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Abstract. The goal of this paper is to propose a language for rep-
resenting and reasoning about the rules governing an auction-based
market. Such language is at first interest as long as we want to build
up digital market places based on auction, a widely used framework
for automated transactions. Auctions may differ in several aspects:
single or double-side, ascending or descending, single or multi-unit,
open cry or sealed-bid, and so on. This variety prevents an agent
to easily switch between different (auction-based) markets. The first
requirement for building such agents is to have a general language
for describing auction-based markets. Second, this language should
also allow the reasoning about the key issues of a specific market,
namely the allocation and payment rules. To do so, we define a lan-
guage in the spirit of the Game Description Language (GDL): the
Auction Description Language (ADL) is the first language for de-
scribing auctions in a logical framework. In this paper, we illustrate
this general dimension by representing two different types of well-
known auctions: an English Auction and a Multi-Unit Vickrey Auc-
tion. We show the benefit of ADL by deriving properties about these
two auction protocols. It also enables us to show in an explicit way
what should be assumed about the behavior of a rational bidder.

1 INTRODUCTION
A huge volume of goods and services are sold through auctions [10].
Typically, an auction-based market is described by a set of rules stat-
ing what are the available actions to the participants, how the winner
is determined, and what price should be paid by the winner. There
are variants where multiple winners could be considered or payment
may also concern the losers. Actually, an Auction protocol may dif-
fer in numerous aspects: single or double-side [14], ascending [4] or
descending [9], single or multi-unit goods [1, 16], and so on.

This great variety of auction protocols prevents any autonomous
agent to easily switch between different auction-based markets [19].
Having a language for describing auctions from a general perspective
is then at first interest. Participants may be able to process the auction
definition and, consequently, define their bids wrt. these rules.

The goal of the paper is to propose a general language to describe
auction-based markets. The logic is based on the Game Description
Language (GDL) which is a logic-based language for representing
and reasoning about game rules; GDL is the official language for
the General Game Playing challenge [6]. We revisit the GDL vari-
ant proposed in [15] and define the logical Auction Description Lan-
guage: we allow numerical variables, comparison, and parameters at
the opposite of GDL. Handling numerical values is critical for defin-
ing the payment and allocation rules.
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1.1 Related work
An auction protocol is an allocation procedure. Its main characteris-
tics are (i) it is a centralized procedure, i.e. it has a central authority
(the auctioneer), and (ii) it has monetary transfer. This is not always
true for an allocation procedure. For instance, a negotiation protocol
may be defined in a distributed (decentralized) approach, where the
allocation is the result of a sequence of local negotiation steps [3].
On the other hand, a protocol for exchanging goods or services may
not be dependant on monetary transfer.

To the best of our knowledge, almost all contributions on the com-
putational representation of auction-based markets focus on their im-
plementation. In [13], the authors propose an assertive and modular
definition of an auction market by representing the market as a set of
rules. These rules tackle at first the how and when to bid and assume
a single-agent perspective. There is no general reasoning as the se-
mantics is an operational one. The language proposed in [19] adopts
an assertive perspective: the proposed language allows the represen-
tation of a general auction market, but it is too poor for enabling
reasoning. In [2], the authors show how a specific auction, namely
combinatorial auctions, can be encoded in a logic program. A hy-
brid approach mixing linear programming and logic programming
has been proposed in [12]: the authors focus on sealed-bid auctions
and show how qualitative reasoning helps to refine the optimal quan-
titative solutions. The closest contribution is the Market Specification
Language [22] based on the Game Description Language (GDL) [6].
The proposed language is rich enough for representing an auction
through a set of rules and then interpreting an auction-instance with
the help of a state-based semantics. However, the main limit is the
single-agent perspective.

1.2 Contribution
In this paper, we focus on single-side auctions: that is one seller and
multiple buyers or vice versa. The language is general enough for
taking care of goods’ quantity (single or multi-unit) and whether it is
open or not (sealed-bid). We also focus on the auctioneer perspective:
how the auction is organized, how the goods are allocated and how
to know if the auction is complete.

While different sorts of auction protocols can be expressed in
ADL, the bids are represented through the agents’ actions. ADL ac-
tions are predefined in the auction signature and may have integer
parameters representing amount and quantity. However, we believe
that the use of bidding languages to generate the action set would al-
low agents’ to bid over goods combinations (bundles), quantities and
preferences in an easier and more flexible way. A bidding language
is better fitted to combinatorial auctions and its addition to ADL will
be investigated for future work.
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The paper is organized as follows: we first describe the auction de-
scription language and its associated state-transition semantics (Sec-
tion 2). We then show how ADL can be instantiated to represent
two types of single-side auctions: Section 3 focuses on single-side
auction and details the specification of an English Auction. Section 4
presents multi-unit auctions with a specification of Vickrey Auction.
In both sections, we first present the definition of the auction and
then general properties from the auctioneer point of view, namely
general properties and properties requiring some rationality assump-
tion about the bidders. To do so, we take advantage of the logical
perspective used for specifying auction. Finally, Section 5 concludes
the paper and opens some perspective on the future of ADL.

2 AUCTION DESCRIPTION LANGUAGE
In this section, we introduce a logical framework for auction speci-
fication. The framework is based in GDLZ [15], a numerical exten-
sion of GDL state transition model and language [23]. The resulting
framework can consider numerical variables, numerical terms, and
payment and allocation structures. We call the framework Auction
Description Language, denoted ADL.

To describe an auction, we first define an auction signature, that
specifies who are the auction participants (the agents), how they bid
(the actions for each agent) and what are the aspects that describe
each state in the auction (the propositions and numerical variables).
We define an auction signature as follows:

Definition 2.1. An auction signature S is a tuple (N,A,Φ, X),
where:

• N = {r1, r2, · · ·, rk} is a nonempty finite set of agents;
• A =

⋃
r∈N A

r where Ar = {ar1(z̄1), · · ·, arm(z̄m)} consists
of a nonempty set of actions performed by agent r ∈ N , where
z̄i ∈ Zl is a possibly empty tuple of l parameters for the action
ari , i ≤ m and l ∈ N. For convenience, we occasionally write ari
for denoting an action ari (z̄i) ∈ A;

• Φ = {p, q, · · ·} is a finite set of atomic propositions for specifying
individual features of an auction state;

• X = {x1, x2, · · ·, xn} is a set of numerical variables for specify-
ing numerical features of an auction state.

Given an auction signature, we define the auction protocol through
a state transition model, that allows us to represent the key aspects of
an auction, at first the allocation and payment rules.

Definition 2.2. A state transition ST-model M is a tuple (W, w̄, T,
L, U, g, p, alloc, πΦ, πZ,≺N ), where: (i) W is a nonempty set of
states; (ii) w̄ ∈ W is the initial state; (iii) T ⊆ W is a set of termi-
nal states; (iv) L ⊆W ×A is a legality relation, describing the legal
actions at each state; (v)U : W×

∏
r∈N A

r →W is an update func-
tion, specifying the transitions for each combination of joint actions;
(vi) g : N → 2W is a goal function, specifying the winning states for
each agent; (vii) p : W ×N → Z is a payment function, specifying
the payment for each agent in each state; (viii) alloc : W ×N → Z
is an allocation function, specifying the quantity of goods allocated
to each agent in each state; (ix) πΦ : W → 2Φ is the valuation func-
tion for the state propositions; (x) πZ : W ×X → Z is the valuation
function for the numerical variables; and (xi) ≺N is a total order on
N , defining the tie-breaking priority between two agents.

Given d ∈
∏
r∈N A

r , let d(r) be the individual action for agent r
in the joint action d. Let L(w) = {a ∈ A | (w, a) ∈ L} be the set
of all legal actions at state w.

Note that the update function is deterministic, i.e. given a state and
a joint action, the update function will lead to a unique state. In an
auction, non-deterministic solutions may be used to solve ties during
the winner determination. A usual approach in Auction Theory is to
assume that if there are ties, each winning bidder has an equal likeli-
hood of being awarded the object, i.e. the winner is chosen randomly
[11] (for discussion about the strategic effect of tie-breaking rules
in auctions, see [7]). Considering distributional strategies for a wide
class of private value auctions, the set of equilibria is invariant to the
tie-breaking rule [7].

In this paper, the tie-breaking solution is based on a fixed-order be-
tween the agents (the usual approach in computational social choice
[5]). Another deterministic solution that could be represented in ADL
is to define a special player whose action would determine the winner
in a tie (similar to the “random player” in GDL-II [20]). Thereby, the
non-deterministic aspects of the winner determination can be easily
simulated in ADL.

Definition 2.3. Given an ST-model M = (W, w̄, T, L, U, g, p,

alloc, πΦ, πZ,≺N ), a path is a sequence of states w̄
d1→ w1

d2→
· · ·

dj→ · · · such that for any j ≥ 1: (i) w0 = w̄; (ii) wj 6= w0;
(iii) dj(r) ∈ L(wj−1) for any r ∈ N , (iv) wj = U(wj−1, dj); and
(v) if wj−1 ∈ T , then wj−1 = wj .

A path δ is complete if δ[e] ∈ T , for some e > 0. After reaching a
terminal state δ[e], for any e′ > e, δ[e′] = δ[e], i.e. no other state is
reachable besides δ[e]. LetP(M) denote the set of all complete paths
in M . When M is fixed, we simply write P . Given δ ∈ P , the states
on δ are called reachable states. Let δ[j] denote the j-th reachable
state of δ, θ(δ, j) denote the joint action performed at stage j of δ;
and θr(δ, j) denote the action of agent r performed at stage j of δ.

2.1 Syntax
The language is denoted by LADL and a formula ϕ in LADL is de-
fined by the following BNF grammar:

ϕ ::= p | initial | terminal | legal(ar(z̄)) | does(ar(z̄)) |
wins(r) | ¬ϕ | ϕ ∧ ϕ | ©ϕ | z > z | z < z | z = z |

x(z) | r ≺ r | payment(r, z) | allocation(r, z)

A number list z̄ is defined as: z̄ ::= z | z, z̄ | ε. Finally, a
numerical term z is defined by Lz , which is generated by the fol-
lowing BNF: z ::= z′ | x | add(z, z) | sub(z, z) | min(z, z) |
max(z, z) | times(z, z), where p ∈ Φ, r ∈ N, ar(z̄) ∈ A, z′ ∈
Z, x ∈ X , and ε represents the empty word.

Other connectives ∨,→,↔,> and ⊥ are defined by ¬ and ∧ in
the standard way. The comparison operators ≤, ≥ and 6= are de-
fined by ∨, >,< and =. The extension of the comparison operators
>,<,=, ≤, ≥, 6= and numerical terms max(z1, z2),min(z1, z2),
add(z1, z2) to multiple arguments is straightforward.

Intuitively, initial and terminal specify the initial state and the
terminal state, respectively; does(ar(z̄)) asserts that agent r takes
action a with the parameters z̄ at the current state; legal(ar(z̄)) as-
serts that agent r is allowed to take action a with the parameters z̄
at the current state; and wins(r) asserts that agent r wins at the cur-
rent state. The formula ©ϕ means “ϕ holds at the next state”. The
formulas z1 > z2, z1 < z2, z1 = z2 means that a numerical term
z1 is greater, less and equal to a numerical term z2, respectively. The
formula x(z) asserts the current value for the numerical variable x,
i.e. the x variable in X has the value in z. The tie-breaking priority
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is represented by the formula r1 ≺ r2, i.e. agent r1 precedes r2 in
the order ≺N . Formulas payment(r, z1) and allocation(r, z2) say
that agent r must pay the value z1 and that z2 goods are allocated
to r. The numerical terms add(z1, z2), sub(z1, z2) and times(z1,
z2) specify the value obtained by adding, subtracting and multiplying
z2 from z1, respectively. The terms min(z1, z2) and max(z1, z2)
specify the minimum and maximum value between z1 and z2, resp.

2.2 Semantics
The semantics for the ADL language is given in two steps. First, we
define function v to define the meaning of numerical terms z ∈ Lz
in a specified state. Next, a formula ϕ ∈ LADL is interpreted with
respect to a stage in a path.

Definition 2.4. Given an ST-model M , a path δ, a stage j and the
functions minimum and maximum3 define function v : Lz ×
W → Z, assigning any z ∈ Lz in a state w ∈W to a number in Z:

v(z, w) =



z if z ∈ Z
πZ(w, z) if z ∈ X
v(z′, w) + v(z′′, w) if z = add(z′, z′′)

v(z′, w)− v(z′′, w) if z = sub(z′, z′′)

v(z′, w)× v(z′′, w) if z = times(z′, z′′)

minimum(v(z′, w), v(z′′, w)) if z = min(z′, z′′)

maximum(v(z′, w), v(z′′, w)) if z = max(z′, z′′)

Definition 2.5. Let M be an ST-Model. Given a complete path δ of
M , a stage j on δ, a formula ϕ ∈ LADL and Function v, we say ϕ is
true (or satisfied) at j of δ under M and v, denoted by M, δ, j |= ϕ,
according with the following definition:

M, δ, j |= p iff p ∈ πΦ(δ[j])

M, δ, j |= ¬ϕ iff M, δ, j 6|= ϕ

M, δ, j |= ϕ1 ∧ ϕ2 iff M, δ, j |= ϕ1 and M, δ, j |= ϕ2

M, δ, j |= initial iff δ[j] = w̄

M, δ, j |= terminal iff δ[j] ∈ T
M, δ, j |= wins(r) iff δ[j] ∈ g(r)

M, δ, j |= payment(r, x) iff x = p(δ[j], r)

M, δ, j |= allocation(r, x) iff x = alloc(δ[j], r)

M, δ, j |= r1 ≺ r2 iff r1 ≺ r2 ∈≺N
M, δ, j |= legal(ar(z̄)) iff (ar(z̄)) ∈ L(δ[j])

M, δ, j |= does(ar(z̄)) iff θr(δ, j) = ar(z̄)

M, δ, j |=©ϕ iff if j < |δ|, then M, δ, j + 1 |= ϕ

M, δ, j |= z1 > z2 iff v(z1, δ[j]) > v(z2, δ[j])

M, δ, j |= z1 < z2 iff v(z1, δ[j]) < v(z2, δ[j])

M, δ, j |= z1 = z2 iff v(z1, δ[j]) = v(z2, δ[j])

M, δ, j |= x(z) iff v(z, δ[j]) = πZ(δ[j], x)

A formula ϕ is globally true through δ, denoted by M, δ |= ϕ, if
M, δ, j |= ϕ for any stage j of δ. A formula ϕ is globally true in an
ST-Model M , written M |= ϕ, if M, δ |= ϕ for all complete paths δ
inM . Finally, let Σ be a set of formulas in LADL, thenM is a model
of Σ if M |= ϕ for all ϕ ∈ Σ.

3 Through the rest of this paper, the functions minimum(a, b, c, · · ·) and
maximum(a, b, c, · · ·) return the minimum and maximum value between
a, b, c, · · · ∈ Z, respectively.

Proposition 2.1. The following problem is in PTIME: Given an ST-
model M, a path δ of M , a stage j on δ and a formula ϕ ∈ LADL,
determine if M, δ, j |= ϕ or not.

Proof. To determinate if M, δ, j |= ϕ, we proceed in the following
way: For each subformula φ of ϕ, first we evaluate the truth values
of all the proper subformulas of φ; with these truth values, the truth
value of φ can be then easily obtained byLADL semantics, including
for the next operator. As we visit each subformula at most once, and
the number of subformulas in the ϕ is not greater than the size of ϕ,
these procedure can be implemented in a polynomial-time determin-
istic Turing machine.

We conclude the section by defining rational players in a ADL
model: bidders that play by considering some private value.

Definition 2.6. Given an ST-model M , an agent r ∈ N is called a
rational player iff he has a private value ϑr ∈ N and for any state
w ∈ W , agent r always tries maximize the payoff function Πr =
ϑr − p(w, r). Let Nϑ = {r : r ∈ N & r is a rational player} be the
set of rational players in N .

3 REPRESENTING SINGLE-UNIT AUCTIONS
In this section, we consider the basic type of single-unit auctions.
The two most popular variant are the English (ascending) and Dutch
(descending) ones. There are both open cry and can be viewed as a
sequence of bidding steps. A sealed-bid auction allows only one bid
and all bidding values are private while in open cry auctions bidding
values are public and multiple sequential bids may be considered
[10].

ADL is able to represent several variants of single-unit auctions
and hereafter we detail the English Auction (or Ascending-bid Auc-
tion). In the second part of the section, we show how we take advan-
tage of LADL to express general properties on (English) Auction.

3.1 English Auction
To represent an English Auction with k bidders, we first describe the
auction signature, written Seng , as follows:

• Neng = {r1, r2, · · ·, rk};
• Aeng =

⋃
r∈Neng

Areng , where Areng = {acceptr, decliner},
where acceptr and decliner represents that r accepts and de-
clines the bid offered by the auctioneer, respectively;

• Φeng = {first , isBidding(r), currWinner(r) : r ∈ Neng},
where first says whether it is the first turn, isBidding(r) spec-
ifies if player r is still bidding or if r gave up, and curr-
Winner(r) says whether r is the winner candidate if every bidder
gives up in the next round;

• Xeng = {Bid}, where Bid represents the current bid value pro-
posed by the auctioneer.

Each instance of an English Auction is specific and is defined with
respect to three constant values: k, inc ∈ N \ {0} and startingBid ∈
N, respectively representing the size of Neng , the increment in each
bidding turn and the starting bid value. The rules of an English Auc-
tion can be formulated by ADL-formulas as shown Figure 1.

In the initial state, no one is bidding and the starting bid value is
defined (Rule 1). In each round, the players can accept to raise the
bid or decline and thus give up from the auction (Rules 6 and 7).
The propositions and variables are updated to the next turn, where
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1. initial↔ first ∧Bid(startingBid)∧∧
r∈Neng

¬isBidding(r) ∧ ¬currWinner(r)

2. terminal↔ ¬first ∧
∧
r∈Neng

¬isBidding(r)∨∨
r∈Neng

wins(r)

3. wins(r)↔ (isBidding(r) ∨ currWinner(r))∧∧
i 6=r∈Neng

¬isBidding(i)

4. payment(r, x) ∧ allocation(r, 1)↔ wins(r) ∧Bid(x)
5. payment(r, 0) ∧ allocation(r, 0)↔ ¬wins(r)
6. legal(acceptr)↔ initial ∨ isBidding(r)
7. legal(decliner)↔ >
8. ©Bid(add(x, inc))↔ Bid(x)∧

∨
r∈Neng

does(acceptr)

9. ©Bid(x)↔ Bid(x) ∧ (terminal∨∧
r∈Neng

does(decliner) ∨
∨
r∈Neng

wins(r))

10. ©isBidding(r)↔ ¬does(decliner) ∨ (isBidding(r)∧
terminal)

11. ©currWinner(r)↔ isBidding(r)∧∧
y 6=r∈Neng

¬isBidding(y) ∨ r ≺ y
12. ©¬first ↔ >

Figure 1. English Auction represented by Σeng

the bid is raised if at least one bidder accepts it (Rules 8 to 12). If
there is only one or none active bidder, the auction ends (Rule 2).
The winner is the last bidder to accept or one of the bidders that had
accepted before if everyone declines in the current bidding turn (Rule
3). The losers do not pay, while the winner pays the highest value that
he accepted (Rule 4 and 5). Let Σeng be the set of rules 1-12.

Let Meng be the set of ST-models Meng defined for any k,
startingBid and inc. Each Meng ∈Meng is defined as follows:

• Weng = {〈currBid, init, winner, isBr1 , isBr2 , · · ·, isBrk〉 :
currBid ∈ N & isBr, init ∈ {true, false} & r ∈ Neng
& winner ∈ Neng ∪ {none}} is the set of states, where
currBid, init and isBr represent the value of Bid, first, isBr ,
resp., for r ∈ Neng , and winner assigns a winner candidate;

• w̄eng = 〈startingBid, true, none, false, false, · · ·, false〉;
• Teng = {〈currBid, false, winner, isBr1 , isBr2 , · · ·, isBrk :
currBid ∈ N & isBr = true & for every i 6= r, isBi =
false〉} ∪ {〈currBid, false, winner, false, false, · · ·, false〉 :
currBid ∈ N}, where r, i ∈ Neng;

• Leng = {(〈currBid, init, winner, isBr1 , isBr2 , · · ·, isBrk〉,
decliner)} ∪ {(〈currBid, init, winner, isBr1 , isBr2 , · · ·,
isBrk〉, accept

r) : isBr = isBidding(r) or init = true}, for
all 〈currBid, init, winner, isBr1 , isBr2 , · · ·, isBrk〉 ∈Weng;

• Ueng is defined as follows: for all w = 〈currBid, init, winner,
isBr1 , isBr2 , · · ·, isBrk〉 ∈ Weng and all (ar1 , · · ·, ark) ∈∏
r∈Neng

Areng:

– If w 6∈ Teng and for every r ∈ Neng , ar ∈ Leng(w),
let Ueng(w, (ar1 , · · ·, ark)) = 〈currBid′, false, winner′,
isB′r1 , isB

′
r2 , · · ·, isB

′
rk〉, such that currBid′ = currBid +

inc iff acceptr , for some r ∈ Neng and currBid′ = currBid,
otherwise. For each r ∈ Neng , isB′r = false iff decliner .
Otherwise, isB′r = true. Finally, winner′ = r iff isBr&
¬isBy or r ≺ y ∈≺Eng , for all y 6= r ∈ Neng . Otherwise,
winner′ = none.

– Otherwise, Ueng(w, (ar1 , · · ·, ark)) = w.

• geng(r) = {〈currBid, false, winner, isBr1 , isBr2 , ···, isBrk :
currBid ∈ N & isBr & for every i 6= r,¬isBi〉}∪{〈currBid,
false, r, false, false, · · ·, false : currBid ∈ N〉};

• alloceng(w, r) = 1 and peng(w, r) = value, where value =
currBid iff w ∈ geng(r) and currBid 6= 0. Otherwise,
alloceng(w, r) = 0 and value = 0;

• ≺Neng is defined as: r′ ≺ r′′ ∈≺Neng iff (r′, r′′) is in the lexi-
cographic order of Neng .

For each state w = 〈currBid, init, winner, isBr1 , isBr2 , · ·
·, isBrk〉 ∈ Weng , let πΦ,eng(w) = {isBidding(r) : isBr & r ∈
Neng} ∪ {first : init} ∪ {currWinner(r) : winner = r}; and
πZ,eng(w,Bid) = currBid.

Hereafter, we assume an instance of Meng ∈Meng and Σeng for
the constant values k, inc ∈ N \ {0} and startingBid ∈ N.

Proposition 3.1. Meng is an ST-model and it is a model of Σeng .

Proof. (Sketch) It is routine to check that Meng is actually an ST-
model. Given a path δ, any stage j of δ in Meng , we need to show
that Meng, δ, j |= ϕ, for each ϕ ∈ Σeng . Let us verify Rule 1. As-
sume Meng, δ, j |= initial, then δ[j] = w̄eng . By the definition of
πΦ,eng and πZ,eng , we have first ∈ πΦ,eng(w̄eng), πZ,eng(w̄eng) =
startingBid and isBidding(r), currWinner(r) 6∈ πΦ,eng(w̄eng),
for all r ∈ Neng . Thus, Meng, δ, j |= first ∧ Bid(startingBid) ∧∧
r∈Neng

¬isBidding(r)∧¬currWinner(r). Conversely, assume
Meng, δ, j |= first ∧Bid(startingBid)∧

∧
r∈Neng

¬isBidding(r)

∧¬currWinner(r), then by the definition of Ueng , we have δ[j] =
〈startingBid, true, none, false, false, · · ·, false〉, so δ[j] = w̄eng
and Meng, δ, j |= initial.

The remaining rules are verified in a similar way.

Example 3.1 describes an English Auction with to two rational
agents, i.e. players that bid as long as the current value of the auction
has not reached their private values.

Example 3.1. Let Meng ∈ Meng , with startingBid = 0, in-
crease = 1 and Neng = {r1, r2}, i.e. k = 2. Thereby, we have
Aeng = {acceptr1 , decliner1 , acceptr2 , decliner2}, Φeng =
{isBidding(r1), isBidding(r2)} and X ′ = {Bid}.

Figure 2 illustrates a path in Meng where we assume that r1 and
r2 are rational players, i.e. Neng = Nϑ

eng , and r1 and r2 private
values are defined as ϑr1 = 3 and ϑr2 = 2. On the exhibited path
we assume that both agents bid wrt. to their private values.

We now characterize the behavior of the protocol. Prop. 3.2 shows
that: (i) if an agent is a winner, then no one else wins; (ii) if an agent
pays more than zero, then all the remaining agents will pay zero, and
(iii) if an agent pays x, he does not have pay any other amount.

Proposition 3.2. Given Meng ∈Meng , for all r ∈ Neng , x ∈ N,

1. Meng |= wins(r)→
∧
r′ 6=r∈Neng

¬wins(r′);
2. Meng |= payment(r, x) ∧ x > 0→

∧
r′ 6=r∈Neng

payment(r′, 0);
3. Meng |= payment(r, x)→

∧
x′ 6=x∈N ¬payment(r, x

′).

Proof. (1) Assume Meng, δ, j |= wins(r) iff δ[j] ∈ geng(r) iff
(isBidding(r) ∨ currWinner(r)) and for all r′ 6= r ∈ Neng ,
¬isBidding(r′). We have that Meng, δ, j |= currWinner(r) iff
Meng, δ, j − 1 |= isBidding(r)∧ (r ≺ r′ ∨¬isBidding(r′)), for
every r′ 6= r ∈ Neng . Thus, Meng, δ, j |= ¬currWinner(r′). For
all r′ 6= r ∈ Neng , we have ¬isBidding(r′) ∧ ¬currWinner(r′)
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Figure 2. A Path in Meng , where r1 and r2 are rational players

iff δ[j] 6∈ geng(r
′). Thereby, Meng, δ, j |= ¬wins(r′) and

Meng, δ, j |= wins(r)→
∧
r′ 6=r∈Neng

¬wins(r′).
(2) Assume Meng, δ, j |= payment(r, x) ∧ x > 0, then x =

peng(δ[j], r). Since x 6= 0, δ[j] ∈ geng(r) and Meng, δ, j |=
wins(r). By Statement (1), for all r′ 6= r ∈ Neng , we have
Meng, δ, j |= ¬wins(r′) iff δ[j] 6∈ geng(r′), then peng(δ[j], r′) =
0. Thus, Meng, δ, j |=

∧
r′ 6=r∈Neng

payment(r′, 0).
(3) Assume Meng, δ, j |= payment(r, x) iff x = peng(δ[j], r).

Thereby, for any x′ 6= x ∈ N, x′ 6= peng(δ[j], r). Thus,
Meng, δ, j

∧
x′ 6=x∈N ¬payment(r, x

′).

Let us now characterize the impact of considering an English Auc-
tion with rational players. The following proposition describes their
bidding strategy which was given as an intuition in Example 3.1:

Theorem 3.1. Given the ST-model for the English Auction Meng ,
for any r ∈ Nϑ

neg with the private value ϑr ,

1. Meng |= ¬terminal∧add(Bid, inc) > ϑr → does(decliner);
2. Meng |= ¬terminal ∧ add(Bid, inc) < ϑr → does(acceptr).

Proof. (Sketch) (1) Given a path δ inMeng and a stage j in δ, assume
that Meng, δ, j |= ¬terminal ∧ add(Bid(x), inc) > ϑr . Let x =
πZ,eng(δ[j], Bid)+ inc. Note that inc, πZ(δ[j],Bid),eng > 0 (by Ueng
and w̄eng). If we have δ[j + 1] 6∈ Teng , we have that peng(δ[j +
1], r′) = 0, for every r′ ∈ Neng . Thereby, let us restrict our analysis
to the case where δ[j + 1] ∈ Teng , i.e. Meng, δ, j |= ©terminal.
Let us assume that θr(δ, j) = does(acceptr), then πZ,eng(δ[j +
1], Bid) = x, (note that x > ϑr). Since δ[j + 1] ∈ Teng , it must
be the case where θr′(δ, j) = does(decliner

′
), for every r′ 6= r ∈

Neng , and δ[j + 1] ∈ geng(r). Thereby, peng(δ[j + 1], r) = x and

Πr = ϑr − x < 0. Now, assume that θr(δ, j) = does(decliner). If
δ[j + 1] 6∈ geng(r), then Πr = 0. Otherwise, by geng definition, it
must be the case where θr′(δ, j) = does(decliner

′
), for every r′ ∈

Neng and πZ,eng(δ[j + 1], Bid) = πZ,eng(δ[j], Bid) = x − inc,
i.e. bid value does not increase. Then, Πr = ϑr − (x − inc) >
Πr = ϑr−x. Therefore, to maximize Πr , agent r would take action
decliner , i.e. Meng, δ, j |= does(decliner).

(2) The proof is performed in a similar way.

Note that whenever ϑr = πZ,eng(δ[j], Bid) + inc, both actions
decliner and acceptr lead to the same payoff Πr = 0. Thus, the
rational agent r could take any of the actions. Thanks to Theorem
3.1, when all players are rational, it is possible to determinate the
winner and the payment by observing their private values.

Proposition 3.3. If Neng = Nϑ
eng and wins(r), for r ∈ Neng with

the private value ϑr , then:

1. ϑr = maximum(ϑr′ : ϑr′ is the private value of r′ ∈ Nϑ
eng);

2.
∨
x∈I payment(r, x), where I = {ϑ, · · ·, add(ϑ, inc)} and ϑ =

maximum(ϑr′ : ϑr′ is the private value of r′ ∈ Nϑ
eng & ϑr′ 6=

ϑr).

Proof. (Sketch) Given a path δ in Meng and a stage j in δ, such that
for all 0 ≤ i < j, δ[i] 6∈ Teng . Let us first verify part (1). Assume
thatNeng = Nϑ

eng andwins(r), for some r ∈ Neng with the private
value ϑr . Then, δ[j] ∈ geng(r) and isBidding(r′) 6∈ πΦ,eng(δ[j]),
for all r′ 6= r ∈ Neng and either case (i) isBidding(r) ∈
πΦ,eng(δ[j]) or case (ii) winner = r. In case (i), we have that
θr(δ, j−1) 6= decliner and πZ,eng(δ[j−1], Bid) + inc > ϑr does
not hold, i.e. πZ,eng(δ[j − 1], Bid) + inc ≤ ϑr (by Theorem 3.1).
Since isBidding(r′) 6∈ πΦ,eng(δ[j]), for all r′ 6= r ∈ Neng , we
have θr′(δ, j−1) 6= acceptr

′
. Then, we have that πZ,eng(δ[j−1])+

inc < ϑr′ does not hold, i.e. πZ,eng(δ[j− 1]) + inc ≥ ϑr′ . Thereby,
we have ϑr′ ≤ πZ,eng(δ[j − 1]) + inc ≤ ϑr , for all r′ 6= r ∈ Neng .
Thus, ϑr = maximum(ϑr′ : ϑr′ is the private value of r′ ∈ Nϑ

eng)
and payment(r, x), for some ϑ ≤ x ≤ inc + ϑ, where ϑ =
maximum(ϑr′ : ϑr′ is the private value of r′ ∈ Nϑ

eng & ϑr′ 6=
ϑr). In case (ii), we have that θy(δ, j − 1) 6= accepty , for all
y ∈ Neng (what show us that πZ,eng(δ[j − 1], Bid) + inc ≥ ϑy ,
by Theorem 3.1) and currWinner(r) ∈ πΦ,eng(δ[j − 1]). Thus,
θr(δ, j − 2) 6= decliner and πZ,eng(δ[j − 2], Bid) + inc ≤ ϑr . We
also have θr′(δ, j−1) 6= acceptr

′
and πZ,eng(δ[j−1])+ inc ≥ ϑr′ .

Thereby, we have ϑr′ ≤ πZ,eng(δ[j − 1]) + inc ≤ ϑr , for all
r′ 6= r ∈ Neng . Thus, ϑr = maximum(ϑr′ : ϑr′ is the pri-
vate value of r′ ∈ Nϑ

eng) and payment(r, x), for some ϑ ≤ x ≤
inc + ϑ, where ϑ = maximum(ϑr′ : ϑr′ is the private value of
r′ ∈ Nϑ

eng & ϑr′ 6= ϑr).
Statement (2) follows from the previous proof.

Let us focus on a specific class of players: agents that always bid,
and evaluate the impact of having such players in an English Auction.

Definition 3.1. Given an ST-model Meng ∈ Meng , an agent r ∈
Neng is called always bidder iff θr(δ, j) = acceptr , for any stage j
and path δ. Let Nab

eng = {r : r ∈ Neng & r is an always bidder} be
the subset of agents that always bid in Neng .

Hereafter, we show that any path in a Meng model is complete
whenever there is at most one always bidder in the agent set. In other
words, if all the bidders, except possibly one, stop bidding at some
threshold, then any path is complete. If there are at least two distin-
guish always bidders, any path in Meng is not complete.
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Theorem 3.2. Given any ST-model Meng ∈Meng ,

1. If |Nab
eng| ≤ 1, then any path δ in Meng is a complete path;

2. If r, r′ ∈ Nab
eng , where r 6= r′, then any δ inMeng is not complete.

Proof. (1) Assume |Nab
eng| = 0, i.e. all the agents in Neng are not

always bidders, then for each r ∈ Neng there is some stage jr in
δ, where θr(δ, jr) 6= acceptr , i.e. θr(δ, jr) = decliner . By Ueng
and Leng , for any j > jr , acceptr 6∈ Leng(δ[j]) and decliner ∈
Leng(δ[j]), i.e. the only legal action for r after doing decline is
decliner . Thereby, at stage k = maximum(jr1 , · · ·, jrk), for ev-
ery r ∈ Neng , we have θr(δ, k) = decliner . Thus, δ[k] ∈ Teng
and δ is a complete path. Now assume |Nab

eng| = 1. Then, there is
one agent r′ ∈ Neng that is an always bidder. As we saw, there is
a stage k where θr(δ, k) = decliner for all r 6= r′ ∈ Neng . Since
θr′(δ, k) = acceptr , we have Meng, δ, k + 1 |= isBidding(r′) ∧∧
r 6=r′∈Neng

¬isBidding(r) andMeng, δ, k+1 |= wins(r′). Thus,
δ[k + 1] ∈ Teng and δ is complete.

(2) Assume that r, r′ ∈ Nab
eng and r 6= r′. Let δ be a path

in Meng . Then, for any stage j ≥ 0 in δ, we have θr(δ, j) =

acceptr and θr′(δ, j) = acceptr
′
. By Ueng definition we have that

isBidding(r), isBidding(r′) ∈ πΦ,eng(δ[j+1]). Thus, δ[j+1] 6∈
Teng and δ is not a complete path.

For any Meng ∈ Meng , we show that an always bidder is not a
rational player and vice versa.

Proposition 3.4. For any r ∈ Neng , r ∈ Nab
eng iff r 6∈ Nϑ

eng .

Proof. (Sketch) Assume that r ∈ Nab
eng for some r ∈ Neng . Let δ

be a path in Meng and j a stage in δ. By Definition 3.1, we have
θr(δ, j) = acceptr . For the sake of contradiction, let us assume that
r ∈ Nϑ

eng . Thereby, r has a private value ϑr ∈ N. Assume that
πZ,eng(δ[j], Bid) + inc > ϑr , then, by Theorem 3.1, we have that
θr(δ, j) = decliner . Since we have a contradiction, it must be that
r 6∈ Nϑ

eng . The conversely is done in a similar way.

The following proposition shows that if there is one always bid-
der and all other players are rational, then this always bidder agent
wins the auction and its payment is determinate by the highest private
value of the rational players.

Proposition 3.5. If r ∈ Nab
eng and for all r′ 6= r ∈ Neng , r′ ∈

Nϑ
eng , then for any e > 0, if δ[e] ∈ Teng then δ[e] ∈ geng(r) and

ϑ ≤ peng(δ[e], r) ≤ inc + ϑ, where ϑ = maximum({ϑr′ : ϑr′ is
the private value of r′ ∈ Nϑ

eng}).

Proof. (Sketch) The proof is done in a similar way then Proposition
3.3. The proof idea is that for any r′ 6= r ∈ Neng , since r′ is a ratio-
nal player, he will stop bidding ifBid is larger or equal to his private
value (see Theorem 3.1). Thereby, r will win the auction when the
agent with the highest private value declines.

We conclude the section by briefly discussing variants of single-
good and single-side Auction. A Descending-bid Auction (or Dutch
Auction), is similar to Σeng . The key difference is that in the Dutch
Auction the bidding value should be decreased at each round until
at least one agent accepts the bid. As for English Auction, the tie-
breaking is solved with the help of the total order ≺N . In a similar
way, a sealed-bid auction can also be represented in ADL: once bids
have been submitted, the auctioneer stops the auction and defines the
winner and the payment (rules are close to those in Σeng).

4 REPRESENTING MULTI-UNIT AUCTIONS

In this section, we consider multi-unit auctions. The most popular
are the multi-unit sealed-bid auctions. There exist several variants
depending on the payment rules: first price, second price or based on
the Vickrey-Clarke-Groves mechanism [11]. Hereafter, we represent
a Multi-Unit Vickrey Auction, where the payment for the winners is
the highest losing bid. The payment is uniform: all the winners pay
the same price.

4.1 Multi-Unit Vickrey Auction

To describe a Multi-Unit Vickrey Auction with k bidders, we first
define the auction signature, written Svic, as follows:

• Nvic = {r1, r2, · · ·, rk};
• Avic =

⋃
r∈Nvic

Arvic where Arvic = {bidr(x, y), noopr : x,
y ∈ N}; where bidr(x, y), means that r bids x for each unit and
intend to get at most y units and noopr says that r does nothing;

• Φvic = {bidding, outbid(r, r′) : r, r′ ∈ Nvic}, where out-
bid(r, r′) represents whether r outbids r′, i.e. the bid of r is higher
than the bid of r′. When r and r′ bid the same value, outbid(r, r′)
is true if r precedes r′ in the lexicographic order;

• Xvic = {offerr, amtr,firstLoser : r ∈ Nvic}, where offerr

represents the bid value for r, amtr represents how many goods r
wants to get (at most), firstLoser represents the highest bid value
of between the agents that do not win.

Let total, k ∈ N \ {0} and reservePrice ∈ N be constants de-
scribing the quantity of units, the quantity of bidders in Nvic and the
reserve price for each unit, respec. The rules of a Multi-Unit Vickrey
Auction are formulated by ADL-formulas as shown in Figure 3.

1. initial↔ firstLoser(reservePrice) ∧ bidding∧∧
r,r′∈Nvic

offerr(0) ∧ amtr(0)

∧¬outbid(r, r′)
2. allocation(r, yr)↔ (yr > 0 ∧ offerr ≥ reservePrice ∧

(amtr(yr) ∧ add({yr′ : r′ ∈ Nvic & outbid(r′, r)
& allocation(r′, yr′)}, yr) ≤ total ∨ amtr(k)∧
yr < k ∧ add({yr′ : r′ ∈ Nvic & outbid(r′, r) &
allocation(r′, yr′)}, yr) = total)) ∨ yr = 0

3. firstLoser(max(x, reservePrice))↔ offerr(x))
∧¬wins(r) ∧

∧
r′∈Nvic

¬wins(r′)∧
outbid(r, r′) ∨ ¬outbid(r, r′)

4. wins(r)↔ allocation(r, x) ∧ x > 0
5. payment(r, times(firstLoser , y)) ∧ allocation(r, y)
6. terminal↔ ¬bidding
7. legal(bidr(x, y))↔ initial
8. legal(noopr)↔ terminal
9. ©(offerr(x) ∧ amtr(y))↔ terminal∧

offerr(x) ∧ amtr(y)∨ does(bidr(x, y))
10. ©¬bidding(r)↔ >
11. ©outbid(r, r′)↔ terminal ∧ outbid(r, r′)∨

does(bidr(x, y)) ∧ does(bidr
′
(x′, y′))

∧(x > x′ ∨ x = x′ ∧ r ≺ r′)

Figure 3. Multi-Unit Vickrey Auction represented by Σvic
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In the initial state, no one is bidding and the reserve price value
is set (Rule 1). Each player can bid and say (at most) how many
goods he wants (Rule 7). The propositions and variables are updated
to the next state according to the bids (Rules 9 to 11). A player is
assigned to at most the desired quantity of goods if he bids at least
the reserve price and if there are goods left after the allocation to
the players who outbid him. Otherwise, the player is assigned to zero
goods (Rule 2). The payment for each player is determined according
to the allocation rule and the highest losing price (Rule 3 and 5). A
player wins if he gets at least one good and he can only do action
noop at terminal states (Rules 4 and 8). We are in a terminal state if
it is not the bidding turn (Rule 6). Let Σvic be the set of rules 1-11.

Let Mvic be the set of ST-models Mvic defined with respect to
constant values total, k and minimumBid. Each Mvic ∈ Mvic is
defined as follows:

• Wvic = {〈isBid, br1 , · · ·, brk , qtdr1 , · · ·, qtdrk , outr1,r1 , · ·
·, outrk,rk〉 : br, qtdr ∈ N & isBid, outr,r′ ∈ {true, false}}
is the set of states, where isBid, br , qtdr and outr,r′ represents
bidding, offerr , amtr and outbid(r, r′), resp., for r, r′ ∈ Nvic;

• w̄vic = 〈true, 0, · · ·, 0, 0, · · ·, 0, false, · · ·, false〉;
• Tvic = {〈false, br1 , · · ·, brk , qtdr1 , · · ·, qtdrk , outr1,r1 , · · ·,
outrk,rk〉 : br, qtdr ∈ N & outr,r′ ∈ {true, false}}, where
r, r′ ∈ Nvic;

• Lvic = {(w, noopr) : r ∈ Nvic & w ∈ Tvic} ∪ {(w̄vic,
bidr(x, y)) : x, y ∈ N & r ∈ Nvic};

• Uvic is defined as: for all w = 〈isBid, br1 , · · ·, brk , qtdr1 , · · ·,
qtdrk , outr1,r1 , · · ·, outrk,rk〉 ∈Wvic and all d ∈

∏
r∈Nvic

Arvic:

– If w 6∈ Tvic and d = (bidr1(xr1 , yr1), · · ·, bidrk(xrk , yrk)),
where xr, yr ∈ N and r ∈ Nvic, then Uvic(w, d) = 〈false,
b′r1 , · · ·, b

′
rk , qtd

′
r1 , · · ·, qtd

′
rk , out

′
r1,r1 , · · ·, out

′
rk,rk〉, such that

for each r, i ∈ Nvic, each component is updated as follows:
b′r = xr , qtd′ = yr and out′r,i = true iff either (i) xr > xi or
(ii) xr = xi and r ≺ i ∈≺Nvic .

– Otherwise, let Uvic(w, d) = w.

• gvic(r) = {w : w ∈Wvic & allocvic(w, r) > 0};
• pvic(w, r) = πZ,vic(w, firstLoser)× πZ,vic(w, amt

r);
• allocvic(w, r) = k, let qtdalloc =

∑
r′ 6=r∈Nvic & outr′,r

qtdr
′
,

then k is defined as: (i) k = qtdr if total ≥ qtdr + qtdalloc and
br ≥ reservePrice; (ii) k = q, where q = total−qtdalloc if q ≥ 0
and br ≥ reservePrice; (iii) otherwise, k = 0.

• ≺Nvic is defined as: r′ ≺ r′′ ∈≺Nvic iff (r′, r′′) is in the lexico-
graphic order of Nvic.

Finally, for each statew = 〈currBid, snd, isBid, isHr1 , isHr2 , ··
·, isHrk〉 ∈ Wvic and i ∈ Nvic, let πΦ,vic(w) = {outbid(r, r′) :
outr,r′ & r, r′ ∈ Nvic} ∪ {bidding : isBid}; πZ,vic(w, offer i) =
bi and πZ,vic(w, amt

i) = qtdi; πZ,vic(w, firstLoser) = k, where
k = maximum(x, reservePrice), if x = πZ,vic(w, offerr), for
some r ∈ Nvic such that w 6∈ gvic(r) and for all r′ 6= r ∈ Nvic,
either (i) w 6∈ gvic(r′) and outr,r′ or (ii)¬outr,r′ . Otherwise, k =
reservePrice.

Hereafter, we fix an instance of Mvic ∈ Mvic and Σvic for the
constants total, k ∈ N \ {0} and reservePrice ∈ N.

Proposition 4.1. Mvic is an ST-model and it is a model of Σvic.

Proof. (Sketch) The proof is performed as for Prop. 3.1.

Example 4.1. Let Mvic ∈ Mvic, with reservePrice = 1, total =
10 and Nvic = {r1, r2, r3}. Figure 4 illustrates a path δ in Mvic,

where θ(δ, 0) = (bidr1(2, 2), bidr2(6, 7), bidr3(5, 4)). In the ter-
minal state, since offerr2 > offerr3 > offerr1 , the allocation
rule assigns 7 units to r2 (i.e. exactly amtr2 ), 3 units to r3 (i.e.
total− amtr2 , which is smaller then amtr3 ) and 0 units to r1.
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Figure 4. A Path in Mvic

The following properties show that (i) the initial state is always
succeed by a terminal state, (ii) any path in aMvic model is complete,
and (iii) if a player bids, he can no longer bid.

Proposition 4.2. Given any model Mvic ∈Mvic, x, y, x′, y′ ∈ N,

1. Mvic |= initial→©terminal;
2. Any path δ in Mvic is a complete path;
3. Mvic |= does(bidr(x, y))→©¬legal(bidr(x′, y′)).

Proof. (1) By Rule 11 of Σvic, we have that©initial→ ¬bidding,
then, by Rule 7,©initial→ terminal.

(2) From Statement (1), for any path δ in Mvic, since δ[0] = w̄vic
is the initial state, we have δ[1] ∈ Tvic. Thus, δ is a complete path.

(3) Assume Mvic, δ, j |= does(bidr(x, y)), then by Rule 11 of
Σvic, Mvic, δ, j + 1 |= terminal. Thus, bidr(x′, y′) 6∈ Lvic(δ[j +
1]) and Mvic, δ, j |=©¬legal(bidr(x′, y′)).

The following property shows the behavior of a rational player in
a bidding round of a Mvic with total = 1, i.e. Mvic is similar to a
Single-Unit Vickrey Auction.

Theorem 4.1. Given the ST-model for Mvic, if total = 1, then
for any r ∈ Nϑ

vic with the private value ϑr and y > 0, Mvic |=
¬terminal→ does(bidr(ϑr, y))).

Proof. Given a path δ in Mvic, we have that Mvic, δ, 0 |= initial
and Mvic, δ, j |= terminal, for any j > 0 (by path definition
and Proposition 4.2). Assuming Mvic, δ, j |= ¬terminal, it must
be that j = 0. Thereby, Mvic, δ, j |= legal(bidr(x, y)), for any
x, y ∈ N and Mvic, δ, j |= ¬legal(noopr). Thus, Mvic, δ, j |=
does(bidr(x, y)). Since total = 1, the allocation rule will assign
at most 1 unit. Thereby, if outbids(r, r′), for all r′ 6=∈ Nvic, then
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payment(r,firstLoser) and payment(r, 0) otherwise. If x = ϑr ,
r would have Πr = ϑ − firstLoser whenever ϑ > firstLoser and
Πr = 0 if ϑ ≤ firstLoser . Suppose that x < ϑ. If ϑ > x ≥
firstLoser , then Πr = ϑ − firstLoser . If firstLoser > ϑ > x,
then Πr = 0. However, if ϑ > firstLoser > x, then Πr = 0,
whereas if x = ϑ, he would have Πr = ϑ − firstLoser > 0. It
is easy to see that having x > ϑ, would not increase Πr . Thereby,
Mvic, δ, j |= does(bidr(ϑ, y)), for y < 0.

The representation of the First-price Sealed-bid Multi-Unit Auc-
tion (or Blind Auction) with ADL-formulas can be defined in a simi-
lar way to Σvic. In this case, the payment rule should be defined with
the first winning bid. Actually, many variants of payment rules, such
as nonuniform payment, may be considered with ADL.

ADL is also suited to represent multi-unit double-side auctions.
For instance, the Multi-Unit Double-Side Vickrey Auction can be
defined in a similar way to Σvic. In this case, the sellers would have
distinguished actions from the bidders. A seller’s action would spec-
ify his available quantity of units and his minimum selling price. Ad-
ditionally, the allocation rule would also consider a seller ranking,
similar to the outbid order among the bidders in Σvic.

5 CONCLUSION

We aim to design a General Auction Player (GAP) that can interpret
and reason about the rules governing an auction-based market. To al-
low an agent to switch between different kinds of markets, the first
step is to develop a general Auction Description Language (ADL), a
logic-based language for representing the rules of an auction market,
which will then allow a GAP to reason strategically in different en-
vironments. In this paper, we have seen that ADL is general enough
for representing different kinds of auction. We focused on single-side
auctions and we have seen that auctions may be represented com-
pactly. We have also seen that the clear semantics expressed in terms
of state transition models enables us to express properties about the
protocol (terminal states, payment).

For future work, we have two main tracks to explore. First, from
the auctioneer point of view, our goal is to explore two main variants
of auctions: double-side auction [14] and combinatorial auction [18].
Clearly, ADL is well suited for both of them but requires some ex-
tension. Multiple sorts of goods are not yet possible for instance. We
aim to embed into ADL a bidding language focusing on bids (goods,
quantity, bundles, and preferences) [17].

Second, we want to investigate how ADL-based players may be
implemented so that they can reason about the properties of an auc-
tion such as the strategy-proof aspect. The key difference, when the
player perspective is considered, is the epistemic and strategic as-
pects: players have to reason about other players’ behavior. The epis-
temic component will allow an agent to bid according to its beliefs
about other agents’ private values. In order to reduce the model-
checking complexity in relation to the epistemic extensions of GDL
(GDL-III [21] and Epistemic GDL [8]), we first aim to explore a
conservative extension in GDL, where the belief and knowledge op-
erators are restricted to numerical variables representing private val-
ues (e.g. “Ann believes that Bob’s private value for each good is
10”). In this approach, logical connectives such as disjunction will
be avoided.
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iano Lorini and Francesco Belardinelli for their insightful comments.

REFERENCES
[1] Mark Armstrong, ‘Optimal Multi-Object Auctions’, Review of Eco-

nomic Studies, (2000).
[2] Chitta Baral and Cenk Uyan, ‘Declarative specification and solution of

combinatorial auctions using logic programming’, in Lecture Notes in
Computer Science, (2001).

[3] Yann Chevaleyre, Paul E Dunne, Ulle Endriss, Jerome Lang, Michel
Lemaitre, Nicolas Maudet, Julian Padget, Steve Phelps, Juan a
Rodrguez-Aguilar, and Paulo Sousa, ‘Issues in Multiagent Resource
Allocation’, Informatica, 30(1), 3–31, (2006).

[4] Sven de Vries, James Schummer, and Rakesh V. Vohra, ‘On ascend-
ing Vickrey auctions for heterogeneous objects’, Journal of Economic
Theory, (2007).

[5] Rupert Freeman, Markus Brill, and Vincent Conitzer, ‘General
tiebreaking schemes for computational social choice’, in Proc. of the
International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS, (2015).

[6] Michael Genesereth and Michael Thielscher, General game playing,
Synthesis Lectures on Artificial Intelligence and Machine Learning,
Morgan & Claypool Publishers, 2014.

[7] Matthew O. Jackson and Jeroen M. Swinkels, ‘Existence of equilibrium
in single and double private value auctions’, Econometrica, 73(1), 93–
139, (2005).

[8] Guifei Jiang, Dongmo Zhang, Laurent Perrussel, and Heng Zhang,
‘Epistemic GDL: A logic for representing and reasoning about imper-
fect information games’, in IJCAI International Joint Conference on
Artificial Intelligence, (2016).

[9] Mireia Jofre-Bonet and Martin Pesendorfer, ‘Optimal sequential auc-
tions’, International Journal of Industrial Organization, (2014).

[10] Paul Klemperer, ‘Auction Theory: A Guide to the Literature’, Journal
of Economic Surveys, (1999).

[11] Vijay Krishna, Auction Theory, Academic Press, 2009.
[12] H. Geun Lee and R. Lee, ‘A hybrid approach of linear programming

and logic modeling for the market core of sealed bid auctions’, Annals
of Operations Research, 75, (1997).

[13] Kevin M. Lochner and Michael P. Wellman, ‘Rule-based specifi-
cation of auction mechanisms’, in Proc. of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’2004), (2004).

[14] R. Preston McAfee, ‘A dominant strategy double auction’, Journal of
Economic Theory, 56(2), 434–450, (April 1992).

[15] Munyque Mittelmann and Laurent Perrussel, ‘Game description logic
with integers: A GDL numerical extension’, in FoIKS 2020, eds., An-
dreas Herzig and Juha Kontinen, Cham, (2020). Springer International
Publishing.

[16] D. Nautz, ‘Optimal bidding in multi-unit auctions with many bidders’,
Economics Letters, 48(3-4), 301–306, (1995).

[17] Noam Nisan, ‘Bidding languages’, Combinatorial Auctions, 1–19,
(2004).
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