R
and dominates y and the other alternatives.

We say that voting rule U satisfies the Condorcet property if
U(π) = {x} whenever profile π and x ∈ A are such that for all y ∈
A\{x}, π∗(x, y) > π∗(y, x). Assume that ω respects Sp and that Sp
satisfies As and for all y ∈ A \ {x}, Spy ∩ Optx ∩ Udx = ∅. The
above result implies that the voting rule given by π 7→ W Sp

→1(πf )
satisfies the Condorcet property, where f is any strictly monotonic
function on the non-negative reals with f(0) > 0.
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4.4 Equivalence of sets Γ

We will see that for many different Γ,Γ′ ∈ L, Γ and Γ′ are equivalent
in that they generate the same winners. We formalise this as follows.

We say that sets Γ and Γ′ in L are (p→ 0)-equivalent, abbreviated
to Γ ≡0 Γ′, if for all v ∈ V , W Sp(Γ)

→0 (v) = W
Sp(Γ′)
→0 (v), so that Γ

and Γ′ generate the same set of (p→ 0)-winners.
Sets Γ and Γ′ in L are (p → 1)-∆-equivalent, abbreviated to

Γ ≡+
1 Γ′, if for all non-zero v (i.e., with Ωv = ∆), W Sp(Γ)

→1 (v) =

W
Sp(Γ)
→1 (v) and W

Sp(Γ)
→1 (v) = W

Sp(Γ′)
→1 (v), so the weak (p → 1)-

winners are the same, as are the strong (p→ 1)-winners.
It can be shown that {Ud,Ac} ≡+

1 {Opt,Ud,Ac,C}, for ex-
ample; this is essentially because, with either definition of Γ, the re-
lations R in Spx(Γ) maximising v+ are the total orders with top
element x, and so both definitions of Γ give rise to the same strong
and weak winners.

We say that sets Γ and Γ′ in L are simply equivalent if for all
x ∈ A, we have Spx(Γ) = Spx(Γ′). Clearly, if Γ and Γ′ are sim-
ply equivalent then they are (p → 0)-equivalent and (p → 1)-∆-
equivalent.

For example, {Opt,Ac} and {Opt,Ud,Ac} are simply equiv-
alent, because for any x ∈ A, Optx ∩ Ac ⊆ Udx (if x is dom-
inating w.r.t. an acyclic relation then it is undominated), and so
Optx ∩Ac = Optx ∩Udx ∩Ac.

5 THE p → 0 RULES GENERATED BY L

In this section we consider all the rules with p tending to 0 gen-
erated by the language L, that is, all V-rules W Sp

→0 for Sp being
Sp(Γ) for some member Γ of L. The language L can be shown to
have 176 different subsets. However, there are many logical con-
nections between the eight properties, implying instances of sim-
ple equivalence (see Section 4.4). For instance, Udx ∩ C ⊆ Optx,
and As ∩ T ⊆ Ac, and Ac ⊆ As. Also, if R ∈ Optx ∩ As
then R ∈ Udx, i.e., Optx ∩ As ⊆ Udx, which implies that
{Opt,As} and {Opt,As,Ud} are simply equivalent. This means
that Sp({Opt,As}) is the same function as Sp({Opt,As,Ud}) and
so leads to the same V-rules. However, there are more subtle connec-
tions that imply equivalence of two elements of L in terms of the
V-rules they generate for the p → 0 case, because of the characteri-
sation of W Sp

→0 given in Theorem 2. For instance, the minimal cardi-
nality elements5 of Spx({Opt,C}) are all asymmetric and so in As,
and it can then be shown that Sp({Opt,C}) and Sp({Opt,C,As})
lead to the same V-rule W Sp

→0, and so are (p → 0)-equivalent. The
two types of equivalences reduce the number of different p→ 0 rules
generated by L to just seven, as stated by Theorem 3.

Parts (i) and (ii) relate to the two cases that are independent of
p discussed in Proposition 2. Part (i) implies, for instance, that the
p → 0 V-rule based on Sp({Ud,T,Ac,As}) gives the same rule
as Sp defined by Spx = Udx, with the winners W Sp

→0(v) being the
alternatives x minimising v+(Dx). The OOpt p → 0 V-rule in (ii)
returns x maximising v+(Ox).

The Opt rule (iii) is somewhat similar to (ii): it returns x max-
imising v×(Ox). Thus, if one pre-processes by an exponential, for
example with v 7→ W Sp

→0(2v), then the winners are x maximising∏
y 6=x 2v(x,y) = 2v

+(Ox), i.e., maximising v+(Ox) as in case (ii).

5 For the p → 1 case in Section 6 we have a similar type of equivalence based
instead on the subset-maximal elements of Spx(Γ); see the supplementary
document for the details.

For case (iv) and e.g., Γ = {TOpt}, the rule can be characterised
as follows. For alternative x ∈ A, consider any function g from A \
{x} to A, and let Rg = {(g(y), y) : y ∈ A \ {x}}. Let Fx be the
set of such functions g with Tr(Rg) ⊇ Ox, i.e., such that every other
alternative is reachable from x, when viewingRg as a directed graph.
The winners W Sp

→0(v) are x ∈ A that maximise
∑
g∈Fx

v×(Rg).

For case (v) with e.g., Sp = Sp({Ud,C,As}) it can be shown
that the winners W Sp

→0(v) are x maximising
∏
y 6=x

v(x,y)
v(x,y)+v(y,x)

.
For balanced v, the winners are thus x maximising

∏
y 6=x v(x, y) =

v×(Ox), therefore giving the same results as (iii) for balanced v,
which includes profile-based v. (vi) seems an especially complicated
rule. The winners in (vii) are x maximising the sum of v×(R) over
all strict total orders with x top.

Theorem 3 Consider any Γ ∈ L.

(i) If Γ ⊆ {Ud,T,Ac,As} and Γ 3 Ud then Γ ≡0 {Ud}.
[argminxv

+(Dx) rule]
(ii) If Γ ⊆ {OOpt,Ud,T,Ac,As} and Γ 3 OOpt then Γ ≡0

{OOpt}. [argmaxxv
+(Ox) rule]

(iii) If Γ 63 C and either Γ 3 Opt or Γ ⊇ {TOpt,T} or Γ ⊇
{TOpt,OOpt} then Γ ≡0 {Opt}. [argmaxxv

×(Ox) rule]
(iv) If Γ ⊆ {TOpt,Ud,Ac,As} and Γ 3 TOpt then Γ ≡0 {TOpt}.
(v) If Γ ⊆ {Ud,Opt,TOpt,C,As} and Γ 3 C and either Γ 3 Ud

or Γ 3 Opt then Γ ≡0 {Ud,C}.
(vi) {TOpt,As,C} ≡0 {TOpt,C}.

(vii) If Γ 3 C (and so Γ 63 OOpt) and either Γ 3 Ac or Γ 3 T then
Γ ≡0 {Opt,C,Ac}.

Furthermore, cases (i)–(vii) are mutually exclusive and cover every
element of L.

6 p → 1 CASES GENERATED BY L WHEN
Ω = ∆

In this section we consider V-rules generated by the language L with
p → 1. There are a much larger number of different such rules than
for the p → 0 case; for instance, including C or T in Γ can make a
(usually) small change to the V-rule. Because of this, we only con-
sider inputs v that are non-zero, i.e., with Ωv = ∆, and classify the
sets in L on this subset of V .

Theorem 4 Consider any Γ ∈ L.

(i) If Γ 3 OOpt then Γ ≡+
1 {OOpt}. [argmaxxv

+(Ox) rule]
(ii) If Γ 63 OOpt and either Γ 3 Ac or Γ ⊇ {As,T} then Γ ≡+

1

{Ud,Ac}.
(iii) If Γ ⊆ {Opt,TOpt,Ud,As,C} and Γ 3 As and [ei-

ther Γ 3 Ud or Γ 3 Opt] then Γ ≡+
1 {Ud,As}.

[argminx
∑
y 6=x max(v(y, x)− v(x, y), 0) rule]

(iv) {TOpt,As,C} ≡+
1 {TOpt,As}.

(v) If Γ ⊆ {Opt,TOpt,Ud,T,C} and Γ 3 Ud then Γ ≡+
1 {Ud}.

[argminxv
+(Dx) rule]

(vi) If Γ ⊆ {Opt,TOpt,C} and Γ 3 Opt then Γ ≡+
1 {Opt}. //

[argmaxx miny 6=x v(x, y) rule]
(vii) If Γ ⊆ {Opt,TOpt,C,T} and either Γ ⊇ {Opt,T} or [Γ 3

TOpt and Γ 63 Opt] then Γ ≡+
1 {Opt,T}.

Furthermore, cases (i)–(vii) are mutually exclusive and cover every
element of L.
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Case (i) generated by Sp = OOpt selects alternatives x that max-
imise v+(Ox), with W

Sp
→1(v) = W Sp

→1(v), and thus, for profiles, is
the Borda rule. Recall that this Sp is one of the cases that is indepen-
dent of p (see Proposition 2). It is unary, and the unique relationR in
Spx maximising v+(R) is Ox.

(ii): This rule is generated (for instance) by {Opt,Ac}. It is unary,
and the elementsR ∈ Spx maximising v+(R) are all the total orders
which have x top. The weak winners x ∈ W Sp

→1(v) are those which
are top elements for total orders with maximal sum of votes, so the
voting rule π 7→ W

Sp
→1(π∗) agrees with the Kemeny rule [18, 13].

For the strong winners, ties are (partially) broken by counting the
number of total orders R with x top that maximise v+(R).

(iii) is generated e.g., by {Opt,As}, and is unary. Weak winners
are x that minimise

∑
y 6=x max(v(y, x) − v(x, y), 0), with natural

partial tie breaking for the strong winners, by minimising, among
the weak winners x, |{y ∈ A \ {x} : v(y, x) = v(x, y)}|. For pro-
files π ∈ P , the voting rule π 7→ W

Sp
→1(π∗) agrees with Tideman’s

rule [22, 23, 3].
(iv) generated by {TOpt,As} leads to a somewhat complicated

V-rule, which however, does satisfy the Cordorcet property, by
Proposition 9, as well a Pareto property based on the conditions on
v in Proposition 5, and also a natural monotonicity property (see
Lemma 25 of the longer version [25]).

Case (v) generated by Sp = Ud has W
Sp
→1(v) = W Sp

→1(v)
equalling argminxv

+(Dx), with Sp being independent of p (see
Proposition 2). For profiles, it is the Borda rule.

The weak winners for rule (vi) generated e.g., by Sp = Opt,
are those x maximising minz 6=x v(x, z), and the voting rule π 7→
W

Sp
→1(π∗) agrees with the maximin rule [27, 13], with natural par-

tial tie-breaking for the strong winners.
Rule (vii) generated by e.g., {Opt,T} is an interesting non-

unary rule with the weak winners being the undominated alterna-
tives, where x dominates y if and only if the cost for x against y
is less than the cost for y against x, and the cost for x against y is
the minimum of FB over all B such that x ∈ B ⊆ A \ {y}, where
FB =

∑
w/∈B,z∈B v(w, z). This rule satisfies Pareto and monotonic-

ity properties expressed by Propositions 5 and 6, as well as neutrality
and homogeneity.

7 RELATED WORK
The probabilistic approach described in this paper, which picks
one or more winning alternative, contrasts with probabilistic social
choice functions [1], which generate (sets of) probability distribu-
tions over alternatives. Future work could study the probabilistic so-
cial choice functions that result from adapting the definition of win-
ner in Section 2.3 by picking alternative x with chance proportional
to Prvp(Spx).

The input v ∈ V of a V-rule can be viewed as a weighted directed
graph on alternatives, with non-negative real weights; this suggests
the potential of relationships with weighted tournament solutions, C2
functions in the Fishburn’s classification [14, 13].

In particular, in certain cases, there is a correspondence between
the weak (p→ 1)-winners and the winners according to a voting rule
generated by median orders [16, 4, 13]. Suppose that v ∈ V is based
on a (generalised) profile of m relations Ri ∈ R, where R is some
class of relations that are all tournaments (i.e.,R ⊆ As∩C) so that,
for different alternatives x and y, (x, y) ∈ Ri ⇐⇒ (y, x) /∈ Ri.
We can write v as

∑m
i=1 vi, where vi is a {0, 1}-valued element of

V corresponding toRi. Assume also that Sp satisfies As, C and Opt
(and hence Ud). Then, Sp is unary, and the weak winners consist of
x ∈ A such that Spx contains an element R ∈ M =

⋃
z∈A Spz

that maximises v+(R). For any i = 1, . . . ,m, (vi)
+(∆ \ R) =

|Ri \R| = 1
2
(|Ri \R|+ |R \Ri|). Maximising v+(R) is the same

as minimising v+(∆ \ R) = v+(∆) − v+(R), and v+(∆ \ R) =∑m
i=1(vi)

+(∆ \ R) =
∑m
i=1 |Ri \ R|, which thus equals half of

the remoteness between (R1, . . . , Rm) and R [16]. This implies
that the weak (p → 1)-winners are the winners of the median order
(generalised) voting rule based on minimising the (R,M)-score (see
page 95 of [13]). This includes, in particular, cases (ii) (Kemeny’s
rule) and (iii) (Tideman’s rule) of Theorem 4.

Theorem 4 also suggests the potential of connections between
unary (p → 1) cases and voting rules generated from Maxi-
mum Likelihood Estimators (MLE), and consensus-based voting
rules [12, 6, 8, 11], since the maximin rule (case (vi)) can be gen-
erated, as well as Borda (cases (ii) and (v)) and the rules in Theo-
rem 4(ii) and (iii). In a general sense, our approach with limiting p
is reminiscent of the construction of the rules MLE∞intr , MLE1

intr ,
MLE∞tr and MLE1

tr in [12], and they can give similar rules to the
p → 1 rules generated with our framework. However, even when
they do, the tie-breaking can be very different from the strong win-
ners in our framework, as illustrated on pages 190 and 191 of [12];
however, this may well be because of the different methods for defin-
ing the limiting voting rules, with the method used in these publica-
tions (see e.g., [11], Section 5) being conceptually elegant, but per-
haps mathematically more complex, than our approach in Section 4.1
based on the limiting values of Qv,pSp (x, y).

Note that, although the MLE-based models and our framework are
both based on probabilistic models, the interpretation of the input
profile (or more generally the function v) is conceptually completely
different: in the MLE framework the input profile is assumed to be
the result of a random process; whereas in our framework it is the
input for a random process. In the MLE framework, the input profile
is treated as a noisy version of some unknown true profile, based on
a probabilistic model for the noise. In contrast, in our framework, the
input profile (or function v) is treated as a collection of parameters
for generating a random relation, which is then used to determine the
winners; thus, v is interpreted as a kind of propensity.

8 DISCUSSION

We have defined and explored a framework for generating voting
rules (and V-rules that allow a more general form of input), based
on winners being alternatives that maximise the probability of being
supported. We have given some simple sufficient conditions for cer-
tain properties of the voting rule. We defined a simple language of
supporting functions, and categorised the rules generated for the two
limiting cases with p→ 0/1.

Our method allows one to generate large (and continuous) fami-
lies of voting rules that satisfy some good properties. In particular, if
we choose some neutral Sp based on (arbitrarily complicated) sets of
relations and add the conditions Opt and Ud then we obtain neutral
V-rules, and thus also voting rules (using an arbitrary strictly mono-
tonic non-zero function of the positive reals), that satisfy Pareto and
monotonicity properties (see Proposition 7). Homogeneity of the vot-
ing rule can be enforced by an additional normalisation step. If we
additionally consider p→ 1 and add the condition As (i.e., intersect
each Spx with As) then the voting rule will satisfy the Condorcet
property.

The ability to choose between a wide range of voting rules could
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be useful as a barrier to manipulation, since a different voting rule
could be used for each decision (where the voting rule could, for
instance, be chosen randomly using a probability distribution which
is not known by any of the agents).

For the limiting p→ 1 case, it is striking that several well-known
voting rules can be generated by choosing different natural choices
of the supporting function. In particular, for profile π ∈ P , and any
real ε > 0, the voting rule π 7→ W

Sp
→1(πε) is the Borda rule for Sp

equalling OOpt or Ud; the maximin rule for Sp = Opt; it is the
Kemeny rule for Sp = Sp({Ud,Ac}) (and for Sp({Ud,Ac,C}),
based on total orders) and Tideman’s rule for Sp = Sp({Ud,As})
(and for Sp({Ud,As,C}), based on tournaments). Therefore, as
well as generating new voting rules, the approach gives a new per-
spective on standard rules, and it would be interesting to pursue a
view of the framework as a rationalisation of certain classes of vot-
ing rules [10, 9, 12].

There are many potential avenues of exploration for future re-
search, some of which we raise below.

• As well as analysing further some of the non-standard rules gener-
ated by the fairly simple and natural property language L (in par-
ticular from Theorems 4 and 3), more complex properties of rela-
tions can be used to define Spx, including, for instance, cardinality
constraints on the relation and number of equivalence classes, and
the use of tournament solutions [2]. The framework can also be
extended to allow structural properties (on R ∈ Spx) that depend
on Ωv , such as a weakened transitivity: Tr(R) ∩ Ωv = R.

• The method for generating the probability distribution is a rather
simple one: independently choosing which elements to include in
R, and then (in effect) conditioning on the structural assumptions
(such as R being transitive); it would be interesting to explore
other natural forms of distribution, and what kinds of voting rules
would be produced.

• In addition there is the issue of computation and general com-
plexity analyses; in particular, it would be interesting to develop
and test Monte-Carlo algorithms for computing an approximation
of the set of winners, based on various supporting functions, for
the non-limit cases. Some discussion of this can be found in Sec-
tion 2.7 of [25].
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