
Group Behavior Recognition Using
Attention- and Graph-Based Neural Networks

Fangkai Yang1†, Wenjie Yin1†, Tetsunari Inamura2, Mårten Björkman1, Christopher Peters1

Abstract. When a conversational group is approached by a new-
comer who wishes to join it, the group may dynamically react by
adjusting their positions and orientations in order to accommodate it.
These reactions represent important cues to the newcomer about if
and how they should plan their approach. The recognition and anal-
ysis of such socially complaint dynamic group behaviors have rarely
been studied in depth and remain a challenging problem in social
multi-agent systems. In this paper, we present novel group behavior
recognition models, attention-based and graph-based, that consider
behaviors on both the individual and group levels. The attention-
based category consists of Approach Group Net (AGNet) and Ap-
proach Group Transformer (AGTransformer). They share a similar
architecture and use attention mechanisms to encode both tempo-
ral and spatial information on both the individual and group levels.
The graph-based models consist of Approach Group Graph Convolu-
tional Networks (AG-GCN), which combine Multi-Spatial-Temporal
Graph Convolutional Networks (MST-GCN) on the individual level
and Graph Convolutional Networks (GCN) on the group level, with
multi-temporal stages. The individual level learns the spatial and
temporal movement patterns of each agent, while the group level
captures the relations and interactions of multiple agents. In order
to train and evaluate these models, we collected a full-body motion-
captured dataset of multiple individuals in conversational groups. Ex-
periments performed using our models to recognize group behaviors
from the collected dataset show that AG-GCN, with additional dis-
tance and orientation information, achieves the best performance. We
also present a multi-agent interaction use case in a virtual environ-
ment to show how the models can be practically applied.

1 Introduction

A common pattern of multi-agent interactions arises in small groups
where people gather and stand in an environment to converse. This
pattern is referred as free-standing conversational groups [11] which
are ubiquitous in daily life. When humans or robots approach to join
these groups, one vital ability is to present social compliance. The
newcomer should adopt behaviors in a socially-acceptable manner
in order to make individuals in the group feel comfortable [20, 34].
However, group dynamics are not appropriately considered in previ-
ous works so that the conversational groups are assumed to be static
when approached by a newcomer [2, 21]. As observed in real scenar-
ios such as during coffee breaks and in poster sessions [1, 13] or in
human-robot interaction experiments [29], the group members react
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to the newcomer as they either ignore the newcomer or adjust their
positions and orientations to better accommodate them (Figure 1).

Due to the lack of such a capability to recognize dynamic group
behaviors, recent works [18, 29] use humans to teleoperate robots to
approach groups leveraging the human perception on the dynamic
group behaviors. Such teleoperation suffers from limitations that the
control needs experienced operators and it is hard to keep consistency
among different situations. This motivates us to collect data that can
be used to train machine learning models in order to recognize and
understand group dynamics. It aims to support research, especially in
human-agent interaction, by providing human-group interaction data
to better understand and learn human behaviors in groups.

Behavior recognition methods have been widely used in real-
world scenarios [12, 37], but with fewer applications for human-
human/robot interaction on group level. It is challenging to recog-
nize group behaviors, and the difficulty lies in modeling the rela-
tions among group members and the lack of datasets for training. In
this paper, we present novel machine learning models that trained on
our collected dataset to recognize group behaviors. They are cate-
gorized into attention-based and graph-based models. The attention-
based models share a similar architecture but differ in the attention
mechanism where AGNet uses LSTM-based soft attention and AG-
Transformer uses the Transformer model with self-attention. Among
these two categories, the Approach Group Graph Convolutional Net-
work (AG-GCN), which combines Multi-Spatial-Temporal Graph
Convolutional Neural Networks (MST-GCN) and Graph Convolu-
tional Networks (GCN), achieves the best performance. It builds a
spatial-temporal graph from a sequence of body markers. The move-
ment of each agent is modeled through a multi-temporal stage graph
on an individual-level, and a group-level graph is combined to en-
code the group spatial relationships. In order to apply our trained
model, we present a virtual online group interaction use case based
on a cloud-based VR platform [25]. Each participant controls a vir-
tual character through a VR device. Motion data are fed to the trained
model to recognize group behaviors in real-time.

The major contributions of the paper are summarized as follows:
• We propose novel machine learning models for group behavior

recognition when a group is approached by a newcomer, supported
by a new full-body motion-captured dataset that we collected.

• We present a multi-agent interaction use case in virtual environ-
ments to recognize group dynamics in real-time using our models.

2 Related Work
2.1 Multi-agent Interactions in Groups
There have been numerous studies on multi-agent interactions in
the field of Artificial Intelligence [23], Social Science and Cogni-
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tive Science [24], with fewer focused on group interaction, specif-
ically situations in which a newcomer approaches to join a group.
In a free-standing conversational group, Kendon [16] proposed the
F-formation system to define the positions and orientations of in-
dividuals within a group. F-formations and other group formation
models have been studied computationally [6, 21, 28], and have been
used as a basis for group joining behaviors of a mobile robot or an
agent [3, 20, 26]. These works focus on navigating a robot or an
agent to approach a group in a safe and socially-acceptable man-
ner. However, they rely on hand-crafted features. Other recent works
[10, 34, 35] have made use of data-driven methods to generate such
joining group behaviors, but they were trained using synthetic data
or prior computational models due to the lack of real-life datasets.
All aforementioned works assume the newcomer would eventually
approach to join the group which is not aware of the newcomer, i.e.,
the group members have no reaction to the newcomer but stand still
in a group. However, as observed in publicly available datasets con-
cerning cocktail parties or poster sessions [1, 13], the free-standing
conversational groups would have interactions when approached by a
newcomer as they make adjustments in positions and orientations to
better accommodate the newcomer or ignore them. Our dataset con-
tains these group behaviors with detailed 3D full-body information
that could be used to learn group behaviors utilizing our models.

2.2 Behavior Recognition Methods

Analysis of multi-agent interactions benefits from human motion
recognition that the group behavior composed by the action of each
group member is more interpretable. Human behavior recognition
has been explored by many researchers, and it could be grouped into
vision-based approaches and skeleton-based approaches. While the
vision-based approaches has be addressed in numerous works [37],
the complex factors such as scenario, occlusion, pose estimation er-
ror limit the performance of vision-based approaches. On the other
side, the skeleton data recorded by Motion Capture systems (Mo-
Cap) are stable with respect to external factors, we thus collect our
data using motion capture and focus related works on skeleton-based
approaches (see [12] for a review).

From the model perspective, behavior recognition approaches also
could be categorized into machine learning algorithms with hand-
crafted features and end-to-end deep learning methods [37]. Histori-
cally, hand-crafted machine learning algorithms are highly active in
the topic of human behavior recognition. These works have been us-
ing Hidden Markov Models [31], K-means and SVM [15] to learn
behavior recognition models. However, these methods rely on hand-
crafted features. With the dawn of deep learning, deep learning al-
gorithms have been used to achieve great success. Recurrent Neu-
ral Networks (RNNs), specially Long Short-Term Memory (LSTM)
models, have shown extraordinary performance on human behavior
recognition by capturing the sequential information [8, 38]. In ad-
dition, attention-based models [30, 36] utilize attention mechanisms
together with RNNs to focus on important information in behavior
recognition. Recent graph-based methods use Graph Convolutional
Networks (GCN) [17, 22] on constructed human skeleton graphs for
behavior recognition. Yan et al. [33] propose the Spatial-Temporal
Graph Convolutional Networks (ST-GCN) to extract spatial and tem-
poral features. Li et al. [19] use the Actional-Structural Graph Con-
volutional Networks (AS-GCN), which combines actional and struc-
tual links into a generalized skeleton graph. Inspired by the success
of attention- and graph-based methods, in this work, we adopt both
approaches for multi-agent interactions.

All of the above methods focus on single person behavior recogni-
tion. As for group behavior recognition, Ibrahim et al. [14] propose a
two-stage LSTM model to recognize group activity. [5] uses a set of
interconnected RNNs to jointly capture the actions of individuals.
However, these RNN-based methods ignore the physical relations
among group members and suffer from the lack of flexibility. We
adopt graph-based models to represent the relations among agents.
In [32], an actor relation graph is proposed to capture the appearance
and position relation between actors, but it simplifies the individ-
ual behaviors as the changes in body positions without considering
skeletons or body joints. In our work, the skeleton of each individual
is used for training which contains more detailed behavioral infor-
mation in behavior recognition. In contrast to previous works, we
develop AG-GCN that combines Multi-Spatial-Temporal GCN and
Group-GCN to address the graphical relations between body mark-
ers and group members. Meanwhile, we include body distance and
head orientation for better interaction recognition performance.

3 Methods
In this section, we present a novel dataset of group behaviors col-
lected with motion capture (Section 3.1). Then we develop novel be-
havior recognition models, i.e., attention-based models (Section 3.2)
and graph-based models (Section 3.3), trained on our dataset.

Figure 1: Two group behaviors when the newcomer (yellow charac-
ter) approaches to join the group. The red arrow indicates the move-
ment of the newcomer. The group members stand still and ignores
the newcomer purposefully (top). The group members accommodate
the newcomer, with one group member (red character) moving back-
wards in order to make space for them (bottom). All skeletons above
are reconstructed from our collected data.

3.1 Dataset Collection
To provide a scenario for group interaction behaviors, we adopted a
game scene called Who’s the Spy. Forty participants (27F:13M) aged
between 22-35 years old (M=25.8, SD=3.2) were recruited from the
local city and the university through public bulletins and online ad-
vertisement to participate in the motion capture sessions. Three small
booklets were distributed to three group players, and each booklet
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contains 40 word cards with an order that ensures only one different
but synonymous word exists in one game round. For example, the
first word cards from the three booklets are Bee, Bee, and Butterfly,
where Butterfly is the spy word. Each player takes turns to play as
the newcomer, and shifts after 10 game rounds. In each round, group
members take turns to describe the word at hand, and the newcomer
observes the group from 1.5 meters outside the group. Once the spy
is determined, the newcomer will approach and join the group to in-
form the judgment.

The motion data of each participant was recorded with a motion
capture suit with 37 markers and a NaturalPoint Optitrack system1.
The group behaviors are labeled into two general types, Accommo-
date and Ignore, which corresponds to the behaviors of the group
as the newcomer is approaching to join. These group behaviors are
observed in real-life datasets [1, 13] and experiments [29]. Figure 1
shows two randomly sampled behaviors from our dataset using re-
constructed skeletons from full-body markers.

3.2 Attention-Based Models
In this section, we present attention-based models that we train and
evaluate on our collected dataset. Attention mechanisms-based re-
current neural networks have been successfully applied to human be-
havior recognition [30, 36]. Such models benefit from the attention
mechanism that it enables the model to automatically focus on im-
portant spatial and temporal information during individual behavior
recognition. Inspired by that, we develop attention-based models for
group behavior recognition during human-group interactions. Two
models are presented in this section including Approach Group Net
(AGNet) and Approach Group Transformer (AGTransformer). These
two models share a similar architecture with different types of agent
encoders.

Figure 2: The overview of the attention-based architecture. The full-
body markers of three group members are encoded through a shared
Group Member Encoder and the newcomer is encoded through an-
other Newcomer Encoder. Both encoders are instantiated from the
Agent Encoder which encodes the importance of the spatial and tem-
poral information. The output from the agent encoders is fed to the
Group Attention Module in order to find which group member exerts
more impact on the overall group behaviors. The output is then used
to classify the group behavior to be Accommodate or Ignore

The overview of the attention-based architecture is shown in Fig-
ure 2. There are three humans P1, P2, P3 in a conversational group
and a newcomer Q approaches to join the group. The input is a se-
quence of tensors which contains 3D positions of full-body mark-
ers from each agent during a period of time. The Agent Encoder
(dashed yellow boxes in Figure 2) is developed to extract the tempo-
ral and spatial information of all the markers from both group mem-
bers (Group Member Encoder) and the newcomer (Newcomer En-
coder). Note that the details of the Agent Encoder will be discussed

1https://optitrack.com/

later in separate models (see Section 3.2.1&3.2.2). The output of the
Agent Encoder encodes the full-body markers of an agent with the
focus on important markers at important time frames. It has the form
H?

Pi
= [h1

Pi
, h2

Pi
, · · · , hK

Pi
]T and H?

Q, where i = 1, 2, 3 for three
group members, and K is the hidden layer dimension.

Utilizing the Agent Encoder, the network is able to encode the
important spatial and temporal information from each group mem-
ber and the newcomer. We thus need a higher-level Group Attention
(GA) module to find out which group member exerts a larger impact
on the overall group behaviors. The group attention score is com-
puted with two fully-connected layers with tanh and softmax activa-
tions:

C = softmax(tanh(WgroupH?)) (1)

where Wgroup is a weight matrix and H? = [H?
P1

,H?
P2

,H?
P3

,H?
Q].

The group attention score is then used to modulate the output of the
Agent Encoders:

S? = C�H? (2)

where S? is a K × 4 matrix which encodes the importance of both
group members and the newcomer, and � represents Hadamard
product. This output from the group attention module is fed to a
fully-connected layer with a softmax activation to classify the type
of the group behavior.

Two attention-based models will be presented as follows, and they
share the similar architecture as shown in Figure 2 with differences
in the Agent Encoder.

3.2.1 The AGNet architecture

The Agent Encoder of the AGNet (see Figure 3) is implemented with
two modules: a temporal attention module, separate for each marker,
followed by a body attention module which learns the subset of the
body markers that play an important role in the full-body behaviors.

Figure 3: The Agent Encoder of the AGNet.

Temporal Attention Module A shared Long Short-Term Mem-
ory (LSTM) is used to extract the temporal information for each of
the 37 markers independently, i.e., given a marker Mm of a group
member Pi, the output of the LSTM encoder is a K × T matrix of
hidden states HPi,Mm = [H1

Pi,Mm
,H2

Pi,Mm
, · · · ,HT

Pi,Mm
], where

T is the temporal length of the input data matrix, and Ht
Pi,Mm

=

[ht,1
Pi,Mm

, ht,2
Pi,Mm

, · · · , ht,K
Pi,Mm

]T , where K is the hidden layer di-
mension. These outputs are then fed into the Temporal Attention
Module. Wang et al. [30] justified that a 1×1 convolutional layer can
help to reduce the number of trainable parameters compared with a
fully-connected layer, i.e., limits irrelevant temporal connections. We
thus use a 1×1 convolutional layer with a softmax activation to learn
the temporal attention score aPi,Mm = softmax(WtempHPi,Mm),
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where Wtemp ∈ R1×K is a weight matrix. The temporal attention
score is further used to combine the original output of the LSTM
encoder for different moments in time:

H′Pi,Mm
=

T∑
t=1

at
Pi,Mm

Ht
Pi,Mm

(3)

Body Attention Module The temporal attention module has en-
coded the information from each marker separately. We thus need
a body attention module to learn a body attention score for each
marker, in order to better understand the subset of the full-body
markers that play an important role in the full-body behaviors. Sim-
ilar to [30], two fully-connected layers with tanh activation and soft-
max activation are used to compute the body attention score:

bPi = softmax(tanh(WbodyH′Pi
)) (4)

where H′Pi
= [H′Pi,M1

,H′Pi,M2
, · · · ,H′Pi,Mm

], and Wbody is a
weight matrix. The body attention score is thus used to merge the
output of the temporal attention module for different markers:

H?
Pi

=

37∑
m=1

bPi,MmH′Pi,Mm
(5)

As mentioned above each H?
Pi

then goes through group attention.
The vector H?

Q representing the newcomer is computed in a similar
manner, but in another instance of the Agent Encoder, i.e. Newcomer
Encoder.

3.2.2 The AGTransformer architecture

The Transformer model [27] has proven to be successful in learning
a better representation of each element in a sequence for machine
translation tasks. This has inspired us to apply Transformer layers
in our AGTransformer model as a self-attention mechanism to deal
with sequential information. The Agent Encoder of the AGTrans-
former uses two transformer layers, Marker Transformer and Body
Transformer. The Marker Transformer learns a deeper representation
for each body marker by capturing its self-attention on different time
frames, and the Body Transformer captures the self-attention of each
marker related to others. Besides a marker embedding layer which
embeds all input markers into a fixed dimension vector, we have a
positional embedding layer which encodes the temporal position of
each marker similar to the word position in [27].

Figure 4: The Agent Encoder of the AGTransfomer.

Transformer Layer The Transformer layer (see the right green
box in Figure 4) contains a multi-head self-attention layer and a
feed-forward layer, and each of these two layers has a residual con-
nection followed by a standard normalization step. The multi-head
self-attention is defined as:

MH(H) = Concat(head1, head2, · · · , headh)Wh (6)

where H is the embedded matrix of each marker on sequential
frames, Wh ∈ Rh×K represents a weight matrix, and headi =
Attention(HWQ

i ,HWK
i ,HWV

i ) is a scaled dot-product attention:

Attention(Q,K,V) = softmax(
QKT
√
d

V) (7)

Here Q, K, V represent query, key, and value vectors of length d
(see [27] for details), WQ

i ,WK
i ,WV

i ∈ RK×d are projection matri-
ces, and K is the embedding dimensionality. The output is then fed
into a feed-forward layer. Note that both dropout and LeakyReLU are
used in the multi-head self-attention layer and the feed-forward layer
to avoid overfitting. The output is passed through Multilayer percep-
trons (MLP) to reduce dimensionality, e.g., MLP after the Marker
Transformer reduces the temporal dimension.

We use two Transformer layers in our AGTransformer architec-
ture in order to learn a representation for an agent by learning the
self-attention of the body markers during a period of time. The final
output is embedded to the same dimension as the output from the
AGNet Agent Encoder through MLP.

In summary, the attention-based models share the same architec-
ture with differences in the Agent Encoder. On the individual level,
the full-body markers of each agent are encoded through the Agent
Encoder, and on the group level, the output from each agent encoder
is fed to the Group Attention module to combine them with attention
weights before it is sent to a classifier.

3.3 Graph-Based Models
We introduce Approach Group Graph Convolutional Networks (AG-
GCN) for the group behavior recognition. Figure 5 shows an
overview of AG-GCN. The input data is a skeleton graph. The skele-
ton graph construction is described in Section 3.3.1. Hierarchically,
the model consists of two levels, the individual level, and the group
level. We discuss these two levels in Section 3.3.2. Finally, we dive
into the multi-temporal model in Section 3.3.3.

3.3.1 Skeleton Graph Construction

We create a spatial-temporal graph from the sequence of marker co-
ordinates. The format of the input data of the graph neural network
is significantly different from the one in the attention models. As de-
scribed in Section 3.2, the features of all markers are concatenated
to one vector. In the graph neural network, we convert the data to a
graph structure based on the spatial structure of the human skeleton
with related markers. For example, as shown in Figure 6(a), markers
(each one has an ID) are connected to construct the skeleton graph.

Spatially, the skeleton graph can be represented as an undirected
graph GS = (VS , ES), where VS is the set of nodes, and ES is
the set of edges. Each marker is a node, and there exist edges be-
tween connected markers. For the skeleton with N nodes, VS =
{vi | i = 1, ..., N}. There also exist temporal connections that con-
nect the same marker nodes in consecutive frames. For a sequence
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Figure 5: Overview of the Approach Group Graph Convolutional Neural Network (AG-GCN) for group behavior analysis. The full-body
markers are connected as skeleton graphs and fed into the Multi-spatial-temporal Graph Convolutional Network (MST-GCN) which encodes
the marker’s spatial relationships and movement over time. The group members (P1, P2, P3) share the same model, while the newcomer
(Q) is modeled through another MST-GCN model. The output from the MST-GCN module is then fed to the Group Graph Convolutional
Neural Network (G-GCN) Module which encodes the group’s spatial relationships. The output is used to classify the group behavior to either
Accommodate or Ignore.

Figure 6: The partition strategy: (a) Spatial configuration partition
strategy. On the individual level, the nodes in a neighbor set are di-
vided into three sets: the node itself, the nodes that are closer to the
center of the graph, and the nodes that are farther away. (b) Distance
partition strategy. On the group level, the nodes in a neighbor set are
divided into two sets: the node itself and the neighbor nodes.

with T frames, vt,i connects to vt−1,i and vt+1,1 along the temporal
dimension. For the node vi, the temporal connections are represented
as Gi = (Vi, Ei), where Vi = {vt,i | t = 1, ..., T}, and Ei repre-
sents the temporal edges. The whole graph sequence is composed of
the spatial graph and temporal graph.

3.3.2 Spatial Graph Convolutional Neural Network

Spatial Graph Convolutional Neural Network (S-GCN) extends con-
volution operations on images [7] to graphs. On graphs, we can de-
fine a sampling function on a node and its neighbor set. Unlike image
convolutions, in a skeleton graph, the nodes within a neighborhood
do not have a fixed spatial order. To address this problem, Kipf et al.
[17] proposed a strategy that is equivalent to calculate the inner prod-
uct of the average feature vector in the set and a weight vector. Yan
et al. proposed spatial configuration partition and distance partition
[33]. In our implementations, we follow the same idea. Hierarchi-
cally, the whole model is divided into two levels, the individual level
and group level. The individual level adopts the spatial configuration
partition and the group level adopts the distance partition. The spatial
configuration partition divides neighborhoods into three subsets, i.e.,

the node itself, the nodes that are closer to the center of the graph,
and the nodes that are farther away.

For example, as shown in Figure 6(a), we assume the chest
(marker-6, the black node) is the center of the body. Within the neigh-
bor set of marker-19 (within the blue dotted line), there are three sub-
sets: the marker-8 (the green node, closer to the center), the marker-
19 (the red node, the node itself), and the marker-22 (the yellow node,
farther away from the center). On the group level, the distance parti-
tion divided nodes of agents set into two subsets, i.e., the node itself
and the neighbor nodes. When the newcomer (agent in the red circle)
is the root node (to the left in Figure 6(b)), there are two subsets,
the newcomer itself and all other group members (agents in the blue
circles). When one of the group members is the root node (to the
right in Figure 6(b)), the two subsets are this group member and the
newcomer. After dividing the points in a neighbor sets into several
subsets, we can determine the spatial order based on the order of the
subsets. For example, in distance partition, the index of the root node
itself is 0, the index of the neighbor nodes is 1.

Using neighborhood subsets defined for both individual and group
levels, graph convolutions are performed by the corresponding net-
works, S-GCN (to the right in Figure 5) and G-GCN (at the bottom
left). With xi and yi being the feature maps of node vi before and af-
ter a graph convolution operation, a graph convolution can be defined
as:

yi =
∑

vj∈Si

xj

Dvi(vj)
w(lvi(vj)), (8)

where Si is the set of neighbor nodes of vi, w is a weight function,
lvi(vj) is a mapping from vj to the index of its corresponding subset
and the normalizing term Dvi(vj) is the number of nodes in this
subset. Essentially, an average is computed for each subset, with the
output being a weighted sum of these averages.

To improve the results, we calculate distance and angle features,
and concatenate these features to the end of the output of the previ-
ous level as the input of the group level. As stated in [34, 35], body
distances and head orientations between two people in group interac-
tions have shown to be essential factors in group behavior analysis.
For group members, the distance feature is the distance to the new-
comer, the angle feature is the angle between the head orientations
of the member and the newcomer. For the newcomer, the values of
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these two features are the average value of group member features.

3.3.3 Multi-Temporal Convolutional Neural Network

Before delving into the multi-temporal convolutional neural network,
we first study the temporal convolutional neural network (TCN). In-
stead of ordinary convolutions along the temporal dimension, TCN
uses dilated convolutions (shown in the ‘Stage-n’ box of Figure 5)
to enable larger receptive fields for higher layers of the network [4].
Given the frames of a sequence x1:T = (x1, ..., xT ), and a filter ker-
nel fk, k = 0, ...,K − 1, the dilated convolution operation on xt, in
the temporal domain, is defined as:

yt =

K−1∑
i=0

fk xt−dk, (9)

where d is the dilation factor, and K is the filter size. Residual con-
nections are further adopted to promote gradients flow to speed up
training and improve accuracy. In the residual block, the inputs are
added to the outputs (orange rectangle ‘Layer-n’ in Figure 5). From
one layer to the next, the dilation factor d is doubled.

In the skeleton graph construction (Section 3.3.1), nodes are con-
nected to the same nodes of consecutive frames in the temporal do-
main. Similar to TCN applied to image sequences [4], TCN on graph
sequences can be extended to multiple stages. In the multi-stage TCN
model [9], the input to the first stage is the original sequence. Each
stage generates a refined prediction based on the previous stage:

Y 0 =X1:T ,

Y s =F(Y s−1),
(10)

where X1:T is the original sequence, F is each stage, and Y s is the
output of stage s. We stack several stages sequentially, and concate-
nate the prediction of each stage, as illustrated in Figure 5.

In summary, in contrast with ST-GCN [33] that only has one stage
with multiple layers without dilation, MST-GCN computes a feature
vector that is a concatenation of features from a series of stages. Each
stage consists of a number of residual layers, where each such layer
includes a spatial GCN followed by a dilated TCN over the temporal
domain, with a residual connection. AG-GCN further adds a group
GCN on the output of the all MST-GCNs of the group, before the
combined result is sent to a classifier.

4 Experiment
Data Preparation We run a sliding window over data sequences

to pre-process the data. The window length is 180 with an overlap
ratio of 0.75. All samples are down-sampled to 60 frames. 5-fold
cross-validation is further applied to make full use of the data.

Implementation Details The data source2 and code3 can be found
here. AGNet is trained with 16 embedding dimensions and the LSTM
encoder contains 3-layer LSTM networks. The dimensions of the
hidden state is 16 for each layer. Dropout with probability of 0.5 is
used after each LSTM layer. AGTransformer also has 16 embedding
dimensions, and the transform layer has 8 heads with the query, the
key, and the value vector size set to be 64.

As for the model details of AG-GCN, hierarchically, the AG-GCN
model is composed of two levels. For the individual level, there are

2https://www.csc.kth.se/∼chpeters/ESAL/infrastructure.html
3https://github.com/YIN95/Group-Behavior-Recognition

three temporal stages, and each stage has three layers. The number
of channels in these three temporal stages is 64, 128, and 256. A
pooling layer with a stride of 2 exists between every two stages. The
size of the temporal kernel is 9 and the dilation factor is doubled at
each layer. An average pooling is performed after each stage, and we
concatenate the features as the input of the group level. For the group
level, the number of channel is 64. The GCN is connected with a
fully connected layer and softmax classifier.

4.1 Experimental Results
The classification performances of the attention-based neural net-
works and the graph-based neural networks are presented in Table 1.
We can see that the graph-based models generally perform better than
the attention-based ones with higher F1 scores, and AG-GCN with
additional features of body distance and head orientation achieved
the best performance (highest F1 score).

Table 1: Confusion matrix and F1 score for group behavior classifi-
cation. ”GT” means Ground truth, ”A” means Accommodate and ”I”
stands for Ignore. For the meaning of each abbreviation of networks,
please refer to Section 4.1.

GT A I F1 score

AGNet A 3940
(76.27%)

1226
(23.73%) 0.754

I 1345
(38.42%)

2156
(61.58%)

AGTransformer A 4825
(93.40%)

341
(6.60%) 0.842

I 1473
(42.07%)

2028
(57.93%)

ST-GCN +
Group Attention

A 4713
(91.23%)

453
(8.77%) 0.892

I 688
(19.65%)

2813
(80.35%)

ST-GCN +
Group GCN

A 4763
(92.20%)

403
(7.80%) 0.919

I 438
(12.51%)

3063
(87.49%)

MST-GCN +
Group Attention

A 4806
(93.03%)

360
(6.97%) 0.926

I 411
(11.73%)

3090
(88.27%)

AG-GCN
(MST-GCN +
Group GCN)

A 4822
(93.32%)

344
(6.68%) 0.930

I 389
(11.11%)

3112
(88.89%)

AG-GCN
(dis & ori )

A 4839
(93.67%)

327
(6.33%) 0.941

I 276
(7.88%)

3225
(92.12%)

AGTransformer achieves comparable True Positive (TP) with the
graph-based models. A possible reason is that the transformer layer
provides a better capability to capture the sequential information of
all markers than a naive attention module in AGNet. AGTransformer
has high False Positives (FP) as it recognized some Ignore behav-
iors to be Accommodate. The reason might be that the markers are
passed to the Body Transformer layers without ordering, and it makes
AGTransformer fail in attending to the right markers which are rep-
resentative in Accommodate behaviors. Note that Ignore behaviors
are not static and contain body motions, and these motions are acted
mostly within the group rather than to the newcomer.

Then we evaluate the graph-based networks by analyzing the ef-
fectiveness of the proposed modules in AG-GCN. We first compare
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the spatial-temporal graph convolutional neural network (ST-GCN)
[33] with Group Attention (GA) to AGNet, letting ST-GCN replace
the body attention module and temporal attention module in AG-
Net. Seen from Table 1, ST-GCN+GA significantly outperforms the
attention-based methods. In AGNet and AGTransformer, all body
markers are simply concatenated as the input features without spa-
tial ordering. However, in ST-GCN, the spatial information among
markers is naturally preserved by using the graph structure, and the
motion trajectory is expressed in the form of temporal-edges. The
use of graph convolutional networks enhances the association among
body markers and reduces the complexity of networks.

We also evaluate the efficiency of using graph neural networks
on group level by combining ST-GCN with a group-level GCN (ST-
GCN+Group GCN), in effect replacing the Group Attention module
in ST-GCN+GA with a GCN. On the individual level, each agent is
thus modeled by ST-GCN, while on the group level, a GCN is utilized
to model the spatial relationship among group members. With these
two levels, the performance is improved further.

In ST-GCN+GA and ST-GCN+Group GCN, a single-stage tem-
poral convolutional network (TCN) without dilation is adopted. To
verify the multi-temporal-stage architecture is better than a single-
temporal-stage one, we train multi-temporal-stage networks that
have the same number of parameters as the single-stage one. We
can observe in Table 1 that AG-GCN (MST-GCN+GA) outperforms
ST-GCN+GA. Applying multiple temporal stages to the ST-GCN,
the AG-GCN enhances the F1 score to 0.930. Even if AG-GCN al-
ready performs quite well, the recognition performance can still be
improved by concatenating the features of body distance and head
orientation to the output of each MST-GCN.

5 Virtual Reality Use Case
In this section, we present a use case in a virtual environment to
show how the model is being applied. There is a common pattern
of online multi-agent interactions that small groups of people gather
and stand in an environment to converse, e.g., VRChat4. The group
behaviors should account for the interactions between the group and
a newcomer that the group members either ignore the newcomer or
react to them by adjusting their positions and orientations to accom-
modate the newcomer in the group formation better. The motivation
for establishing such a virtual reality interaction environment is to
show the capability of perceiving the group behaviors is desirable
for artificial-intelligent agents, in a case that the agents should be
socially-acceptable when approaching free-standing conversational
groups. Such capability is also essential in the pedagogical domain
where students could learn when and how to join a group politely in
this virtual environment.

To generate such a virtual scenario for supporting multi-agent
interactions, a cloud-based VR platform, SIGVerse5 [25], is used.
MIXAMO6 3D humanoid character with no facial features is used in
order to ensure that the perception of the characters will exclusively
result from the body behaviors. Similar to the aforementioned data
collection scenario, four participants are engaged in the use case (see
Figure 7 top-left), i.e., three group members are in a free-standing
conversational group and one newcomer approaches the group to join
the conversation.

Each of these four participants controls one virtual character by a
VR device (see Figure 7 bottom), and four VR devices are thus used

4https://www.vrchat.com/
5http://www.sigverse.org/wiki/en/
6https://www.mixamo.com/

including three Oculus Rift S and one Oculus Rift CV1. The VR de-
vices track the head and hand movements, and these data are simul-
taneously transferred to control the virtual characters. Note that the
lower body motions are resolved by the built-in Inverse Kinematics
(IK) system in SIGVerse. The full-body motion data are passed to our
trained AG-GCN model to determine whether the group members
accommodate or ignore the newcomer in real-time (see Figure 7 top-
right). Note that the participants can operate and control the virtual
characters from separate places since the scenario is cloud-based.

Figure 7: The virtual reality use case. The perspective view of the
multi-agent interaction scenario, where a newcomer approaches to
join a conversational group (top-left). The first-person view of the
newcomer with the normalized probability of group behaviors repre-
sented by color bars (top-right). Each participant controls one virtual
character with one VR device (bottom).

6 Conclusion
In this paper, we propose novel attention- and graph-based models
to recognize dynamic group behaviors when a group is approached
by a newcomer. A novel full-body motion capture dataset of conver-
sational groups is collected to understand and learn group behaviors.
The provided experimental results show the graph-based models out-
perform attention-based models by leveraging graph convolutional
networks to learn the representations within the agent body and the
human group. We further present a use case in a virtual environment
to recognize group dynamics in real-time using a trained AG-GCN.

In social scenarios, dynamic group behavior recognition has rarely
been studied due to its complexity and the lack of data. This has
motivated us to apply our models to dynamic group behaviors in a
ubiquitous scenario where a conversational group is approached by a
newcomer. We believe our models and methods, which involve vir-
tual environments, are suitable for extension to other group behaviour
scenarios with minor modifications to the architecture. In the future,
we plan to generate autonomous and socially-acceptable behaviors
for an agent/robot to approach or coordinate with groups.
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