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Abstract. Many cognitive problems people face have been shown
to be computationally intractable. However, tractability is typically
defined in terms of asymptotic worst-case behaviour of instances.
One approach for studying typical cases of NP-complete problems is
based on random instances. It has been shown that random instances
of many NP-complete problems exhibit a phase transition in solv-
ability and that hard instances tend to occur in this phase transition.
Here, we characterise a phase transition in solvability for random in-
stances of the 0-1 knapsack problem in terms of two simple instance
properties. Subsequently, we show that compute time of algorithms
peaks in the phase transition. Remarkably, the phase transition like-
wise predicts where people spend the most effort. Nevertheless, their
performance decreases. This suggests that instances that are difficult
for electronic computers are recognized as such by people, but the in-
creased effort does not compensate for hardness. Given the ubiquity
of the knapsack problem in every-day life, a better characterisation
of the properties that make instances hard will help understand com-
monalities and differences in computation between human and digi-
tal computers, and to improve both decision environments (contracts,
regulation) as well as human-computer interfaces.

1 Introduction

Previous research in artificial intelligence (AI) has shown that ran-
dom instances of many NP-complete problems have a phase transi-
tion in solvability (e.g., [17, 7, 6]). We build on this work to anal-
yse human reasoning and its relation with computational complexity.
Concretely, we investigate a phase transition—a sudden change in
solvability of random instances—in the well-known 0-1 Knapsack
Problem (KP) [15, 13] and how it is related to instance difficulty
for human decision-makers. Combining theoretical analysis and ex-
perimental evaluation, we (a) identify and characterise a systematic
transition from solvability to unsolvability using two easily observ-
able instance properties; (b) demonstrate that, as has been shown
for other NP-complete problems, the computationally hard instances
happen to lie on the boundary of the phase transition; and (c) provide
strong evidence that instances that are challenging for people occur
in the same region. Our findings are significant in that understand-
ing the computational complexity of instances is relevant for many
aspects of human behavior [20], given that the KP is encountered at
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many different levels of cognition, including attention [26], intellec-
tual discovery [16] and investment decisions [14].

In computer science (CS) and AI, significant work has been carried
out to understand how difficult a problem is for computers to solve.
Problem complexity provides characterizations of lower bounds of
resource requirements (e.g., time or space): any algorithm will re-
quire at least those resources to solve the problem. Such charac-
terizations are, however, often too coarse and conservative, in that
they are based on the worst-case behaviour of algorithms, which may
not coincide with ‘typical’ case instances. A more detailed analysis,
which we adopt here, involves studying the relation between nor-
malised properties and normalised complexity of a problem. In AI re-
search, studying phase transitions in solvability of random instances
is considered one approach to gain a better, more meaningful, under-
standing of instance complexity [12]. Indeed, such phase transitions
in solvability have been documented for several NP-complete prob-
lems, such as SAT [17], Hamiltonian Circuit [7], and Integer Parti-
tioning [6], as well as for many physical systems, with complexity
peaking at the phase boundary [18]. The question we ask here is
whether we apply these insights to gain a better understanding of
hardness of instances for human reasoning?

Even though the nature of computation in the human brain (ana-
logue, parallel and error-prone) likely is fundamentally different
from that of an electronic computer [22], there may exist structural
properties in problems that may affect both human and electronic
computers in similar ways. Since human computation could involve
techniques such as greedy approximation, randomisation, hit and
trial, etc., it is worth investigating the relevance of phase transitions
in solvability for human reasoning. Here we show that there may in
fact exist structural properties of problems that affect people’s ability
to solve instances as much as computers’. An understanding of such
properties (e.g., those that arise from computational complexity) will
benefit research on human computation within artificial intelligence.
With a growing interest in AI software with the human in-and-on
the loop, understanding when a task may be difficult for a person
becomes necessary for building effective human-centric intelligent
systems.

Thus, given the ubiquity of the KP in every-day life, we study here
the difficulty of the decision variant of the (0-1) KP for both elec-
tronic and human computers. To that end, we first identify a region
where KP displays a systematic transition from solvability to unsolv-
ability within a narrow range of two readily observable instance pa-
rameters: instance capacity and instance profit. We provide a theo-
retical analysis (Section 3) that utilizes a fast greedy-type estimation
rule to provide both a lower and an upper bound of the probability
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that a given instance admits a solution, and confirm the phenomena
via computational analysis (Section 4). In our analysis, we show an
interesting “convexity” property of the phase transition region. Sec-
ondly, we demonstrate that, similar to other NP-complete problems,
the computationally hard instances happen to lie on the boundary of
the phase transition (Section 4). Thirdly, and possibly most interest-
ing to the reader, we provide empirical evidence that suggests that
instances that are challenging for people also happen to occur near
the identified phase transition (Section 5).

Two important observations are worth noting. First, our findings
complement our previous work [20] where we demonstrated that hu-
man performance in the KP (optimisation variant) is correlated with
instance complexity. However, this work uses an algorithm-specific
property, namely the “Sahni-k” [24] metric, to provide an ex-post
complexity measure of KP instances. In contrast, here we identify
an ex-ante complexity measure that has been empirically shown to
be algorithm-independent. Second, we note that we are not the first
to study instance difficulty of the KP (e.g., [23, 25, 13]). However,
previous work has focused primarily on the optimisation variant of
the KP and, in particular, on studying the performance of specific al-
gorithms tailored for different optimisation cases. In particular, this
work uses correlation between weights and values of items to charac-
terise complexity of instances for specific algorithms, but these mea-
sures do not generalise. Importantly, these studies do not identify any
phase transition or explore its relation with computational and human
reasoning, which is the main objective of our work.

2 The Knapsack Problem
The 0-1 Knapsack Problem (KP) is a combinatorial optimisation
problem with the goal of finding the subset of a set of items with
given values and weights that maximises total profit subject to a ca-
pacity (weight) constraint. The KP is NP-hard. The number of sub-
sets that can be formed from the n available items increases exponen-
tially in n (2n). However, as is the case for some NP-hard problems
[17], many instances can be solved in polynomial time, even if n is
large. It has been shown for some NP-complete problems that hard-
ness appears to be closely related to phase transitions in solvability
of instances [3, 19], which typically occurs within a narrow range
of instance properties. It is an open question whether this is also the
case for the KP.

To address this question, we consider here the decision variant of
the KP: Does there exists a subset of items from the set of available
items with total profit at least as high as a given profit constraint, and
total weight at most as high as a given capacity constraint? Formally,
given a set of items I = {1, . . . , n} with weights 〈ŵ1, . . . , ŵn〉
and values 〈v̂1, . . . , v̂n〉, where each ŵi and v̂i is a positive integer,
and two positive integers ĉ and p̂ denoting the capacity and profit
constraint (of the knapsack), decide whether there exists a knapsack
set S ⊆ I such that:

•
∑
i∈S

ŵi ≤ ĉ, the weight of the knapsack is less than or equal to the

capacity constraint; and
•
∑
i∈S

v̂i ≥ p̂, the value of the knapsack is greater than or equal to

the profit constraint.

The decision variant of the KP is closely related to the optimisa-
tion variant; the latter can be solved by iteratively solving the former
while incrementing the profit constraint.

The KP is a constrained satisfaction problem with two opposing
constraints. Increasing the profit level requires adding items to the

knapsack, while decreasing the weight requires removing items from
the knapsack.

We use a small example to highlight this tension between the two
constraints. Consider an instance of the knapsack problem consisting
of 4 items with weights 〈2, 5, 8, 4〉 and profits 〈3, 2, 6, 9〉. The panels
in Figure 1 show the search space for this instance (for two different
capacity and profit constraints). Each node in the graph is a knapsack
configuration and the edges link the knapsack configurations that are
reachable by addition or deletion of a single item. For example, the
node {1, 3} : 10 : 9 represents a knapsack containing two items
1 and 3, with a total weight of 10 and total profit of 9. This node
can be reached in 4 ways (there are 4 edges linking this node), one of
which is to add item 3 to a knapsack that already contains item 1. The
layout of the graph is such that, as we traverse from left to right, the
number of items in the knapsack increases. The vertical alignment
is representative of the number of subsets of fixed cardinality (i.e.,(
n
k

)
). We use the empty knapsack (left most node) as the initial node

of the search space.
Suppose the capacity and the profit constraints for this instance

are 10 and 15, respectively. This is the case in the example dis-
played in Figure 1a. Triangle nodes represent configurations that sat-
isfy the capacity constraint, whereas square nodes denote configu-
rations that satisfy the profit constraint, and diamond nodes satisfy
both constraints (i.e., these are solution nodes). As is evident from
the graph, the nodes that satisfy the capacity constraint are towards
the left whereas the nodes that satisfy the profit constraint are to-
wards the right. Note that, in general, as the the capacity constraint is
relaxed, the number of nodes that satisfy the constraint increases pro-
portional to

∑k
i=0

(
n
i

)
, where n is the total number of items, and k

is proportional to how “relaxed” the constraint is. Similar reasoning
applies to the profit constraint.

Informally, when both constraints are too “tight,” no solution
nodes will exist, as in the case in the example displayed in Figure 1a.
When the constraints are relaxed, the number of solution nodes will
tend to increase and the answer to the decision problem of the in-
stance will be yes. For example, Figure 1b shows the search space
when both capacity and profit constraint are equal to 12.

In the following, we investigate whether solvability of instances
of the KP exhibits a phase transition, that is, whether there exists
a region in which the the probability that both constraints can be
satisfied changes precipitously from near 1 to near 0.

3 Probabilistic analysis
In this section, we characterize a phase transition in solvability for
random instances of the KP. Importantly, we also show a “convex-
ity” property of the phase transition region. Our analysis utilizes a
fast greedy-type estimation rule to provide a lower bound of the prob-
ability that a given instance has a solution.

Existence of a Phase Transition. We consider a distribution of
instances of the KP with varying item weights and values, keeping
the number of items fixed at n. Intuitively, a phase transition emerges
around critical values of capacity and profit for which the probability
that a random instance has a solution changes from zero to one.

To achieve meaningful comparisons across instances, we normal-
ize capacity and profit as follows. Given a tuple of positive integers
〈x̂1, . . . , x̂n〉 and a real number ŷ ∈ [0,

∑n
i=1 x̂i], we shall use the

function σ(ŷ, 〈x̂1, . . . , x̂n〉) = ŷ∑n
i=1 x̂i

as the normalized value of
ŷ with respect to 〈x̂1, . . . , x̂n〉. Note that the range of the function σ
is [0, 1].
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(a) Weight and profit constraints of 10 and 15, resp.
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{1, 2, 3, 4} : 19 : 20

(b) Weight and profit constraints of 12 and 12, resp.

Figure 1: Search space of a knapsack instance with 4 items with weights {2, 5, 8, 4} and values {3, 2, 6, 9}. Nodes that satisfy the weight
constraint are indicated by a triangle, nodes that satisfy the profit constraint are indicated by a square, and nodes that satisfy both constrains
are indicated by a diamond.

Thus, given a knapsack instance with items I = {1, . . . , n} hav-
ing weights 〈ŵ1, . . . , ŵn〉, values 〈v̂1, . . . , v̂n〉, capacity constraint ĉ
and profit constraint p̂, we denote the normalized capacity constraint
by c = σ(ĉ, 〈ŵ1, . . . , ŵn〉) and the normalized profit constraint by
p = σ(p̂, 〈v̂1, . . . , v̂n〉). A set of items S ⊆ I is a solution to an in-
stance when (a) the normalized sum of item weights in S is at most
the normalized capacity, that is, σ(

∑
i∈S ŵi, 〈ŵ1, . . . , ŵn〉) ≤ c;

and (b) the normalized sum of item values in S is at least the normal-
ized profit, that is, σ(

∑
i∈S v̂i, 〈v̂1, . . . , v̂n〉) ≥ p. In the following

we use this normalized version as our canonical definition of a knap-
sack instance and look at phase transitions across two measures: (i)
the space (c, p) of normalized capacity and profit values; and (ii) the
space r = c/p of the ratio between normalized capacity and profit.5

We do not impose any restrictions on the distribution from which
values and weights are drawn, except that the values are continu-
ous, independent and identically distributed. An example would be
gamma-distributed values and weights, in which case the normalized
values and weights follow a Dirichlet distribution [1].

Regarding the capacity constraint, we shall consider c (normal-
ized) values within [0, 1]. Regarding the profit constraint, in turn, we
look for a (normalized) p that can always be met by any sampled in-
stance. Note that the ratio c/p does not exist for p = 0. Therefore, we
will only consider values of p within [pmin, 1], where pmin = 1/n.
An item with a normalized value at least 1/n is guaranteed to always
exist in any sampled instance (because of the restriction that all val-
ues are drawn from identical distributions and that normalized item
values add up to 1). As a result, the ratio r = c/p ∈ [0, n].

We now aim to better understand the boundaries of the phase tran-
sition region. We do so by studying the event E(c, p), the collection
of weights and values for all n items for which the resulting KP in-
stances (with capacity c and profit p) admit a solution.

Lower bounds for P [E(c, p)]. We first consider a weak bound.
Given a KP instance, we order the items arbitrarily, thus creating
arbitrary sequences of values and weights that (after normalization)
add up to 1. We then consider knapsacks with increasing number of
items s ≥ 1, which we fill in the order of the sequence. For the
knapsack with the first s items, we determine whether the capacity
and the profit constraints are met. The process is similar to executing
an incomplete algorithm that at each step adds the “next” item to
the knapsack and checks if the capacity and profit constraints are

5 We denote the normalized value of a parameter x̂ by x.

satisfied. In the worst case, such an algorithm would execute n such
steps.

We consider the event El(c, p) as a collection of weight and value
assignments for the items, together with an ordering on those items
such that for each assignment there is only one ordering in the event
set, and such that the capacity and profit constraints c and p, resp., are
met by taking the first s ≥ 1 items in the corresponding ordering. It
follows then that P [El(c, p)] provides a lower bound for P [E(c, p)]
since, under El, we only consider one possible ordering for each in-
stance (a re-ordering of the items may make the capacity and profit
constraints hold when the original, random ordering, did not). For-
mally, P [El(c, p)] ≤ P [E(c, p)], for all c and p.

To get a closed-form expression of P [El(c, p)], we sum the prob-
ability of a solution over the possible sizes of the knapsack (i.e., from
0 to n). The probability that a knapsack of size k is a solution is equal
to the product of two probabilities: (i) the probability that the capac-
ity constraint is satisfied exactly at k (a partition on the capacity con-
straint) and, (ii) the probability that the profit constraint is satisfied.
Now, we can write P [El(c, p)] more explicitly as follows (where the
constraint

∑n+1
i=1 wi > c is assumed to be always true):

P [El(c, p)] =

n∑
s=0

f(s)×G(s), (1)

where

• f(s) = P [
∑s

i=1 wi ≤ c ∧
∑s+1

i=1 wi > c] denotes the proba-
bility (density) that the knapsack reaches the (maximum feasible)
capacity at s; and

• G(s) = P [
∑s

i=1 vi ≥ p] denotes the cumulative probability that
the knapsack reaches the profit constraint with the first s items.

Integrating Equation 1, we then obtain:

P [El(c, p)] = 1−
n∑
0

F (s)g(s),

where F (s) =
∑s

0 f(s) and g(s) = G(s)−G(s− 1).

We now consider a stronger bound by re-arranging the sequence
of items so that they are in ascending order of weights. We refer to
this strategy as weight-greedy, which does not affect G(s) (or g(s))
since values are drawn independently. However, F̃ (s), the (cumula-
tive) probability that the knapsack reaches capacity at t ≤ s, is now
smaller than F (s), with strict inequality for some s. Indeed, if at s
items, capacity is reached with the unordered sequence, there is a
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Figure 2: Phase transition and time complexity for knapsack instances with 50 items, weights/values sampled from a uniform distribution from
a range of [0, 107]. The isoquant contour pairs are at 40% and 60%.

positive chance that items in position t, t > s, are smaller (since the
weights have to add up to 1), and hence, these would come earlier
in the ordered sequence, implying that capacity is reached only at a
larger s. Let f̃(s) = F̃ (s)− F̃ (s− 1).

Let EL(c, p) denote the event that a knapsack instance has a solu-
tion at c and p when the items are re-ordered according to increasing
weight. Then, following a similar derivation to Equation 1 we get:

P [EL(c, p)] =
n∑
0

f̃(s)G(s) = 1−
n∑
0

F̃ (s)g(s).

Since F̃ (s) < F (s), we have that P [EL(c, p)] is a better
lower bound for P [E(c, p)] (i.e., P [EL(c, p)] > P [El(c, p)] and
P [EL(c, p)] ≤ P [E(c, p)]).

We now show that the location of the phase transition region is
above the 45 degree line in (c, p) space (or below 1 in r space);
and that it exhibits a ‘convex’ shape. If F̃ and g are non-negatively
correlated as a function of s, we can formally express the location of

the isoquant where the lower bound equals 1 as follows:

n∑
0

F̃ (s)g(s) ≥ n

(
1

n

n∑
0

F̃ (s)
1

n

n∑
0

g(s)

)
> 1/n.

Hence, P [EL(c, p)] = 1 −
∑n

0 F̃ (s)g(s) < 1 − 1/n, or
P [EL(c, p)] < 1 for any c, p where F̃ and g are non-negatively cor-
related. A non-negative correlation between F̃ and g is most likely
to occur for c < p: F̃ is monotone increasing towards 1, which it
reaches for low s = s∗ (s∗ is the value at which the knapsack is
filled to capacity), after which it is flat; g(s) is increasing in s and
will only decrease beyond s∗ since p > c. Note that, even if c < p,
for c close to p, and for small values of c, F̃ reaches 1 only at higher
s∗ since the items are ordered by weight. At the same time, the profit
constraint may be satisfied for low values of s, and g(s) peaks be-
fore reaching s∗. The correlation constraints hold for most of the
(c, p) space when c is sufficiently high, which implies that the lower
bound of the contour of probabilities where P [EL(c, p)] = 1 should
be below the 45 degree line for high c. In r space, the phase transition
therefore stops at a value r1 which is close to or below 1.
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Convexity. Now consider the case where c = p (i.e., r = 1).
Notice that, by symmetry (weights and values have the same distri-
bution):

P [El(c, c)] =

n∑
0

f(s)F (s) = 1−
n∑
0

F (s)f(s),

so P [El(c, c)] = 1/2. Hence, it follows that 1/2 < P [EL(c, c)] <
P [E(c, c)](= P [E(1)]). That is, if c = p (i.e., r = 1), the prob-
ability that a solution exists is strictly larger than 1/2. As a result,
maximum uncertainty (entropy) about the existence of a solution oc-
curs in the region c < p, i.e., above the diagonal in (c, p) space. We
refer to this as convexity of the phase transition region.

Upper bounds for P [E(c, p)]. Using analogous arguments, we
can obtain an upper bound of the probability that a solution of a KP
instance exists. Consider a double-greedy strategy whereby one first
re-arranges the items according to ascending weight, and then re-
assigns the values to the items in descending order. Let P be a KP
instance with items I = {1, . . . , n}, weights 〈w1, . . . , wn〉, values
〈v1, . . . , vn〉, a capacity c and profit threshold p. We assume that
items I are arranged in ascending order of weights (this does not
change the KP instance). The double-greedy algorithm manipulates
the values of the items. We denote these values by {v′1, . . . , v′n}.
The double-greedy algorithm first constructs a knapsack by adding
items incrementally until the capacity constraint is reached. Then,
it checks if the value of this knapsack reaches the profit threshold.
Formally, the algorithm constructs a knapsack {1, . . . , k − 1} such
that

∑
i<k wi ≤ c and

∑
i≤k wi + wk > c. Then, if

∑
i<k v

′
i ≥ p,

the algorithm terminates and outputs the set of items as a solution;
otherwise, it terminates without any output.

We now show that this double-sided algorithm is complete (but
not sound). That is, if the given instance has a solution then it
will also generate a solution (albeit an incorrect one). However, the
double-greedy strategy may also generate a solution for unsolvable
instances. We begin by pointing out that since the values of items
have been re-assigned in descending order, the sum of re-assigned
values of the first k items will be at least the sum of values of any
set of k items. That is,

∑
i≤k v

′
i ≥

∑
i∈A vi where A is a subset of

I of size k. Analogously, the following property also holds for the
weights, that is,

∑
i≤k wi ≤

∑
i∈A wi, where A is a subset of I of

size k.
Suppose that instance P has a solution. That is, there exists a sub-

set A∗ ⊆ I containing k∗ ≤ n items such that
∑

i∈A wi ≤ c
and

∑
i∈A vi ≥ p. Hence,

∑
i≤k∗ wi ≤

∑
i∈A wi ≤ c and∑

i≤k∗ v
′
i ≥

∑
i∈A vi ≥ p. Therefore, the double-greedy algorithm

will output the set {1, . . . , k∗} as a solution.
The probability that the double-sided greedy algorithm produces

a “solution” is at least as high as the probability of a KP instance
having a solution. Therefore, it provides an upper bound.

4 Computational experiments

We now examine the relation between the time complexity of solving
random KP instances and the phase transition in solvability empiri-
cally. We also analyse the relation between the actual frequencies of
solvability and the theoretical lower bounds. We will consider ran-
dom instances with n ∈ {20, 30, 40, 50} items. For each n, we sam-
pled (with replacement) a collection of weight and value combina-
tions (a combination is (〈ŵ1, . . . , ŵn〉, 〈v̂1, . . . , v̂n〉)). Weights and

values were always sampled from the same discrete uniform distri-
bution with range {0, . . . , 107}. In the second step, for each combi-
nation, multiple knapsack instances were generated by considering
normalized capacity and normalized profit constraints at regular in-
tervals of 0.04 in [0, 1], respectively.

To solve the instances, we used two existing generic off-the-shelf
solvers that are based on different solving methods, Minizinc [21]
and Minisat+ [5]. Minizinc is a constraint solver that uses a branch-
and-bound technique with constraint propagation. Minisat+, on the
other hand, is a pseudo-boolean satisfiability solver (based on Min-
isat) that uses conflict resolution [4]. To obtain an unbiased and op-
timal constraint solver model, we used the global “knapsack” con-
straint of the Minizinc library. We used these two different solvers
to reduce the possibility that our results are biased by a particular
solution technique. The results of the computational experiments for
instances with 50 items are shown in Figure 2 (results for instances
with different numbers of items were qualitatively the same).

Solvability First, we examine whether the probability of solvabil-
ity of instances changes as a function of normalized capacity c and
normalized profit p and, in particular, whether this probability ex-
hibits a phase transition. The plot in Figure 2a shows the probability
that an instance has a solution at given levels of normalised capacity
c and normalised profit p. As is evident from the plot, the probability
that an instance has a solution tends to increase in c and decrease in p,
ceteris paribus, as expected. In other words, solvable instances gener-
ally have relaxed constraints (i.e., normalised capacity is higher than
normalised profit) while unsolvable instances have tight constraints
(i.e., normalised capacity is lower than normalised profit).

In a contour plot of the probability of a solution as a function
of c and p with equi-distant contours, the probability is above the
45 degree line (see Figure 2d). Likewise, in a plot of P [E(r)] as a
function of the log-ratio log(r) = log(c/p), the region of maximum
uncertainty—where the probability of a solution is 1/2—is to the left
of 0 (see Figure 2c).

Time complexity Next, we examine time complexity of the in-
stances. We computed the time taken to solve the random instances
by Minizinc (Figure 2b and 2c). The plots show that the hard in-
stances occur around the phase transition from solvability to unsolv-
ability (region of maximum entropy in the probability space). The
average compute time using Minisat+ (not shown here) has a simi-
lar relationship to the phase transition as for Minizinc. Hard instances
for both solvers were located in the same area of the parameter space,
indicating the robustness of our findings with regards to the solution
technique. Also observe that we are able to identify an island of dif-
ficulty within the instances that lies in the phase transition (see Fig-
ure 2b). The hardest instances occur between values of normalised
capacity of 0.4 and 0.52 and values of normalised profit of 0.52 and
0.68.

Phase transition To characterise the phase transition in the KP in
terms of c and p, we plot the probability of solvability as a function of
c and p (Figure 2a). We also use the log of this ratio (i.e., log(c/p)) to
plot the solvability as a function of a single metric (Figure 2c). Note
that similarly to phase transitions in solvability observed in relation
to other NP-complete problems such as 3-SAT, integer partition and
graph colouring, the phase transition from solvability to unsolvability
in the KP occurs precipitously near 0, that is, near the point c = p.

Importantly, the probability that an instance has a solution, has a
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Figure 3: Experimental paradigm: Example instance of the 0–1 knapsack problem with 10 items with a capacity constraint of 42. In the
experiment, each item was represented by a square. Selected items were displayed in green. The size of an item was proportional to its weight
and the colour was proportional to its value. The total value and the total weight of the current knapsack were displayed at the top of the screen.
The internal representation of a state of the knapsack was represented by an array of 0 s and 1 s with length equal to the number of items
available. To analyse the time spent we compared the ratio of value and capacity of a knapsack state and the time spent on that state.

phase transition above the 45 degree line in (c,p) space. Our compu-
tational results also show that the transition from solvability to un-
solvability exhibits a convex shape. In the area near the centre of the
diagonal where c = p, instances with c < p have a higher probability
of having a solution at the centre of the diagonal than instances at the
ends of the diagonal. This finding confirms our result in Section 3.

This convexity is related to structural properties of the search
space. Intuitively, the number of possible knapsack configurations
is maximal when the size of the knapsack is half the total number of
items (the function

(
n
k

)
peaks at k = n/2). In addition, given that we

are considering random instances, there is a probability that there are
some items whose weights are (relatively) smaller than their values.
Therefore, the actual probability of finding a knapsack configuration
that is a solution to an instance with lower normalised capacity than
normalised profit, peaks when the knapsack configuration size is half
of the total number of items.

Using simulations, we now investigate how tight the upper and
lower bounds are. We randomly generated 1,000 knapsack instances
with n = 50, normalized weights and values, applied the greedy
strategies and determined, for each combination of c and p (in inter-
vals of 0.05, from 0 to 1), whether there exists a solution. Figure 2d
plots the isoquants in (c,p) space. In (c,p) space, the phase transition
region clearly shows convexity; virtually all (equi-distant) isoquants
are above the 45 degree line. The region exhibits the same features
as the one obtained from the true (estimated) probabilities.

5 Human Experiments

As argued before, the KP is ubiquitous in every-day human life,
at many different levels of cognition [26]. An interesting question,
therefore, is whether instances near the phase transition are also
harder for humans. At the surface, there are many inherent differ-
ences between electronic and human computers [20]. For example,
as compared to electronic computers, humans are more memory-
constrained and therefore have limited capacity to implement solu-
tion techniques such as dynamic programming. In addition, humans
are affected by relatively short attention spans, fatigue, and calcu-
lation errors. On the other hand, recent experimental evidence sug-
gests that instance complexity does predict human behaviour. It has

been shown that as instance complexity of the optimisation variant of
the KP increases, the probability of human participants being able to
solve the instance decreases [16, 20]. However, these earlier studies
used algorithm-dependent metrics of instance complexity.

In the following, we examine whether instances near the phase
transition identified above are also harder for humans. To investigate
this question, we used data from an experimental study where hu-
man participants were asked to solve a number of instances of the
optimisation variant of the 0-1 knapsack problem (Figure 3 shows
a schematic view of the experimental paradigm). Twenty-two hu-
man volunteers (age range = 18-30, mean age = 22.2, 17 female,
5 male) recruited from the general population took part in the study.
The experimental protocol was approved by the University of Mel-
bourne’s human research ethics committee. The order of instances
was randomised in each session. Participants were incentivized as
follows: (i) for each instance they received a cash amount propor-
tional to the total value of their knapsack (relative to the value of
the optimal knapsack); and (ii) a fixed show-up fee. The experiment
included a training session prior to actual testing. The optimisation
variant of the KP can be considered as a sequence of decision tasks in
which participants have to answer the question “Does there exist an-
other set of items with a higher profit than the current set?” We take
the time spent at each node as a proxy of the time participants spent
on solving the corresponding decision problem. In the experiment,
participants were asked to find the set of items with the highest total
value subject to the capacity constraint. They always started with an
empty knapsack and had 240 seconds to solve an instance. They used
a computer interface to add items to and remove items from the the
knapsack. Each participant solved 15 instances. Each instance had 10
items. Item values and weights, as well as capacity, differed across
instances. Values and weights were at most three digits long and were
drawn from the same distribution.

We call each addition of an item to or removal from the knapsack
a move. We measured the time taken between each move. We then
calculated normalised capacity c and normalised profit p for each
feasible search state that participants visited (participants could not
reach infeasible search states).

The time spent by participants in a given state is a function of
two key cognitive processes: (i) parsing of information (profit and
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Figure 4: Human complexity of solving Knapsack instances.

weight of the state); and (ii) solving of instance of the decision prob-
lem (does there exist a feasible state with a higher total profit?). At
the start of each instance, a participant will consume more time to
parse information (e.g., weight and value combinations of items) and
therefore the time absorbed by this process will be higher. After hav-
ing parsed the information, the time taken to solve an instance would
be the main driver of the time spent in a state.

Figure 4 compares the average time spent by human participants
and by the Minizinc solver (on instances with 20 items) as a function
of log(c/p). The nodes colored in red are the nodes corresponding
to local maxima in the search space (i.e., states in which no addi-
tional item could be added without violating the capacity constraint).
As Figure 4a shows, the average time taken is maximal to the left
of the phase transition (i.e., just before log(c/p) = 0). As is evi-
dent from Figure 4, time increases the closer a search node is to the
phase transition boundary. This finding provides empirical evidence
that instances near the phase transition were also harder for humans.
We note that we have successfully reproduced these findings in rep-
etitions of the same experimental paradigm.

6 Discussion

Key contributions in AI have emerged as a result of research on hu-
man intelligence (e.g., development of heuristics and algorithms).
Here, we go the other way and use knowledge about phase transi-
tions developed in AI to study human reasoning. We argue that our
work provides a step towards establishing common ground for inter-
disciplinary collaborations between human decision making and ar-
tificial intelligence. This will allow an understanding of tasks for
which humans are good at computing solutions and tasks where hu-
mans may need inputs from machines for computing solutions.

Given the ubiquity of the KP in every-day life, a better characteri-
sation of its structure can improve our understanding of human com-
putation and behavior, including the use and development of heuris-
tics and the occurrence of biases. In addition, identifying properties
which impact the accuracy of human computation will help in devis-
ing better mechanisms for human-computer interactions.

Problems in class NP-complete are considered intractable if, in the
worst case, the time taken by a computer to solve them grows faster
than polynomially in input size. However, many instances of NP-

complete problems can nevertheless be solved in polynomial time.
Understanding what the hard instances are and how they affect hu-
man decision making, is an important question.

It has been conjectured that all NP-complete problems have at least
one order parameter such that the phase transition in solvability oc-
curs near a critical value of this parameter [3]. NP-complete prob-
lems for which such parameters have been identified include satisfia-
bility [17, 9], integer partition [11], graph colouring [3], and traveling
salesman [10]. In this paper, we identified such a parameter for the
0-1 KP, providing further evidence towards the conjecture.

A generalization of this work conjectures that phase transitions in
solvability are related to the constrainedness of instances [8]. Con-
strainedness of search over an ensemble can be estimated by the for-
mula κ = 1 − log2(E[Sol])

N
, where N = log2(|S|) (i.e., log of the

size of the total search space S), and E[Sol] is the expected number
of solutions. Instances with κ < 1 are considered under-constrained
while instances with κ > 1 are over-constrained. Phase transitions
have been shown to exist (e.g., for 3-SAT and graph colouring) when
κ ≈ 1. We showed that for the KP (under the sampling assumptions
of Section 3), κ ≈ 1 when c/p ≈ 1, where c and p are normalized
capacity and normalised profit, respectively.

In this paper, we also provide empirical evidence that difficulty
for human decision-makers increases close to the phase transition.
Although there are other NP-Complete problems (e.g., the widely-
studied 3-SAT) for which phase transitions have been identified, we
believe that the KP is more suited to study the role of complexity
in human decision making. This is partly because of the nature of
the task (logical in 3-SAT vs search/optimisation in the KP), repre-
sentational issues (with just 5 variables the number of clauses to be
displayed will be 25 for a c/l ratio of 5), and a cleaner experimen-
tal task design (the displayed input size remains the same across KP
instances, whereas in 3-SAT the number of clauses varies, and non-
computer science participants tend to understand a task based on the
KP more easily).

Recent evidence [20, 2] suggests that, due to limited working
memory, humans may not resort to dynamic programming to com-
pute the optimal value of a KP instance. Evidence presented in this
paper provides further support of this conjecture. In theory, one can
solve the decision case by first solving a corresponding optimisation
variant of the same instance and then checking the optimal value of
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the knapsack against the given profit threshold. However, this is inef-
fective computationally. If the profit threshold is low as compared to
the capacity threshold, a better algorithm would be able to solve that
instance with less effort. In terms of the search space, nodes with low
profit and high capacity would be outside the phase transition region.
In our experiments, participants spent more time on nodes that were
closer to the phase transition region as compared to nodes that were
further away from the phase transition.

In future work, we will investigate how human reasoning is af-
fected by phase transitions in solvability in other NP-complete prob-
lems, and the relation between decision and optimisation variants.
In addition, we aim to design experiments to better understand the
limits to human computation.
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