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Abstract. One of the key topics of computational social choice
is electoral control, which models certain ways of how an election
chair can seek to influence the outcome of elections via structural
changes such as adding, deleting, or partitioning either candidates or
voters. Faliszewski and Rothe [13] have surveyed the rich literature
on control, giving an overview of previous results on the complex-
ity of the associated problems for the most important voting rules.
Among those, only a few results were known for two quite prominent
voting rules: Borda Count and maximin voting (a.k.a. the Simpson–
Kramer rule). Neveling and Rothe [26, 25] recently settled the re-
maining open cases for Borda. In this paper, we solve all remaining
open cases for the complexity of control in maximin elections all of
which concern control by partition of either candidates or voters.

1 Introduction

Thirty years ago, in a series of seminal papers, Bartholdi et al.
gave birth to the field of computational social choice by introduc-
ing and studying problems associated with winner determination for
Dodgson and Kemeny elections [3], manipulation of elections [2, 1],
and electoral control [4] in terms of their computational complexity.
Later on, Hemaspaandra et al. [19, 22] pinpointed the complexity
of determining Dodgson and Kemeny winners exactly, Faliszewski
et al. [10, 12] introduced and studied bribery in elections, Conitzer
et al. [7] studied coalitional weighted manipulation for the most im-
portant voting rules and also its destructive variant (where the ma-
nipulators’ goal is not to make their favorite candidate win but to
prevent their most despised candidate’s victory), and Hemaspaandra
et al. [20] studied destructive control. Among these research lines,
we will here focus on electoral control.

Driven by the many applications of collective decision making
(e.g., by voting) in artificial intelligence—ranging from automated
scheduling [17] over recommender systems [15] to collaborative fil-
tering [29], from computational linguistics [27] to information ex-
traction [34], and from planning [9] to meta-searching the inter-
net [8]—computational social choice has turned into an established
area that is now a key topic of the major AI conferences (see, e.g.,
two recent papers in the AAAI Senior Member Track [23, 32]). This
success story has been comprehensibly told in the Handbook of Com-
putational Social Choice [6] and other books [31]. In particular, Fal-
iszewski and Rothe [13] surveyed the state of the art in control (and
bribery), summarizing the common control scenarios and the related
complexity results for the most important voting rules.

However, results for two quite prominent voting rules in their
chapter were scarce: By 2016, not much was known about the con-
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trol complexity for the Borda Count and maximin voting, which is
also known as the Simpson–Kramer rule. Borda is perhaps the most
important rule within the class of scoring protocols: In Borda, voters
rank the m candidates, the ith candidate in each ranking scores m−i
points, and whoever has the most points wins. Maximin, on the other
hand, is a rule that, like Condorcet or Copeland, is based on pairwise
comparisons: The candidates’ maximin scores result from their worst
pairwise comparison against other candidates and all candidates with
the largest maximin score win.

While Neveling and Rothe [26, 25] recently settled the remaining
open cases for Borda, in this paper we solve all remaining open cases
regarding the control complexity in maximin elections. With our re-
sults, the “last voting rule is home” in the sense that we now have an
almost2 complete picture of the control complexity of all voting rules
considered by Faliszewski and Rothe in their chapter [13]. All our re-
sults are NP-hardness results, that is, we will show that maximin is
resistant to the corresponding types of control.

All these open issues for maximin voting concern control by par-
tition of either candidates or voters. Previous results for maximin
voting on the complexity of control by adding or deleting either can-
didates or voters are due to Faliszewski et al. [11], and some cases of
destructive control by partition of candidates are due to Maushagen
and Rothe [24]. We settle the remaining cases for maximin: construc-
tive control by partition of candidates and constructive and destruc-
tive control by partition of voters.3 In particular, control by partition
of voters is very interesting, as it is a simple model of gerryman-
dering and therefore quite well motivated for application in the real
world. It is also noteworthy that resistance to partition of candidates
or voters typically is shown via the technically most involved proofs.
Further, we have tried to simplify and unify our proofs as much as
possible: Our eight NP-hardness results are shown via essentially
only two constructions.

This paper is organized as follows. In Section 2, we give some
background on elections and introduce some technical definitions
that are helpful for our proofs. Our results for constructive control
by partition of candidates in maximin elections are presented in Sec-
tion 3 and our results for constructive and destructive control by par-
tition of voters in Section 4. We conclude in Section 5.

2 Preliminaries

An election is given by a pair (C, V ) with C being a set of candidates
and V a profile of the voters’ preferences over C. Each preference
is a linear order over C. Identifying voters with the votes they cast,

2 For Schulze voting [33], it is still open how hard destructive control by
adding and deleting candidates is.

3 These control scenarios will be defined formally in Sections 3 and 4.
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we will use the words vote and voter interchangeably. A vote of the
form b a c indicates that b is preferred to a and a to c.

Let S ⊆ C be a subset of the candidates. When we write
−→
S in a

vote, we mean a ranking of the candidates of S occurring in this vote
in an arbitrary but fixed order; and when we write

←−
S in a vote, we

mean their ranking in this vote in reverse order; and the order of the
candidates from S does not matter in a vote when we simply write
S in it. For example, letting C = {a, b, c, d} and S = {b, c} and
assuming the lexicographic order of candidates, d

−→
S a means the

vote d b c a; yet d
←−
S a means the vote d c b a; and d S a could mean

either of the votes d b c a and d c b a.
To conveniently construct votes, for a set C of candidates and

c, d ∈ C, let

W (c, d) = (c d
−−−−−−→
C \ {c, d},

←−−−−−−
C \ {c, d} c d)

be a pair of votes whose addition to a maximin election has the fol-
lowing effect on the scores of c and d: For such a pair, under maximin
voting c gains two points in the head-to-head contest on d. For each
other pair of candidates, they both gain one point in their head-to-
head contest.

Some background from complexity theory is assumed, includ-
ing standard notions such as the complexity classes P and NP,
polynomial-time many-one-reducibility, and NP-hardness and NP-
completeness. For more details, we refer to the textbooks by Garey
and Johnson [14], Papadimitriou [28], and Rothe [30].

In our reductions for establishing NP-hardness, we will em-
ploy the following well-known NP-complete problems [14]. In
ONE-IN-THREE-POSITIVE-3SAT, we are given a set X of boolean
variables and a set S of clauses over X , each with exactly three un-
negated literals, and we ask whether there is a truth assignment to the
variables in X satisfying that in each clause of S exactly one literal is
set to true. In EXACT-COVER-BY-3-SETS (X3C), we are given a set
B = {b1, . . . , b3k} and a family S = {S1, . . . , Sn} of sets such that
Si ⊆ B and |Si| = 3 for all Si ∈ S, and the question is: Does there
exist an exact cover of B, i.e., a subset S ′ ⊆ S such that |S ′| = k
and

⋃
Si∈S′ Si = B?

3 Constructive Control by Partition of Candidates
In this section, we consider the standard scenarios of constructive
control by partition of candidates and solve all remaining open cases
regarding the complexity of candidate control in maximin elections.
In Table 1, we give an overview of all previously known and new
results on the complexity of candidate control for maximin. We start
by defining in Section 3.1 the problems we consider and then prove
our results in Section 3.2.

3.1 Problem Definitions and Overview of Results
We first consider constructive control by partition of candidates, as
defined by Bartholdi et al. [4] for any given voting rule E (which here
will always be maximin). In this scenario, the election (C, V ) is held
in two rounds and we assume that the chair has the power to sub-
divide the candidates into two groups, C1 and C2, and the winners
of the first-round subelection (C1, V ) (where we tacitly assume that
the votes in V are restricted to the candidates in C1) run against the
candidates in C2, i.e., all members of C2 get a bye to the final round.

We will adopt the so-called unique-winner model (as Bartholdi
et al. [4] did), which means that for a control action to be success-
ful, it is required that the distinguished candidate is the only win-
ner. By contrast, in the nonunique-winner model, which also has

been studied intensively for control problems [13, 5], it would be
enough that the distinguished candidate is one among possibly sev-
eral winners for a control action to be successful. Note that our re-
sults, even though expressed in the unique-winner model, hold also
in the nonunique-winner model, as can be shown by slight modifica-
tions of our proofs.4

We will use the following tie-handling rules due to Hemaspaan-
dra et al. [21]: According to ties-promote (TP) all winners of a first-
round subelection will move forward to the final round and accord-
ing to ties-eliminate (TE) only a unique first-round subelection win-
ner moves forward to the final round (i.e., if there are two or more
first-round subelection winners, they eliminate each other and no one
moves to the final round from this first-round subelection).5

Now we are ready to define the first decision problem, E -
CONSTRUCTIVE-CONTROL-BY-PARTITION-OF-CANDIDATES-TP
for voting rule E , which given an election (C, V ) and a distinguished
candidate p ∈ C, asks whether we can partition C into C1 and
C2 such that p is the unique E winner of the two-round election
where the winners of the first-round subelection (C1, V ) run against
all members of C2 in a final round (with the votes from V in all
subelections appropriately restricted to the participating candidates.

This problem name is abbreviated by E-CCPC-TP. The related
problem E-CONSTRUCTIVE-CONTROL-BY-RUNOFF-PARTITION-
OF-CANDIDATES-TP (E-CCRPC-TP, for short; also due to
Bartholdi et al. [4]) is defined similarly, except that now we have
two first-round subelections, (C1, V ) and (C2, V ), and the winners
of both proceed to the final runoff. With the other tie-handling rule,
ties-eliminate, we receive the corresponding problems E-CCPC-TE
and E-CCRPC-TE.

The destructive variants of these four problems, due to Hema-
spaandra et al. [21], are defined analogously, except that the chair’s
goal now is to prevent the victory of the distinguished candidate.
We abbreviate the corresponding problems by E-DCPC-TP, E-
DCRPC-TP, E-DCPC-TE, and E-DCRPC-TE.6

Further, Bartholdi et al. [4] and Hemaspaandra et al. [21] in-
troduced and studied for various voting rules the notions of con-
structive and destructive control by adding candidates (CCAC and
DCAC), by adding an unlimited number of candidates (CCAUC and
DCAUC), and by deleting candidates (CCDC and DCDC). As we
do not study these control scenarios here, we refrain from defining
them formally, instead referring to the work of Bartholdi et al. [4]
and Hemaspaandra et al. [21] and in particular to the work of Fal-
iszewski et al. [11] who obtained results for them in maximin elec-
tions. Table 1 gives an overview of all previous complexity results for
candidate control in maximin elections (which are due to Faliszewski
et al. [11] and Maushagen and Rothe [24]) as well as the new com-
plexity results for candidate control in maximin elections established
in this paper.

A voting rule E maps each election (C, V ) to a subset of can-

4 In fact, the constructions need not be changed, as in the yes-instances p will
always win alone, whereas in the no-instances p will never even win. That
is, the stronger condition of the unique-winner or the nonunique-winner
model will always be satisfied. All that needs to be changed in the proofs for
them to work also in the nonunique-winner model are minor modifications
of the wording in the argumentation.

5 Note that the unique-winner model better fits the TE rule and the
nonunique-winner model better fits the TP rule.

6 Hemaspaandra et al. [18] noted that, depending on whether we use TP or
TE and on what winner model we choose (i.e., either the unique-winner or
the nonunique-winner model), DCPC and DCRPC can be identical prob-
lems. Specifically, in the unique-winner model, we have DCRPC-TE =
DCPC-TE, and in the nonunique-winner model, we have DCRPC-TE =
DCPC-TE and DCRPC-TP = DCPC-TP.
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Table 1. Overview of complexity results for candidate control in maximin elections. R means resistance and V means vulnerability. Results in boldface are
established in this paper, and previous results are due to Faliszewski et al. [11] (marked by ♥) and due to Maushagen and Rothe [24] (marked by ♠).

didates, the winners of the election. We focus on the maximin vot-
ing rule (a.k.a. Simpson–Kramer’s rule), which is based on pair-
wise comparisons. Given an election (C, V ), for any two candidates
c, d ∈ C, we denote the number of voters preferring c to d by
NV (c, d). The maximin score of candidate c then is

score(C,V )(c) = min
d∈C\{c}

NV (c, d)−NV (d, c),

and whoever has the largest maximin score wins the election. In the
following, we will omit the subscripts and simply write score(c) and
N(c, d) if the meaning is clear from the context. A Condorcet winner
is a candidate who wins each pairwise comparison; thus a Condorcet
winner is always a maximin winner.

A voting rule E is said to be immune to a control type C (such as
constructive control by partition of candidates when ties promote) if
it is never possible for the chair to reach her control goal; otherwise,
it is said to be susceptible to C. Note that maximin is easily seen to
be susceptible to every control type considered in this paper. If E is
susceptible to C, we are interested in the computational complexity of
the associated control problem (such as E-CCPC-TP). We say that
E is vulnerable to C if E is susceptible to C and the control problem
corresponding to C can be solved in polynomial time, and we say E
is resistant to C if E is susceptible to C and the corresponding control
problem is NP-hard.

3.2 Results and Proofs
While maximin is vulnerable to destructive control by partition and
runoff partition of candidates in model TP and TE [24], we will now
show that it is resistant to constructive control by partition and runoff
partition of candidates with both tie-handling rules, TP and TE. For
each of these four problems, we can use the same reduction.

Theorem 3.1. For maximin elections, each of the problems CCPC-
TP, CCRPC-TP, CCPC-TE, and CCRPC-TE is NP-complete.

Proof. Membership of all four problems in NP is obvious. To
show NP-hardness, we reduce from ONE-IN-THREE-POSITIVE-
3SAT. Let (X,S) be a ONE-IN-THREE-POSITIVE-3SAT instance
with X = {x1, . . . , xm} and S = {S1, . . . , Sn}, where Si =
{xi,1, xi,2, xi,3} ⊆ X and |Si| = 3 for each 1 ≤ j ≤ n. In the
following, we use each x ∈ X and each S ∈ S both as part of
the given instance of ONE-IN-THREE-POSITIVE-3SAT and as the
candidates of the election that is part of the constructed instance of
any of the four control-by-partition problems. It will always be clear
from the context what meaning is intended.

Specifically, from (X,S) we construct an election (C, V ) with the
set C = {p, d, w}∪X∪S∪R∪T of candidates with R = {ri,j |1 ≤
i ≤ n, 1 ≤ j ≤ 3} and T = {ti,j | ri,j ∈ R}.

The list V of votes is constructed as follows, where we write [n]
for the set {1, . . . , n} for n ∈ N:

# preference for each

1 W (r, p) r ∈ R

1 W (t, p) t ∈ T

1 W (w, S) S ∈ S

1 W (w, r) r ∈ R

2 W (p, x) x ∈ X

2 W (p, d)

4 W (r, x) r ∈ R, x ∈ X

4 W (xi,j , ti,j) i ∈ [n], j ∈ [3]

4 W (ti,j , ri,j) i ∈ [n], j ∈ [3]

4 W (xi,j , ti,(j+1) mod 3) i ∈ [n], j ∈ [3]

1 + j − i W (Si, Sj) 1 ≤ i < j ≤ n

n + 1 W (S, r) S ∈ S, r ∈ R

n + 1 W (S, d)

n + 2 W (d,w)

n + 3 W (w, x) x ∈ X

n + 3 W (x, S) S ∈ S, x ∈ S

n + 3 W (w, t) t ∈ T

n + 3 W (t, d) t ∈ T

n + 3 W (r, d) r ∈ R

n + 4 W (w, p)

n + 4 W (S, p) S ∈ S

This construction is sketched in Figures 1 and 2. In particular, Fig-
ure 2 shows the subgraph among the candidates from the sets X , R,
T , and Si ∈ S for fixed i, where a directed edge between two candi-
dates, say pointing from a to b, means that a wins the pairwise com-
parison against b. The edges are weighted and their positive integer
weights give the numbers of how often preference W (a, b) occurs
in the construction. Doubling these weights gives the surplus indi-
cating how strongly a wins against b. If an edge starts from a gray
rectangle, this means that all candidates from this set beat the can-
didates the edge points to, and similarly so the other way around: an
edge pointing to a gray rectangle means that all candidates in this set
are beaten by the candidate this edge originates from. In the graph
shown in Figure 1, on the other hand, these subgraphs from Figure 2
are only roughly adumbrated (each framed by a dotted line).
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Figure 1. Construction in the proof of Theorem 3.1: Overview
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Figure 2. Construction in the proof of Theorem 3.1: subgraph for one Si

Let Π ∈ {CCRPC-TP, CCPC-TP, CCRPC-TE, CCPC-TE}.
We show: (X,S) is a yes-instance of ONE-IN-THREE-POSITIVE-
3SAT if and only if (C, V, p) is a yes-instance of maximin-Π.

From left to right, let (X,S) be a yes-instance of ONE-IN-
THREE-POSITIVE-3SAT. Then there is a subset U ⊆ X such that
for each clause Si we have |U ∩ Si| = 1. Partition the set C of
candidates into C1 and C2 with

C1 = {d,w} ∪ S ∪ U and

C2 = {p} ∪R ∪ T ∪X \ U.

Let us start with the case where we have two first-round sub-
elections (i.e., with constructive control by runoff partition of can-
didates). In the subelection (C1, V ), each candidate x ∈ U and
each candidate S ∈ S has a score of −2(n + 3), w has a score
of−2(n+ 2), and d wins the subelection with a score of−2(n+ 1).
Since d is the unique winner of (C1, V ), d will move forward to
the final round, regardless of the tie-breaking rule. In the subelec-
tion (C2, V ), the candidate p gets a score of −2, while each other
candidate gets a score of −8. Since p is the unique winner of the
subelection (C2, V ), p will move forward to the final round, regard-
less of the tie-breaking rule. In the final round, p faces only d and

only p wins this head-on-head contest and thus the election.
Let us now consider the case of constructive control by partition of

candidates where we have only one first-round subelection, (C1, V ),
and all candidates from C2 move directly forward to the final round.
Compared with the subelection (C2, V ), the occurrence of d does
not affect the score of any candidate. Since d has a score smaller
than −4, p is again the only winner of the final election.

It follows that (C, V, p) is a yes-instance of maximin-Π for each
Π ∈ {CCPC-TP, CCRPC-TP, CCPC-TE, CCRPC-TE}, com-
pleting the proof of the desired equivalence from left to right.

Conversely, from right to left, assuming that (X,S) is a no-
instance of ONE-IN-THREE-POSITIVE-3SAT, we will show that the
constructed instance (C, V, p) is a no-instance of maximin-Π for
each Π ∈ {CCPC-TP, CCRPC-TP, CCPC-TE, CCRPC-TE} as
well, i.e., we show that p cannot be made a unique winner of the
two-stage election resulting from any possible partition of the candi-
date set (with or without runoff and for both tie-handling rules).

The worst pairwise comparison for p is between p and w as well
as between p and each candidate S ∈ S. Thus, if p were to face
any of these candidates in a first-round subelection or in the final
round, p would not win according to this partition of C. Therefore,
we have to show that for each partition of candidates, where w and
all S ∈ S participate in (C1, V ) and p is in (C2, V ), p does not win
the election.

We consider all remaining partitions below.
Case 1: Let C1 = {w} ∪ S ∪ T ′ ∪ R′ ∪ U with T ′ ⊆ T , R′ ⊆ R,
and U ⊆ X . Candidate w wins each head-to-head contest, so w is the
unique winner and can move forward to the final election. It follows
that p can not win the election.
Case 2: Let C1 = {d,w} ∪ S ∪ U with U ⊆ X . We consider two
subcases.
Case 2.1: For each S ∈ S, it is S ∩ U 6= ∅. Since, we started
with a no-instance of ONE-IN-THREE-POSITIVE-3SAT, there is at
least one Si such that xi,j , xi,j+1 mod 3 ∈ C1 with 1 ≤ j ≤ 3. Each
S ∈ S and each x ∈ U has a score of −2(n + 3), w has a score of
−2(n+2) and d has a score of−2(n+1). Therefore, d is the unique
winner of the subelection and can move forward to the final round.
Now, we have to destinguish between CCRPC and CCPC. We start
with CCRPC. In (C2, V ), we have C2 = {p} ∪ T ∪ R ∪ X \ U .
Candidate ti,j+1 mod 3 has a score of 0, whereas p has a score of−2.
It follows that p can not move forward to the final election. Let us
now consider where we have only one subelection, CCPC. Since d
is the unique winner of the first subelection, the final runoff is (C2 ∪
{d}, V ). Compared with the subelection (C2, V ), the occurrence of
d does not affect the score of any candidate. It follows that p can not
win the final election.
Case 2.2: It exists a S ∈ S with S∩U = ∅. Let S ′ = {S |S∩U =
∅} ⊂ S. Each Si ∈ S ′ has a score of −2i, each Si ∈ S \ S ′ and
each x ∈ U has a score of −2(n + 3), d has a score of −2(n + 1),
and w has a score of −2(n + 2). The candidate Si ∈ S ′ with the
lowest subscript wins the election.
Case 3: Let C1 = {d,w} ∪ S ∪ T ′ ∪ R′ with T ′ ⊆ T , R′ ⊆ R.
Each Si has a score of−2i and each other candidate has a score lower
than or equal to −2(n + 1). Therefore, S1 is the unique winner of
the subelection and can move forward to the final runoff, such that p
can not win the election.
Case 4: Let C1 = {d,w}∪S ∪T ′ ∪R′ ∪U with T ′ ⊆ T , R′ ⊆ R.
For U = ∅, we have Case 3 and for T ′ ∪ R′ = ∅, we have Case 2.
We consider two subcases.
Case 4.1: It is S ∩ U 6= ∅ for each S ∈ S. Candidate w is the
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unique winner with a score of−2(n+ 2) while each other candidate
has a score of −2(n + 3). Thus, p can not win the election.

Case 4.2: It exists S ∈ S such that S ∩ U = ∅. Let S ′ = {S | S ∩
U = ∅} ⊂ S. Each Si ∈ S ′ has a score of −2i, w has a score of
−2(n + 2) and each other candidate has a score of −2(n + 3). The
candidate Si ∈ S ′ with the lowest subscript is the unique winner of
the subelection. It follows that p can not win the election.

It follows that (C, V, p) is a no-instance of maximin-Π for each
Π ∈ {CCRPC-TP, CCPC-TP, CCRPC-TE, CCPC-TE}. q

4 Control by Partition of Voters
We now turn to constructive and destructive control by partition of
voters, again with the tie-handling rules TP and TE, thus solving all
remaining open cases for the complexity of voter control in maximin
elections. In Table 2, we give an overview of all previously known
and new results on the complexity of voter control for maximin.

We start by defining in Section 4.1 the problems we consider and
will then prove our results in Section 4.2.

4.1 Problem Definitions and Overview of Results
These problems have also been introduced and studied by Bartholdi
et al. [4] and Hemaspaandra et al. [21]. In control by partition of
voters, the election (C, V ) is again held in two rounds but now we
assume that the chair has the power to subdivide the voters into two
groups, V1 and V2, and the winners of the two first-round subelec-
tions (C, V1) and (C, V2) run against each other in a final round.
This can be seen as a very simple model of gerrymandering.

Specifically, for any given voting rule E (which again will always
be maximin), we give the formal definition of one of the decision
problems we study in detail: In E -CONSTRUCTIVE-CONTROL-BY-
PARTITION-OF-VOTERS-TP, we are given an election (C, V ) and a
distinguished candidate p ∈ C, and we ask whether V can be par-
titioned into V1 and V2 such that p is the unique E winner of the
two-round election where the winners of the two first-round subelec-
tions, (C, V1) and (C, V2), run against each other in a final round.

We abbreviate this problem by E-CCPV-TP. The related problem
for the other tie-handling rule, ties-eliminate, is E-CCPV-TE, and
the two destructive variants are E-DCPV-TP and E-DCPV-TE.

Bartholdi et al. [4] and Hemaspaandra et al. [21] also introduced
and studied for various voting rules the notions of constructive and
destructive control by adding voters (CCAV and DCAV) and by
deleting voters (CCDV and DCDV). Again, we refrain from defin-
ing these formally, as we won’t study these control scenarios here,
and we instead refer to the work of Bartholdi et al. [4] and Hema-
spaandra et al. [21] and in particular to that of Faliszewski et al. [11]
who obtained results for them in maximin elections. Table 2 gives
an overview of all previous complexity results for voters control in
maximin elections (due to Faliszewski et al. [11]).

For notational convenience and to simplify our proofs, we use
a slightly different scoring function in this section. Given an elec-
tion (C, V ) and a candidate c ∈ C, define Score(C,V )(c) =
mind∈C\{c}NV (c, d), again omitting the subscript if (C, V ) is clear
from the context. Note that

NV (c, d)−NV (d, c) = NV (c, d)− (|V | −NV (c, d))

= 2NV (c, d)− |V |,

so this is simply a linear shift compared with score(C,V )(c).

C
AV

C
D

V

C
PV

-T
E

C
PV

-T
P

C D C D C D C D

R♥ R♥ R♥ R♥ R R R R

Table 2. Overview of complexity results for voter control in maximin
elections. R means resistance and V means vulnerability. Results in boldface

are established in this paper, and previous results are due to Faliszewski et
al. [11] (marked by ♥).

4.2 Results and Proofs
We first consider control by partition of voters when ties promote.

Theorem 4.1. maximin-CCPV-TP and maximin-DCPV-TP are
NP-complete.

Proof. Membership of these two problems in NP again is obvious.
To show NP-hardness, we reduce from a variant of X3C. Let (B,S)
be an X3C instance, where B = {b1, . . . , b3k}, S = {S1, . . . , Sn},
and Si = {bi,1, bi,2, bi,3} for each Si ∈ S. Without loss of gen-
erality, we may assume that k > 6. Furthermore, we may assume
that each bj ∈ B is contained in exactly three sets Si ∈ S; thus
|B| = |S| = n. That X3C even with this restriction is still NP-hard
was shown by Gonzalez [16].

From (B,S), we construct an election with the set C =
{p, d, w} ∪ B of candidates and with the distinguished candidate
p for the constructive case and the distinguished candidate w for the
destructive case. The list V of votes is constructed as follows:

# preference for each

2k − 1 w p B d

4k − 2 w d B p

1 w B p d

1 B \ Si p d w Si Si ∈ S
k B p w d

2k B d w p

In total, we have 12k−2 votes. In these votes, the candidates from
B are shifted cyclically such that, in particular:

• the first vote is w p b1 b2 · · · b3k−1 b3k d,
• the second vote is w p b3k b1 b2 · · · b3k−1 d, and
• the last vote is b4 · · · b3k b1 b2 b3 d w p.

However, the description of the construction is not finished yet;
there still is a final twist to take notice of, regarding the fourth row of
the construction, which gives one vote of the form B \ Si p d w Si

for each Si ∈ S. When constructing these 3k votes, let us first pre-
tend that in this fourth row there were a vote of the form B p d w
(with the elements of B cyclically shifted as described above). But
then we change each such vote B p d w in the following way. For the
ith vote B p d w, we shift bi,1, bi,2, and bi,3 (i.e., the elements of Si)
from their current position to the end of the vote, while keeping the
relative order among bi,1, bi,2, and bi,3. For illustration, consider the
following example. Suppose S1 = {b1, b2, b3}. After pretending that
we have only votes of the form B p d w instead of B \ Si p d w Si,
we have a vote b3 b4 · · · b3k b1 b2 p d w according to the cyclic
shifts. This vote is then changed into: b4 · · · b3k p d w b3 b1 b2.
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Example 4.2. As an illustration of the entire construction, consider
the following example. Note that, for the sake of convenience and
readability, we assume k = 2 in this example (even though we ac-
tually require k > 6 for the proof to work). Let B = {b1, . . . , b6}
and S = {S1, . . . , S6} with S1 = {b1, b2, b3}, S2 = {b4, b5, b6},
S3 = {b2, b3, b6}, S4 = {b2, b4, b5}, S5 = {b1, b3, b4}, and
S6 = {b1, b5, b6}. According to our construction, we first get the
following votes.

From the first row of our vote list, we obtain three votes:

w p b1 b2 b3 b4 b5 b6 d,
w p b6 b1 b2 b3 b4 b5 d,
w p b5 b6 b1 b2 b3 b4 d.

From the second row of our vote list, we obtain six votes:

w d b4 b5 b6 b1 b2 b3 p,
w d b3 b4 b5 b6 b1 b2 p,
w d b2 b3 b4 b5 b6 b1 p,
w d b1 b2 b3 b4 b5 b6 p,
w d b6 b1 b2 b3 b4 b5 p,
w d b5 b6 b1 b2 b3 b4 p.

From the third row of our vote list, we obtain one vote:

w b4 b5 b6 b1 b2 b3 p d.

Note that the cyclic shifts of the elements of B spread across the
single lines of our vote list. Now, from the fourth row of our vote
list, we obtain six further votes, and now the cyclic shifts of the ele-
ments of B are slightly tampered with as we have explained above.
Pretending we had the vote B p d w in the fourth row of our vote
list, then the first vote would be b3 b4 b5 b6 b1 b2 p d w. Accord-
ing to B \ S1 p d w S1 with S1 = {b1, b2, b3}, this gives the vote:
b4 b5 b6 p d w b3 b1 b2. That is, the six votes corresponding to the
fourth row are changed from

b3 b4 b5 b6 b1 b2 p d w,
b2 b3 b4 b5 b6 b1 p d w,
b1 b2 b3 b4 b5 b6 p d w,
b6 b1 b2 b3 b4 b5 p d w,
b5 b6 b1 b2 b3 b4 p d w,
b4 b5 b6 b1 b2 b3 p d w

to the six votes where the three candidates corresponding to the Si ∈
S are moved to the end of these six votes, respecting their relative
order:

b4 b5 b6 p d w b3 b1 b2,
b2 b3 b1 p d w b4 b5 b6,
b1 b4 b5 p d w b2 b3 b6,
b6 b1 b3 p d w b2 b4 b5,
b5 b6 b2 p d w b1 b3 b4,
b4 b2 b3 p d w b5 b6 b1.

Next, from the fifth row of our vote list, we obtain two votes:

b3 b4 b5 b6 b1 b2 p w d,
b2 b3 b4 b5 b6 b6 p w d.

Finally, from the sixth row of our vote list, we obtain four votes:

b1 b2 b3 b4 b5 b6 d w p,
b6 b1 b2 b3 b4 b5 d w p.
b5 b6 b1 b2 b3 b4 d w p,
b4 b5 b6 b1 b2 b3 d w p.

The reduction can obviously be computed in polynomial time. Due
to the cyclic shifts, we have N(b1, b3k) ≤ 7 and N(bi, bi−1) ≤ 7 for
each i, 2 ≤ i ≤ 3k. Therefore, Score(b) ≤ 7 for each b ∈ B. For the
remaining candidates, we have the following pairwise comparisons:

N(↓,→) p w d b ∈ B

p – 4k 6k 2k + 2
w 8k − 2 – 7k − 2 6k + 1
d 6k − 2 5k – 4k + 1

We notice that w is the unique maximin winner and also a Con-
dorcet winner of the election.

We claim that (B,S) is in X3C if and only if (C, V, p) is a yes-
instance of maximin-CCPV-TP (respectively, (C, V,w) is a yes-
instance of maximin-DCPV-TP).

From left to right, let (B,S) be a yes-instance of X3C. Then there
is a subset S ′ ⊆ S with |S ′| = k and

⋃
Si∈S′ Si = B. Partition V

into V1 and V2, where V1 contains all votes of the form w p B d, as
well as B p w d and the k votes B \ Si p d w Si and Si ∈ S ′. The
remaining votes are in V2. In (C, V1), we have:

N(↓,→) p w d b ∈ B

p – 2k 4k − 1 2k
w 2k − 1 – 3k − 1 2k
d 0 k – 1

So p is the sole winner of the first first-round subelection and moves
forward to the final round. In (C, V2), we have:

N(↓,→) p w d b ∈ B

p – 2k 2k + 1 2
w 6k − 1 – 4k − 1 4k + 1
d 6k − 2 4k – 4k

The candidate d has with 4k the highest score and is the only winner
of the second first-round subelection.

The final runoff thus is ({p, d}, V ). We have 6k of 12k − 2 votes
who prefer p to d such that p is the unique winner of the runoff. It
follows that (C, V, p) (respectively, (C, V,w)) is a yes-instance of
maximin-CCPV-TP (respectively, maximin-DCPV-TP), as desired.

From right to left, assuming that (B,S) is a no-instance of X3C,
we will show that for each partition of the voters, w is always the
unique winner of the election.

A Condorcet winner in an election (C, V ) remains a Condorcet
winner for each subset C′ ⊆ C.7 Since w is a Condorcet winner in
(C, V ), it is necessary that w cannot move forward to the final round,
or else w’s overall victory cannot be prevented.

We have 6k − 2 out of 12k − 2 votes who prefer w the most.
In the following, we denote the number of voters with a vote of the
form w · · · in the subelection (C, Vi) with `i for i ∈ {1, 2} when
V is partitioned into V1 and V2. Note that NVi(w, c) ≥ `i for each
c ∈ C \ {w}. To prevent the victory of w in (C, Vi), it is necessary
that we have at least `i + 1 votes of the form b · · · in Vi.

Suppose that a candidate b ∈ B wins a subelection, say, without
loss of generality, (C, V1). Since Score(b) ≤ 7, there are at most 13
voters in V1.

It follows that in (C, V2), w receives at least 6k + 1− 13 = 6k−
12 points, while Score(p) ≤ 2k + 2, Score(d) ≤ 4k + 1, and
Score(b) ≤ 7 for each b ∈ B, so w is a winner of the subelection
and therefore the unique winner of the whole election.

The only possibility to prevent w’s victory is that p and d are
unique winners of the two first-round subelections. Without loss of

7 This is due to Condorcet voting satisfying the so-called weak axiom of
revealed preferences (see, e.g., [4, 21]).
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generality, we assume that p wins in (C, V1) and d wins in (C, V2).
Since Score(C,V1)(w) = `1, it is necessary that NV1(p, w) = `1 + 1
and thus all votes of the form B d w p have to be in V2. The other
way around, it is necessary that all votes of the form B p w d are in
V1 such that NV2(d,w) = `2 + 1 > `2 = Score(w).

We have the following votes in V1:

# preference

x1 w p B d

x2 w d B p

x3 w B p d

x4 B \ S p d w S

k B p w d

with 0 ≤ x1 ≤ 2k−1, 0 ≤ x2 ≤ 4k−2, x3 ∈ {0, 1}, 0 ≤ x4 ≤ 3k
and the restriction that x1 + x2 + x3 + 1 = x4 + k. Let εb = |{S ∈
S |b ∈ S and B\S p d w S ∈ V1}| and ε = min{εb |b ∈ B}. Since
each b is in exactly three S ∈ S, we have 0 ≤ εb ≤ 3. Candidate w
has a score of x1 + x2 + x3. For p, we have N(p, w) = x4 + k and
N(p, b) = x1 + εb for each b ∈ B. We distinguish two cases for the
score of p. In both cases, we will see that that Score(p) > Score(w)
is not possible unless violating one of the conditions above.
Case 1: We have x4+k < x1+ε and thus Score(p) = x4+k. Since
x4 + k = x1 + x2 + x3 + 1, we have x2 + x3 + 1 < ε. For ε > 1,
it is necessary that x4 ≥ 2k + 1, since we started with a no-instance.
It follows that x4 + k ≥ 3k + 1 and x1 + x2 + x3 + 1 ≤ 2k + 1, so
x1 + x2 + x3 + 1 < x4 + k.
Case 2: We have x1 + ε ≤ x4 + k and thus Score(p) = x1 + ε. To
prevent the victory of w, it is necessary that x1 + ε > x1 + x2 + x3,
thus x2 + x3 ∈ {0, 1, 2}. For x2 + x3 ≥ 1, we receive ε ≥ 2
and thus x4 ≥ 2k + 1. It follows that x4 + k ≥ 3k + 1 while
x1 + x2 + x3 + 1 ≤ 2k − 1 + 2 + 1 = 2k + 2. For x2 + x3 = 0,
we have ε ≥ 1 and x4 ≥ k + 1. Therefore, x1 + x2 + x3 + 1 ≤ 2k
and x4 + k ≥ 2k + 1.

This completes the case distinction. We have shown that, regard-
less of how the voters are partitioned, w is always the unique winner.
It follows that (C, V, p) (respectively, (C, V,w)) is a no-instance of
maximin-CCPV-TP (respectively, maximin-DCPV-TP). q

Next, we turn to control by partition of voters when ties eliminate.
Since the proofs of Theorems 4.1 and 4.3 are pretty similar and due
to space limitations, we will only sketch the latter one.

Theorem 4.3. maximin-CCPV-TE and maximin-DCPV-TE are
NP-complete.

Proof. Membership of these two problems in NP once more is
obvious. To show NP-hardness, we slightly modify the reduction
from X3C that was given in the proof of Theorem 4.1: From our
given X3C instance (B,S), we construct an election (C, V ) as in
that proof, except that V now contains an additional vote of the form
w B p d. The pairwise comparison between the candidates is now:

N(↓,→) p w d b ∈ B

p – 4k 6k + 1 2k + 2
w 8k − 1 – 7k − 1 6k + 2
d 6k − 2 5k – 4k + 1

We claim that (B,S) is in X3C if and only if (C, V, p) is a yes-
instance of maximin-CCPV-TE (respectively, (C, V,w) is a yes-
instance of maximin-DCPV-TE).

From left to right, let (B,S) be a yes-instance of X3C. Let S ′ ⊆
S with |S ′| = k and

⋃
S∈S′ S = B. Partition V into V1 and V2 such

that V1 contains the following votes:

# preference for each

2k − 1 w p B d

1 B \ Si p d w Si Si ∈ S ′

k B p w d

and V2 contains all the remaining votes. We claim that p will be made
the unique winner by this partition. In the first subelection, (C, V1),
we have Score(w) = N(w, p) = 2k−1, Score(p) = N(p, b) = 2k,
Score(d) = N(d, p) = 0, and Score(b) ≤ 7. Therefore, candi-
date p proceeds to the final round from this subelection. In the sec-
ond subelection, (C, V2), we have Score(w) = N(w, d) = 4k,
Score(d) = N(d, b) = 4k, Score(p) = N(p, b) = 2, and
Score(b) ≤ 7. Thus d and w both win this subelection. The tie-
handling rule TE blocks them both, so no one moves forward from
this subelection, and p wins the final round. It follows that p is the
only candidate in the final runoff and therefore the sole winner. It
follows that (C, V, p) (respectively, (C, V,w)) is a yes-instance of
maximin-CCPV-TE (respectively, maximin-DCPV-TE).

The direction from right to left can be shown similarly as in the
proof of Theorem 4.1 and is, again, only sketched here due to space
constraints. Candidate w not reaching the final runoff is equivalent
to w losing in one subelection with a point difference of one to the
winner and both w and another candidate winning in the other sub-
election so that the tie-handling rule prevents that w moves forward
to the final round. It is sufficient to consider what happens if p and w
win a subelection. Let c ∈ {p, d} and c′ be the other candidate. If c
is the unique winner of the first subelection and c′ is a winner of the
other subelection, it follows that each vote B c′ w c is in V2 and each
vote B c w c′ is in V1. In the following, we use ε like in the proof of
Theorem 4.1. We again distinguish two cases.

Case 1: p is the unique winner in (C, V1). In V1 we have the follow-
ing votes:

# preference

x1 w p B d

x2 w d B p

x3 w B p d

x4 B \ Si p d w Si

k B p w d

We have the restriction x1+x2+x3+1 = x4+k. To ensure that p is
the unique winner, it is necessary that score(w) = x1 + x2 + x3 <
score(p) ≤ N(p, b) = x1 + ε. It follows that x2 + x3 < ε and
ε ∈ {1, 2, 3}. For ε = 1, we have x4 ≥ k + 1 and thus x4 + k ≥
2k + 1, which is a contradiction since x1 ≤ 2k − 1. For ε ∈ {2, 3},
we have x4 ≥ 2k + 1 and thus x1 + x2 + x3 + 1 ≤ x1 + 3 and
x4 + 2k ≥ 3k + 1. It follows that x1 ≥ 3k − 2, which again is a
contradiction.

Case 2: d is the unique winner in (C, V1). The list of votes is as in
Case 1, except that we have 2k votes B d w p instead of the k votes
B p w d. We have the restriction x1 + x2 + x3 + 1 = x4 + 2k. To
ensure that d is the unique winner, it is necessary that score(w) =
x1 + x2 + x3 < score(d) ≤ N(d, b) = x2 + ε. It follows that
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x1 + x3 < ε. For ε = 1, we have x4 ≥ k + 1 and x1 = x3 = 0.
In the other subelection, (C, V2), we have score(w) = 6k − 1− x2

and N(p, b) ≤ 2k. If p were winning subelection (C, V2), we would
have that x2 ≥ 4k − 1, which is a contradiction, though. For ε =
2wehavex4 ≥ 2k + 1, and for ε = 3 we have x4 = 3k. In both
cases, we receive a contradiction, since our restrictions cause that
x2 ≥ 4k − 1 and x2 ≥ 5k − 3, respectively.

It follows that (C, V, p) (respectively, (C, V,w)) is a no-instance
of maximin-CCPV-TE (respectively, maximin-DCPV-TE). q

5 Conclusions
We have completed the picture regarding the control complexity of
maximin voting by solving the remaining eight open problems re-
lated to control by partition of candidates and voters for this rule.
Thus, with the only exception of Schulze voting for which the com-
plexity of destructive control by adding and deleting candidates is
still open, the control complexity for (almost) all voting rules men-
tioned by Faliszewski and Rothe [13] in their chapter on control and
bribery in the Handbook of Computational Social Choice have been
settled now. Chapter (almost) closed.
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