24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

The Higher-Order Prover Leo-II1

Alexander Steen! and Christoph Benzmiiller?

Abstract. Leo-III is an effective automated theorem prover for ex-
tensional type theory with Henkin semantics. It is based on an exten-
sional higher-order paramodulation calculus and supports reasoning
in monomorphic and rank-1 polymorphic first-order and higher-order
logics. Leo-III also automates various non-classical logics, including
almost every normal higher-order modal logic.

1 Introduction

Leo-III is an automated theorem prover (ATP) for extensional type
theory (also referred to as classical higher-order logic, HOL [2])
with Henkin semantics and choice. The system is implemented in
Scala, open-source and freely available under a BSD licenseE] It is
the successor of the LEO-II prover [3]], whose development signifi-
cantly influenced the build-up of the TPTP THF infrastructure [13]
for reasoning in full higher-order logic.

The logical formalisms supported by Leo-III include HOL as its
primary target language, but also first-order and propositional log-
ics. As input formats, Leo-III supports all common TPTP [12 |13]
dialects (CNF, FOF, TFF, THF) as well as the polymorphic variants
TF1 and THI [6, 9]. It is one of the few stand-alone ATP systems
for polymorphic higher-order reasoning to date. The prover returns
results according to the standardized SZS ontology and addition-
ally produces a TSTP-compatible proof certificate [12], if a proof
is found. Furthermore, Leo-III natively supports reasoning in almost
every normal higher-order (HO) modal logic, including — but not
limited to — logics K, D, T, S4 and S5 with constant, cumulative
or varying domain quantifiers and both global and local notions of
consequence [S)], and multi-modal combinations thereof.

Multiple evaluation studies underline the practical contribution of
the Leo-1II prover to the field: the first author’s thesis presents an ex-
tensive evaluation on different benchmarks sets, including monomor-
phic and polymorphic HOL problems as well as modal logic prob-
lems, which demonstrates its effectiveness in different application
areas [10, §6]. A large independent evaluation study of 19 different
first- and higher-order ATP systems, called GRUNGE [7], suggests
that Leo-III is the most effective reasoning system (number of suc-
cessfully solved problems) and also the most versatile to date (in
terms of supported logical formalisms). Additionally, Leo-III won
the LTB division of the 2019 edition of the CADE ATP System Com-
petition (CASC) that is of particular relevance for practical applica-
tions of ATP systemsﬂ

Full details on Leo-I1I, its underlying theory, architecture and im-
plementation are presented elsewhere [2} 10} [11]].

1 University of Luxembourg, Luxembourg, email: alexander.steen @uni.lu
2 Freie Universitit Berlin, Germany, email: c.benzmueller @fu-berlin.de

3 See the Leo-III project at GitHub: |github.com/leoprover/Leo-III,

4 See tptp.org/CASC/27|for details on the competition and its results.

iOsewionment ok Tk ;
:"Leo-l\l process N

1/0 Driver

I Calculus || Indexes | v
| Answer

= —>
Input
Problem :

Parser |

Interpreter

Figure 1. Schematic diagram of Leo-III’s architecture. The arrows indi-
cate directed information flow. The external reasoners are executed asyn-

chronously (non-blocking) as dedicated processes of the operating system.

2 Calculus and Implementation

Leo-III is a refutational reasoning system. The initial, possibly
empty, set of axioms and the negated conjecture are transformed into
an equisatisfiable set of formulas in clause normal form, which is
then iteratively saturated until the empty clause is found.

Leo-III extends the paramodulation calculus EP [[10] with practi-
cally motivated, partly heuristic inference rules. EP consist of gen-
erating inferences (such as paramodulation, equality factoring and
primitive substitution [1]]), inference rules for extensionality treat-
ment, and rules for clausification and unification. Unification con-
straints are encoded as negative equality literals in the result clause
and are solved eagerly by a Huet-style unification procedure. Fur-
ther calculus rules within Leo-III implement, among others, function
synthesis, equational simplificaton routines, and special treatment of
injective function symbols. A detailed description of EP and its ex-
tensions can be found in the first author’s PhD thesis [[10].

Theorem 1 (Soundness and Completeness [10]) The EP calculus
is sound and refutationally complete for HOL with Henkin semantics.

Fig.[T]displays the top-level architecture of Leo-IIL A control layer
selects heuristically which inferences rules are applied in which pa-
rameter setting during saturation, handles indexing data structures,
and bridges to the driver that connects to external reasoning sys-
tems. Leo-III collaborates with such external systems, in particu-
lar, with first-order ATPs such as E, iProver and Vampire as well
as SMT solvers, e.g. with CVC4. Cooperation is not restricted to
first-order systems, and further specialized systems such as higher-
order model finders may be utilized by Leo-I1I. Additionally, Leo-III
uses several heuristics to restrict the number of inferences, including
a higher-order term ordering and a depth-bounded unification pro-
cedure. While these restrictions sacrifice completeness in general,
evaluations nevertheless confirm practicality of this approach.

https://github.com/leoprover/Leo-III
http://tptp.org/CASC/27/

24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

thf (conj, conjecture,
T (? [H:($1i>$0)>S$1i]:
! [P:$i>$0, Q:$i>$0]:
(((H@P) = (HECOQ)
= (P =20Q)))).

Figure 2. Injective Cantor Theorem in TPTP THF syntax. Universal and
existential quantification are written as ! and ?, respectively, followed by
a list of bound variables and their types. In THF, conjunction, disjunction,
negation and implication are written as &, |, ~ and =>, respectively. Function
application is denoted with an explicit @ operator.

3 Application Examples

Logical and mathematical reasoning is one of the main applications
of HOL ATP systems, in particular, reasoning about sets, functions
and relations is natively supported by its underlying A-calculus with-
out the need of cumbersome and less effective set axiomatizations as
required in first-order logic. Figure 2] displays a formulation of Can-
tor’s theorem based on injective functions in the machine-readable
TPTP THF syntax standard for HOL ATP systems. The conjecture,
i.e. the non-existence of an injective function from some power set
in its underlying set, can be proven using Leo-III in approx. 1.5s on
a standard computer, and a verifiable proof certificate is generated.
The generated proof thereby employs a non-trivial diagonalization
argument, involving a generated left-inverse of the supposedly in-
jective function, which is automatically synthesized by Leo-III. This
problem was not solved by any other ATP system before.

The expressivity of higher-order logic has recently been utilized
for encoding various expressive non-classical logics within HOL.
Semantical embeddings of, among others, higher-order modal log-
ics, conditional logics, many-valued logics, deontic logics, free log-
ics and combinations thereof can be used to automate reasoning
within the respective logic using ATP systems for classical HOL.
A prominent result from the applications of automated reasoning in
non-classical logics, here in quantified modal logics, is the computer-
assisted detection of an inconsistency in Godel’s Ontological Argu-
ment [4] that was unknown for years. The semantical embedding ap-
proach as means for automation of quantified modal logics has been
integrated into the Leo-III prover, turning it into an effective ATP
system for many HO quantified normal (multi-)modal logics [8]]. Fig-
ure 3] displays an example modal logic statement that can be proved
by Leo-III in under 300 ms. Up to the authors’ knowledge, no other
automated reasoning system currently supports native HO modal
logic reasoning, in particular with flexible semantical parameters that
are specified by the user.

4 Summary

Leo-III is a state-of-the-art reasoning system for full higher-order
logic, offering many relevant features and capabilities. Due to its
wide range of natively supported classical and non-classical logics,
which include polymorphic higher-order logic and numerous first-
order and higher-order modal logics, the system has many topical
applications in computer science, Al, maths and philosophy.

Several evaluations on heterogeneous benchmark sets show that
Leo-III is one of the most effective HO ATP systems to date, and it
also plays a pivotal role in the ongoing extension of the TPTP library
and infrastructure to support modal logic reasoning. A long term goal
of the Leo-III prover is to provide automated reasoning for a wide
range of non-classical logics and their combinations.

thf (spec, logic, (S$modal := [
$Sconstants := $rigid,
Squantification := S$constant,
Sconsequence := $global,
Smodalities := S$modal_system_S5])).

thf (becker, conjecture,

! [P:$Si>$S0, F:$1i>$1, X:$81i]: (? [G:$1i>$i]:
(($dia @ (Sbox @ (P Q@ (F @ X))))
=> (Sbox @ (P @ (G @ X)))))).

Figure 3. A corollary of Becker’s postulate, given by the formula
VP, 6.VF,5,.VX,.3G,—,. (COP(F(X)) = OP(G(X))). The first
five lines specify the modal logic (a S5 logic with rigid constants, constant
domains and global consequence) under which the problem is to be analyzed.
The modal operators O and < are represented by $box and $dia, respec-
tively.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feedback. The
work was supported by the German National Research Foundation
(DFG) under grant BE 2501/11-1 (Leo-III) and the Volkswagen
Foundation (project CRAP).

REFERENCES

[1] Christoph Benzmiiller, ‘Higher-order automated theorem provers’, in
All about Proofs, Proof for All, eds., David Delahaye and Bruno
Woltzenlogel Paleo, Mathematical Logic and Foundations, 171-214,
College Publications, London, UK, (2015).

[2] Christoph Benzmiiller and Peter Andrews, ‘Church’s type theory’, in
The Stanford Encyclopedia of Philosophy, ed., Edward N. Zalta, Meta-
physics Research Lab, Stanford University, summer 2019 edn., (2019).

[3] Christoph Benzmiiller et al., “The higher-order prover LEO-II’, J. Au-
tom. Reasoning, 55(4), 389-404, (2015).

[4] Christoph Benzmiiller and Bruno Woltzenlogel Paleo, ‘Automating
Godel’s ontological proof of God’s existence with higher-order auto-
mated theorem provers’, in ECAI, volume 263 of Frontiers in Artificial
Intelligence and Applications, pp. 93-98. 10S Press, (2014).

[5] Patrick Blackburn, Johan van Benthem, and Frank Wolter, Handbook
of modal logic, volume 3, Elsevier, 2006.

[6] Jasmin C. Blanchette and A. Paskevich, ‘TFF1: the TPTP typed first-
order form with rank-1 polymorphism’, in CADE, ed., M. P. Bonacina,
volume 7898 of LNCS, pp. 414-420. Springer, (2013).

[7] Chad E. Brown et al., ‘GRUNGE: A grand unified ATP challenge’, in
CADE, ed., P. Fontaine, volume 11716 of LNCS, pp. 123-141. Springer,
(2019).

[8] Tobias Gleiiner, Alexander Steen, and Christoph Benzmiiller, ‘Theo-
rem provers for every normal modal logic’, in LPAR, eds., Thomas Eiter
and David Sands, volume 46 of EPiC Series in Computing, pp. 14-30.
EasyChair, (2017).

[9] Cezary Kaliszyk, Geoff Sutcliffe, and Florian Rabe, ‘TH1: the TPTP
typed higher-order form with rank-1 polymorphism’, in PAAR, eds.,
P. Fontaine, S. Schulz, and J. Urban, volume 1635 of CEUR Workshop
Proceedings, pp. 41-55. CEUR-WS.org, (2016).

[10] Alexander Steen, Extensional Paramodulation for Higher-Order Logic
and its Effective Implementation Leo-1II, volume 345 of DISKI,
Akademische Verlagsgesellschaft AKA GmbH, Berlin, 2018. Disserta-
tion, Freie Universitdt Berlin, Germany.

[11] Alexander Steen and Christoph Benzmiiller, ‘The higher-order prover
Leo-III’, in IJCAR, eds., Didier Galmiche, Stephan Schulz, and Roberto
Sebastiani, volume 10900 of LNCS, pp. 108—-116. Springer, (2018).

[12] Geoff Sutcliffe, “The TPTP problem library and associated infrastruc-
ture - from CNF to THO, TPTP v6.4.0°, J. Autom. Reasoning, 59(4),
483-502, (2017).

[13] Geoff Sutcliffe and Christoph Benzmiiller, ‘Automated reasoning in
higher-order logic using the TPTP THF infrastructure’, J. Formalized
Reasoning, 3(1), 1-27, (2010).

	Introduction
	Calculus and Implementation
	Application Examples
	Summary

