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Abstract. In this work we address the following question: can we
measure how much knowledge a knowledge base represents?

We answer to this question (i) by describing properties (axioms)
that a knowledge measure we believe should have in measuring the
amount of knowledge of a knowledge base (kb); and (ii) provide a
concrete example of such a measure, based on the notion of entropy.

We also introduce related kb notions such as (i) accuracy; (ii) con-
ciseness; and (iii) Pareto optimality. Informally, they address the fol-
lowing questions: (i) how precise is a kb in describing the actual
world? (ii) how succinct is a kb w.r.t. the knowledge it represents?
and (iii) can we increase accuracy without decreasing conciseness,
or vice-versa?

1 INTRODUCTION
A knowledge base (kb) is the main ingredient of a knowledge-based
system (kbs), whose aim is to use its kb to reason and to solve com-
plex problems within a specific application domain. A kb essentially
represents facts about such a specific world by relying usually on a
formal logic.

An extensive work has been carried out by typically ad-
dressing properties, computational complexity, inference systems
and implementation optimisations of propositional logic, First-
Order Logic, modal logics, epistemic logics, temporal logics, non-
monotone logics, various logic programming frameworks, proba-
bilistic/possibilistic logics (see, e.g. [4]), and many/multiple-valued
logics and fuzzy logics (see, e.g. [7, 8]), to mention a few.

In this paper, we address a novel problem2: namely, can we mea-
sure how much knowledge a kb (and, thus, a kbs) contains? We an-
swer to this question in the context of propositional logic by intro-
ducing the notion of knowledge measure, called κ-index. Namely,
we define axioms that a κ-index we believe should have. Then, we
introduce related notions such as accuracy, conciseness, and Pareto
optimality: the first one defines how precise a kb is in describing the
actual world, the second one defines how succinct a kb is w.r.t. the
knowledge it represents, while the last one establishes when we may
not increase accuracy without decreasing conciseness (or vice-versa).
Eventually, we provided a concrete example of such measures, based
on the notion of entropy.

Example 1. An example in which k-indexes may possibly find their
usefulness is belief revision (see, e.g. [5]). Belief revision is the pro-
cess of changing beliefs to take into account a new piece of knowl-
edge, which possibly may be in contradiction with the current belief
1 ISTI - CNR, Pisa, Italy, email: umberto.straccia@isti.cnr.it
2 To the best of our knowledge.

base. Of course, several different ways for performing this operation
may be possible. The notion of k-index may be used here e.g. to de-
fine a revision operator maximising the k-index of the revised believe
base.

Other cases can be found similarly (use the k-index when we
have to make a choice among alternative knowledge bases) such as
e.g. non-monotonic reasoning (see e.g. [3]). Indeed, in most non-
monotonic reasoning frameworks typically one has to deal with mul-
tiple extensions, i.e. consistent and incomparable sets of formulae
that are the outcome of the underlying non-monotonic framework. It
is common to consider in such cases e.g. brave reasoning (a query
formula is entailed by some extension) or sceptical reasoning (a
query formula is entailed by all extensions). Likewise belief revi-
sion, we may employ here the notion of knowledge measure to con-
sider e.g. entailment according to minimal/maximal k-index (a query
formula is entailed by some/all knowledge minimal/maximal exten-
sions).

In the following, we proceed as follows. The next section intro-
duces preliminary notions we will rely on. Section 3 is the main
part of this work in which we define knowledge measures, accuracy,
conciseness and Pareto optimality, together with some properties of
them. In Section 4 we provide a concrete example of κ-index, while
in Section 5 we recap our contribution and illustrate topics for future
work.

2 PRELIMINARIES
Let us introduce main notions about propositional logic we will rely
on. Specifically, let Σ be a finite, non-empty alphabet of proposi-
tional letters (denoted a, b, c, . . .)3, where Σ is a subset of an infinite,
denumerable alphabet ΣU (the universal alphabet).

A formula (denoted φ, ψ), is built in the usual way from the con-
nectives ¬,∧,∨,→ and↔ and the alphabet Σ. The set of formulae
is denoted LΣ. A literal (denoted L) is either a propositional letter
or its negation. For a literal L, (i) if L = p (resp. if L = ¬p) then L
is called a positive (resp. negative) literal; and (ii) with L̄ we denote
¬p (resp. p) if L = p (resp. if L = ¬p). Let Σ̄ = {¬p | p ∈ Σ} and
let Σ? = Σ ∪ Σ̄. Note that Σ̄ = {p̄ | p ∈ Σ}.

A knowledge base (kb)K = {φ1, . . . , φn} is a finite set of formu-
lae φi. Given a kb K, with

∧
K we denote the formula

∧
φ∈K φ. In

the following, whenever we write K, we consider
∧
K instead, un-

less stated otherwise. Given a formula φ, with Σφ ⊆ Σ we denote the
set of propositional letters occurring in φ. We define the length of φ,

3 All symbols we are going to use may have an optional sup- or sub-script.
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denoted |φ|, inductively as usual: for p ∈ Σ, |p| = 1, ¬φ = 1 + |φ|,
|φ ∨ ψ| = |φ ∧ ψ| = |φ→ ψ| = |φ↔ ψ| = 1 + |φ|+ |ψ|.

An interpretation I w.r.t. Σ4 is a set of literals such that all propo-
sitional letters in Σ occur exactly once in I. With IΣ, or simply I,
we denote the set of all interpretations w.r.t. Σ. For p ∈ Σ, if p ∈ I
(resp. ¬p ∈ I) then we say that p is true, or also positive (resp. false,
or also negative) in I. We may also denote an interpretation I as the
concatenation of the literals occurring in I with the convention to
replace a negative literal ¬p with p̄ (e.g. the interpretation {p,¬q}
may be denoted as well as pq̄).

The notion of I is a model of (satisfies) a formula, denoted I |= φ,
is then defined inductively as usual: I |= L iff L ∈ I, I |= ¬φ iff
I 6|= φ, I |= φ ∧ ψ iff I |= φ and I |= ψ, I |= φ ∨ ψ iff I |= φ or
I |= ψ, I |= φ→ ψ iff I |= ¬φ∨ψ, and eventually I |= φ↔ ψ iff
I |= (φ→ ψ) ∧ (ψ → φ). Furthermore, we say that φ is satisfiable
(resp. unsatisfiable) if it has (resp. has no) model.

We will also use two special symbols: with ⊥ we will denote the
formula that, by definition, has no models, while with > we denote
the formula that, by definition, is satisfied in all interpretations. We
impose that > (resp. ⊥) cannot occur in any other formula different
than > (resp. ⊥) itself5.

Given a formula φ, we defineM(φ,Σ) as the set of models of φ
w.r.t. Σ. We may also writeM(φ) in place ofM(φ,Σφ).

With FM(φ,Σ) we denote the formula (in Disjunctive Normal
Form -DNF)

FM(φ,Σ) =
∨

I∈M(φ,Σ)

(
∧
L∈I

L)

with the condition that FM(φ,Σ) = ⊥ if M(φ,Σ) = ∅ and, thus,
FM(⊥,Σ) = ⊥. Moreover, we define FM(>,Σ) = >.

We say that φ entails ψ, denoted φ |= ψ, or also φ |=≤ ψ, if
M(φ,Σ) ⊆ M(ψ,Σ). We write φ |=< ψ if φ |= ψ and ψ 6|= φ.
We say that φ and ψ are equivalent, denoted φ ≡ ψ, if φ |= ψ and
ψ |= φ, i.e. |= φ ↔ ψ. Note that, φ, FM(φ,Σ) and FM(φ,Σφ) are
pairwise equivalent.

We define a substitution θ as a set

θ = {p1/L1, . . . , p|Σ|/L|Σ|}

such that each propositional letter in Σ occurs exactly once in
{p1, . . . p|Σ|} as well as in {L1, . . . L|Σ|}. That is, the function
θ(pi) = Li is a bijection θ : Σ → Σ?. The identity substitution ε
is defined as ε = {p1/p1, . . . p|Σ|/p|Σ|}. The intuition is that propo-
sitional letters may be renamed by literals. Specifically, given a sub-
stitution θ = {p1/L1, . . . p|Σ|/L|Σ|}, with (i) φθ we indicate the
formula obtained from φ by replacing every occurrence of pi in φ
with Li; (ii) with Iθ we indicate the interpretation obtained from
I by replacing every occurrence of pi in I with Li (with the con-
vention that double negations are normalised6); and (iii) for a set of
interpretationsM, withMθ we denote the set

Mθ = {Iθ | I ∈ M} .

IfM1 andM2 are two sets of interpretations, we writeM1 ≤M2 if
there is a substitution θ such thatM1θ ⊆M2. If the subset relation
is strict, we writeM1 <M2. We writeM1 ≈ M2 if bothM1 ≤
M2 andM2 ≤ M1 hold. Furthermore, we say that a formula φ k-
entails a formula ψ, denoted φ |≈ ψ or also φ |≈≤ ψ, ifM(φ,Σ) ≤
4 We may omit the reference to Σ if no ambiguity arises.
5 Obviously, we also define |>| = |⊥| = 1.
6 ¬¬p 7→ p.

M(ψ,Σ). We write φ |≈< ψ if φ |≈ ψ and ψ 6|≈ φ. Eventually, we
say φ and ψ are k-equivalent, denoted φ ≈ ψ, if φ |≈ ψ and ψ |≈ φ.

The following obvious proposition holds:

Proposition 2. If φ |= ψ then φ |≈ ψ.

Proof. Assume φ |= ψ. Then M(φ,Σ) ⊆ M(ψ,Σ) and, thus,
M(φ,Σ)ε ⊆ M(ψ,Σ) holds. Therefore, φ |≈ ψ, which con-
cludes.

The converse is not true.

Example 3. It is easily verified that using substitution θ =
{p/¬q, q/p}, p |≈ ¬q, but p 6|= ¬q.

Corollary 4. If φ ≡ ψ then φ ≈ ψ.

In the following we will use the metavariable C to denote either ≤
or < (i.e., C∈ {≤, <}).

Proposition 5. If φ |≈C ψ then |M(φ,Σ)| C |M(ψ,Σ)|.

Proof. Assume φ |≈ ψ. Then there is a substitution θ such that
M(φ,Σ)θ ⊆ M(ψ,Σ) and, thus, |M(ψ,Σ)| ≥ |M(φ,Σ)θ| =
|M(φ,Σ)|. The other case is shown similarly.

Corollary 6. If φ ≡ ψ, or more generally, if φ ≈ ψ then
|M(φ,Σ)| = |M(ψ,Σ)|.

Given an interpretation J w.r.t. alphabet Σ and an interpretation I
w.r.t. alphabet Σ′ ⊆ Σ, we say that J is an extension of I if I ⊆
J . If J is an extension of I, then the residual interpretation J [I]
w.r.t. alphabet Σ\Σ′ is defined asJ \I. Furthermore, for a setM1 of
interpretations w.r.t. Σ and a setM2 of interpretations w.r.t. Σ′ ⊆ Σ,
we define the residualM1[M2] as the set of residual interpretations:

M1[M2] = {J [I] | J ∈ M1, I ∈ M2,J is an extension of I} .

Example 7. Consider

M2 = {ab̄, āb} (Σ′ = {a, b})
M1 = {ab̄c̄, ab̄c, abc̄, abc} (Σ = {a, b, c}) .

Then

M1[M2] = {c̄, c} (Σ \ Σ′ = {c}) .

The following can easily be shown:

Proposition 8. Given a formula φ, consider Σφ ⊆ Σ′ ⊆ Σ,M1 =
M(φ,Σ′) and M2 = M(φ,Σφ). Then M1[M2] is the set of all
interpretations over Σ′ \ Σφ, i.e.M1[M2] = IΣ′\Σφ and, thus, the
formula FM1[M2] is equivalent to >.

3 KNOWLEDGE MEASURES
In the following we address basic principles of a knowledge measure
for propositional knowledge bases we believe should hold.

3.1 Axioms
To start with, there are some principles we rely on to define a knowl-
edge measure.

1. We consider a formula φ as a formal specification of the actual
world, which is one of the models of φ.
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2. The more φ entails the more information φ represents.
3. The more models a formula has, the more uncertain we are about

which is the actual world, which in turn means the less we know
about the actual world.

A knowledge measure (also κ-index) w.r.t. a finite alphabet Σ ⊆ ΣU
is a function

κ : 2IΣ → [0,∞] .

For a set of interpretationsM∈ 2IΣ , we may also write κ(M,Σ) in
place of κ(M) when we want to emphasise that the involved alpha-
bet is Σ7.

We require that a κ-index has to satisfy the following axioms:

Axiom T: κ(IΣ) = 0 and κ(∅) =∞;
Axiom E: ifM1 CM2 then κ(M1) B κ(M2).

We extend κ to a function

κ : LΣ × 2ΣU → [0,∞]

over formulae as follows:

κ(φ,Σ) = κ(M(φ,Σ)) .

In the following, we define κ(φ) as a shorthand for κ(φ,Σφ).
By definition we get immediately the following properties:

Proposition 9. The following hold:

1. if |= φ then κ(φ,Σ) = 0;
2. if φ is unsatisfiable then κ(φ,Σ) =∞;
3. if φ |= ψ and, more generally, if φ |≈C ψ then κ(φ,Σ) B
κ(ψ,Σ).

Using the proposition above, we may rewrite axioms (T ) and (E)
also as

Axiom T: κ(>,Σ) = 0 and κ(⊥,Σ) =∞;
Axiom E: if φ |≈C ψ then κ(φ,Σ) B κ(ψ,Σ).

Let us shortly explain the above axioms. Concerning axiom (T ), if
|= φ then φ is satisfied in all interpretations, i.e.M(φ,Σ) is the set of
all possible interpretations over Σ. This scenario depicts the maximal
uncertainty we may have about which is the actual world described
by φ and, thus, φ represents the least possible amount of knowledge,
i.e. κ(φ,Σ) = 0. Concerning axiom (E), assume φ |= ψ. Then φ
has less models than ψ, which means that there is less uncertainty
about which is the actual model for φ compared to ψ. Moreover,
whatever is entailed by ψ is also entailed by φ. Combining the two
facts together means that φ represents more information about what
is the actual world than ψ. That is, φ is more specific than ψ in de-
scribing which/what could be the actual world. Let us consider now
k-entailment. Consider e.g. φ := p and ψ := q. Of course, nei-
ther φ |= ψ nor ψ |= φ hold. But, does φ represent more knowl-
edge than ψ, or vice-versa? As φ ≈ ψ, by axiom (E) we have
that κ(φ,Σ) = κ(ψ,Σ) instead, i.e. p and q represent exactly the
same amount of knowledge. Essentially, our assumption here is that
a knowledge measure is insensitive to symbol names, i.e. a symbol p
represents as much knowledge as another symbol q. Of course, one
may change such an assumption and assign to each propositional let-
ter an a priori mass of information, which may differ from letter to
letter. However, we do not address this here yet and leave it for future
work.
7 Recall that Σ is implicit, givenM.

Remark 10. Please note that a knowledge measure somewhat has
a relationship to a so-called fuzzy measure (see, e.g. [10]). In fact,
we recap that a fuzzy measure in our context may be defined as a
function

g : 2I → [0,∞]

with

1. g(∅) = 0;
2. ifM1 ⊆M2 then g(M1) ≤ g(M2)

and, thus, there are some ‘reversed’ commonalities.

Remark 11 (About tautology). Note that if |= φ then for every for-
mula ψ, we have that ψ |= φ and, thus, by axiom (E) κ(ψ,Σ) ≥
κ(φ,Σ) has to hold, i.e. κ(φ,Σ) has to be as small as possible, which
motivates κ(φ,Σ) = 0.

Remark 12. (About unsatisfiability) Analogously to Remark 11, if φ
is unsatisfiable then for every formula ψ, we have that φ |= ψ and,
thus, by axiom (E) κ(φ,Σ) ≥ κ(ψ,Σ) has to hold. That is, κ(φ,Σ)
has to be as large as possible, which motivates κ(φ,Σ) =∞.

Note however, that axiom (E) does not imply axiom (T ).

Example 13. Consider φ := p ∧ (p → q) and ψ := q. As φ |= ψ,
by Proposition 2 and axiom (E), we have that κ(φ,Σ) ≥ κ(ψ,Σ).

Example 14. Consider φ := p ∧ (p → q) and ψ := r ∧ s. As
φ |≈ ψ, then κ(φ,Σ) ≥ κ(ψ,Σ). But, also ψ |≈ φ holds8 so we
have κ(ψ,Σ) ≥ κ(φ,Σ) and, thus, κ(ψ,Σ) = κ(φ,Σ).

That is, the following holds:

Corollary 15. If φ ≡ ψ, or more generally, if φ ≈ ψ then κ(ψ,Σ) =
κ(φ,Σ).

Proof. It suffices to apply axiom (E) to both φ |≈ ψ andψ |≈ φ.

Corollary 16. For all propositional letters p, q ∈ Σ we have that
κ(p,Σ) = κ(q,Σ).

Proof. Apply Proposition 15 to p ≈ q.

Next, there are two more axioms we would like a κ-index has to
satisfy.

Axiom L: κ(M(φ,Σ′)) = κ(M(φ)), for all Σφ ⊆ Σ′ ⊆ Σ;
Axiom M: if φ is satisfiable then

1. 0 ≤ κ(M(φ)) ≤ |Σφ|
2. if |M(φ)| = 1 then κ(M(φ)) = |Σφ|.

Essentially, the rationale behind these axioms is the following: con-
cerning axiom (L), this axiom says that, to what concerns κ-indexes,
we may restrict our attention to Σφ, i.e. the set of all propositional
letters occurring in a formula φ and, thus, symbols not occurring in
φ do not contribute to represent additional knowledge9 . Concerning
axiom (M), this axiom tells us that a κ-index is bounded in the sense
that a satisfiable formula may not represent more knowledge than the
number of symbols it relies on and the bound is reached only if the
formula exactly describes the actual world.

8 In fact, φ ≈ ψ.
9 Compare in contrast e.g. with the case of Closed World Assumption

(CWA) [11].
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As for axioms (T ) and (E), we may rewrite the axioms (L) and
(M) above as follows:

Axiom L: κ(φ,Σ′) = κ(φ), for all Σφ ⊆ Σ′ ⊆ Σ;
Axiom M: if φ is satisfiable then

1. 0 ≤ κ(φ) ≤ |Σφ|
2. if |M(φ)| = 1 then κ(φ) = |Σφ|.

Eventually, we conclude with some properties of κ-indexes.
The following can also easily be shown:

Proposition 17. Consider formulae φ and ψ. If φ |≈C ψ then
κ(φ,Σ′) B κ(ψ,Σ′) for all Σφ ∪ Σψ ⊆ Σ′ ⊆ Σ.

Proof. By axiom (L) we have κ(φ,Σ′) = κ(φ) = κ(φ,Σ) and
κ(ψ,Σ′) = κ(ψ) = κ(ψ,Σ). By axiom (E), κ(φ,Σ′) = κ(φ) =
κ(φ,Σ) B κ(ψ,Σ) = κ(ψ) = κ(ψ,Σ′), which concludes.

Proposition 18. For sets of interpretationsM1,M2 ⊆ IΣ we have
that:

1. κ(M1 ∩M2) ≥ max(κ(M1), κ(M2));
2. κ(M1 ∪M2) ≤ min(κ(M1), κ(M2)).

Proof. Concerning point 1: asM1∩M2 CMi, it suffices to apply
axiom (E). Concerning point 2: asM1 ∪M2 BMi, again apply
axiom (E).

From the proposition above, we get immediately:

Corollary 19. For formulae φ and ψ we have that:

1. κ(φ ∧ ψ,Σ) ≥ max(κ(φ,Σ), κ(ψ,Σ));
2. κ(φ ∨ ψ,Σ) ≤ min(κ(φ,Σ), κ(ψ,Σ)).

We conclude the section with three additional measures related to a
κ-index.

3.2 Accuracy
The accuracy indicates how precise a satisfiable formula is in de-
scribing the actual world. Specifically, an accuracy measure, or α-
index, is a function

α : LΣ × 2ΣU → [0, 1]

that has to satisfy the following axioms, where we use α(φ) as a
shorthand for α(φ,Σφ): for satisfiable formulae φ and ψ

Axiom A1: α(φ,Σ′) = α(φ), for Σφ ⊆ Σ′ ⊆ Σ;
Axiom A2: if κ(φ) ≥ κ(ψ) and |Σφ| ≤ |Σψ| then α(φ) ≥
α(ψ). The relation is strict if one of the two preconditions do
so.

Essentially, axiom (A1) says that the accuracy depends only on the
symbols occurring in a formula, while axiom (A2) aims at saying
that if a formula represents more knowledge than another formula
and uses also less symbols then it is more precise in describing the
actual world.

The following propositions hold:

Proposition 20. If φ |≈C ψ and |Σφ| ≤ |Σψ| then α(φ) ≥ α(ψ).

Proof. By Proposition 9 and axiom (L), κ(φ) B κ(ψ) and, thus, by
axiom (A2), α(φ) ≥ α(ψ) holds.

Proposition 21. Consider the function

ᾱ(φ) =
κ(φ)

|Σφ|
.

Then ᾱ is an accuracy measure (and in particular, 0 ≤ ᾱ(φ) ≤ 1).

Proof. Immediate.

3.3 Conciseness

The conciseness measure indicates how succinct a satisfiable formula
is w.r.t. the knowledge it represents. Specifically, a conciseness mea-
sure, or γ-index, is a function

γ : LΣ × 2ΣU → [0,∞]

that has to satisfy the following axioms, where we use γ(φ) as a
shorthand for γ(φ,Σφ): for satisfiable formulae φ and ψ

Axiom C1: γ(φ,Σ′) = γ(φ), for Σφ ⊆ Σ′ ⊆ Σ;
Axiom C2: if κ(φ) ≥ κ(ψ) and |φ| ≤ |ψ| then γ(φ) ≥ γ(ψ).

The relation is strict if one of the two preconditions do so.

Likewise accuracy, axiom (C1) says that the conciseness depends
only on the symbols occurring in a formula, while axiom (C2) aims
at saying that if a formula represents more knowledge than another
formula and is also shorter then it is more concise in describing the
actual world.

The following propositions hold:

Proposition 22. If φ |≈C ψ and |φ| ≤ |ψ| then γ(φ) ≥ γ(ψ).

Proof. By Proposition 9 and axiom (L), κ(φ) B κ(ψ) and, thus, by
axiom (C2) γ(φ) ≥ γ(ψ) holds.

Proposition 23. Consider the function

γ̄(φ) =
κ(φ)

|φ| .

Then γ̄ is a conciseness measure and 0 ≤ γ̄(φ) ≤ |Σφ||φ| ≤ 1.

Proof. Immediate.

Eventually, consider

0 ≤ cφ =
|Σφ|
|φ| ≤ 1 . (1)

We call cφ the conciseness factor of φ. Now, it is easily verified that,
using the conciseness factor, we may rewrite γ̄(φ) as:

γ̄(φ) = cφ · ᾱ(φ) .

Of course, many alternatives for accuracy and conciseness may be
worked out: however, we believe that accuracy (resp. conciseness) of
a formula is monotone non-decreasing w.r.t. the formula’s κ-index
and non-increasing w.r.t. the formula’s alphabet (resp. the formula’s)
size.
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3.4 Pareto Optimality
The last notion we introduce is Pareto optimality of a satisfiable for-
mula: that is, for a given satisfiable formula, we cannot find another
k-equivalent one by increasing accuracy without decreasing concise-
ness (and vice-versa).

Example 24. Consider φ and ψ as in Example 14. Then φ is not
Pareto optimal as there is ψ with φ ≈ ψ that has same accuracy, but
is more concise (same amount of knowledge, but formula is shorter).

Consider the function π : LΣ → 2LΣ defined as10

π(φ) = arg max
{ψ|ψ≈φ}

α(ψ) · γ(ψ) .

The following can be shown:

Proposition 25. For a satisfiable formula φ, φ ∈ π(φ) iff φ is Pareto
optimal.

Proof. Assume φ ∈ π(φ). Then, by definition, for all ψ such that
ψ ≈ φ we have α(φ) · γ(φ) ≥ α(ψ) · γ(ψ). This means that there
cannot be a formula ψ with ψ ≈ φ that increases at the same time
accuracy and conciseness (as otherwise α(φ) · γ(φ) < α(ψ) · γ(ψ)
would hold). Therefore, φ is Pareto optimal. Vice-versa, assume φ
is Pareto optimal. Therefore, if we cannot find another k-equivalent
formulaψ by increasing accuracy without decreasing conciseness (or
vice-versa), α(φ) · γ(φ) is maximal and, thus, φ ∈ π(φ).

From Propositions 21, 23 and 25 it follows immediately that

Corollary 26. For a satisfiable formula φ and function

π̄(φ) = arg max
{ψ|ψ≈φ}

ᾱ(ψ) · γ̄(ψ) ,

φ ∈ π̄(φ) iff φ is Pareto optimal.

In particular, we have

Corollary 27. For a satisfiable formula φ, φ is Pareto optimal iff for
all ψ such that ψ ≈ φ we have that

|Σφ| · |φ| ≤ |Σψ| · |ψ| .

Proof. By Corollary 26 φ is Pareto optimal iff φ ∈ π̄(φ), i.e. for
all ψ such that ψ ≈ φ and, thus, by Proposition 15 and axiom (L)
κ(φ) = κ(ψ), we have ᾱ(φ) · γ̄(φ) ≥ ᾱ(ψ) · γ̄(ψ). Therefore, by
Propositions 21 and 23, φ is Pareto optimal iff

κ(φ)

|Σφ|
· κ(φ)

|φ| ≥ κ(ψ)

|Σψ|
· κ(ψ)

|ψ|

=
κ(φ)

|Σψ|
· κ(φ)

|ψ| ,

i.e., |Σφ| · |φ| ≤ |Σψ| · |ψ|, which concludes.

Example 28 (Example 24 cont.). It can be verified that ψ is Pareto
optimal by Corollary 27. Indeed, |Σψ| = 2, |ψ| = 3 and any other k-
equivalent formula ψ′ needs at least two symbols and, thus, |Σψ′ | ≥
2 and |ψ| ≥ 3, i.e. |Σψ| · |ψ| ≤ |Σψ′ | · |ψ′|.

We conclude by noting that we may use Corollary 27 to compute a
Pareto optimal solution via a brute-force approach: that is, given a
satisfiable formula φ, set φpo := φ and then enumerate all formulae
ψ with |Σψ| · |ψ| < |Σφpo | · |φpo|11. If such a ψ is also equivalent to
φ then update φpo with φpo := ψ. At the end, φpo is a Pareto optimal
solution w.r.t. φ.
10 Recall that arg maxx f(x) := {x | ∀y.f(y) ≤ f(x)}.
11 In particular, either |Σψ | or |ψ| is strictly smaller than |Σφpo | or |φpo|,

respectively.

4 AN ENTROPY BASED KNOWLEDGE
MEASURE

We next provide a concrete example of a knowledge measure. We
will restrict our attention to the more interesting case of satisfiable
formulae only, unless specified otherwise.

The entropy based κ-index of a satisfiable formula φ, or simply
κh-index of φ, denoted κh(φ,Σ), is defined as follows. At first,
we define the entropy of a formula φ as the entropy of a random
variable (see, e.g. [9]) ranging over models of φ. Specifically, for
I ∈ M(φ,Σ), let

℘(I,Σ, φ) =
1

|M(φ,Σ)|

be the probability to randomly select a model of φ w.r.t. Σ.

Remark 29. Note that in a more general setting we may also just
envisage a probability distribution among the models. Also note that
we do not consider a probability distribution among all possible in-
terpretations over Σ (rather than models) as we focus on the models
of a formula only and want to compute the entropy of generating one
of these as the actual world a formula represents.

Now, we define the (Shannon) entropy [9] of φ w.r.t. Σ as12

H(φ,Σ) = −
∑

I∈M(φ,Σ)

℘(I,Σ, φ) log2 ℘(I,Σ, φ) .

Then, it is well known that under the uniform distribution

H(φ,Σ) = log2 |M(φ,Σ)|

holds. Note that 0 ≤ H(φ,Σ) ≤ |Σ|. For convenience, we also
defineH(φ) = H(φ,Σφ).

Now, the κh-index of φ w.r.t. Σ is defined as

κh(φ,Σ) = |Σ| − H(φ,Σ) ,

that is,
κh(φ,Σ) = |Σ| − log2 |M(φ,Σ)| ,

and postulate κh(⊥,Σ) = ∞. We may write, as usual, κh(φ) in
place of κh(φ,Σφ) and, thus, have

κh(φ) = |Σφ| − log2 |M(φ)| . (2)

We further extend κh to sets of interpretations as follows: for a set
M⊆ IΣ of interpretations w.r.t. Σ, we define

κh(M) = κh(FM,Σ) . (3)

The following proposition tells us that, concerning the κh-index, we
may restrict our attention to Σφ, i.e. the set of all propositional letters
occurring in a formula φ only.

Proposition 30. Consider a formula φ and Σφ ⊆ Σ′ ⊆ Σ. Then

κh(φ,Σ′) = κh(φ) .

Proof. Let n = |Σ′ \ Σφ|. Then

|Σ′| = |Σφ|+ n

|M(φ,Σ′)| = 2n|M(φ,Σφ)| .
12 We define by continuity 0 log2 0 = 0.
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Therefore, we have

κh(φ,Σ′) = |Σ′| − H(φ,Σ′)

= |Σφ|+ n− log2 |M(φ,Σ′)|
= |Σφ|+ n− log2 2n|M(φ,Σφ)|
= |Σφ|+ n− n− log2 |M(φ,Σφ)|
= |Σφ| − log2 |M(φ,Σφ)|
= κh(φ,Σφ)

= κh(φ) ,

which concludes.

An immediate consequence of Propositions 30 is that

Corollary 31. κh satisfies axiom (L).

Note that from Proposition 8 it also follows that

Proposition 32. Given a formula φ, consider Σφ ⊆ Σ′ ⊆ Σ. Then
κh(M(φ,Σ′)[M(φ)]) = 0.

Proof. ConsiderM1 =M(φ,Σ′) andM2 =M(φ). By Proposi-
tion 8 we have that the formula FM1[M2] is equivalent to >. There-
fore, by Eq. 3, κh(M1[M2]) = κh(>,Σ′ \ Σφ) = |Σ′ \ Σφ| −
log2 2|Σ

′\Σφ| = 0, which concludes.

Example 33. Consider φ := p ∧ (p→ q). Then,

Σφ = {p, q}
M(φ) = {pq}

℘(I,Σφ, φ) = 1, for all I ∈ M(φ)

H(φ) = 0

κh(φ) = 2 .

Example 34. Consider φ := a ∨ ¬a. Then,

Σφ = {a}
M(φ) = {a, ā}

℘(I,Σφ, φ) = 0.5, for all I ∈ M(φ)

H(φ) = 1

κh(φ) = 0 .

Remark 35. Note that κh is monotone non-decreasing in the number
of propositional letters that occur in a formula φ and monotone non-
increasing w.r.t. the entropy φ. That is, (i) the more propositional
letters occur in φ the higher may the knowledge it represents be;
and, (ii) the more uncertain we are about which is the actual world
φ is representing (i.e. the more models φ has), the less knowledge is
represented by φ.

We have that

Proposition 36. If |= φ then κh(φ) = 0 and, thus, κh satisfies
axiom (T ).

Proof. Assume |= φ. Then |M(φ)| = 2|Σφ| and, thus, by Proposi-
tion 30, κh(φ,Σ) = κh(φ) = 0.

By definition of κh, we also have that

0 ≤ κh(φ) ≤ |Σφ|

and, if |M(φ)| = 1 then κh(φ) = |Σφ|. Therefore,

Proposition 37. κh satisfies axiom (M).

Remark 38. Note that, given an alphabet Σ, the formula

φ =
∧
p∈Σ

p

represents as much knowledge as possible, i.e.

κh(φ) = |Σ| = |Σφ| .

Let us now show that κh satisfies axiom (E) as well.

Proposition 39. If φ |≈C ψ then κh(φ) B κh(ψ) and, thus, κh
satisfies axiom (E).

Proof. Assume φ |≈C ψ holds. Then, by Proposition 5, 1 ≤
|M(φ,Σ)| C |M(ψ,Σ)| holds. Now, by definition of κh and by
Proposition 30 we have that

κh(φ) = κh(φ,Σ)

= |Σ| − log2 |M(φ,Σ)|
B |Σ| − log2 |M(ψ,Σ)|
= κh(ψ,Σ)

= κh(ψ) .

In particular, κ(φ,Σ) B κ(ψ,Σ) and, thus κh satisfies axiom (E),
which concludes.

From Proposition 39 it follows immediately that

Corollary 40. If φ |= ψ then κh(φ) ≥ κh(ψ).

Eventually, from Corollary 31, Propositions 36, 37 and 39, it follows
that

Proposition 41. The function κh is a knowledge measure.

We conclude with the following property.

Proposition 42. The κh-index is additive in the following sense: for
formulae φ and ψ with Σφ ∩ Σψ = ∅ we have that:

κh(φ ∧ ψ) = κh(φ) + κh(ψ) .

Proof. Consider Σ′ = Σφ ∪ Σψ = Σφ∧ψ . As Σφ ∩ Σψ = ∅, it can
be verified that |M(φ ∧ ψ)| = |M(φ)| · |M(ψ)|. Therefore,

κh(φ ∧ ψ) = |Σφ∧ψ| − log2 |M(φ ∧ ψ)|
= |Σφ∧ψ| − log2(|M(φ)||M(ψ)|)
= |Σφ∧ψ| − log2 |M(φ)| − log2 |M(ψ)|
= |Σφ|+ |Σψ| − log2 |M(φ)| − log2 |M(ψ)|
= κh(φ) + κh(ψ) .

Accuracy, Conciseness & Pareto optimality. Concerning accuracy,
let us consider

αh(φ,Σ) =
κh(φ,Σ)

|Σφ|

=
κh(φ)

|Σφ|
= αh(φ)

=
|Σφ| − log2 |M(φ)|

|Σφ|
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So, with

αh(φ) = 1− log2 |M(φ)|
|Σφ|

(4)

we denote the entropy-based accuracy measure, called αh-index. Of
course, by definition,

0 ≤ αh(φ) ≤ 1 .

Concerning conciseness, consider

γh(φ,Σ) =
κh(φ,Σ)

|φ|

=
κh(φ)

|φ|
= γh(φ) .

So, with

γh(φ) =
|Σφ| − log2 |M(φ)|

|φ| (5)

we denote the entropy-based conciseness measure, also called γ-
index.

Note that by construction and Eq. 1 we also have

γh(φ) = cφ · αh(φ)

and, thus,

0 ≤ γh(φ) ≤ cφ =
|Σφ|
|φ| .

By Propositions 21 and 23 it is immediate to show that

Proposition 43. The function αh (resp. γh) is an accuracy (resp. a
conciseness) measure.

Eventually, concerning Pareto optimality, Corollary 27 applies.

Example 44. For

φ := p→ q

we have that

M(φ) = {pq, p̄q, p̄q̄}

Therefore |M(φ)| = 3 and, thus,

κh(φ) = 2− log2 3 ≈ 0.42

αh(φ) ≈ 0.21

γh(φ) ≈ 0.14 .

Example 45 (Example 24 cont.). Consider φ := p∧ (p→ q). Then
its κh-index is 2, its alphabet’s size is 2, and its length is 5 and,
thus, its αh-index is 1, its γh-index is 0.4. Now, consider ψ = p ∧ q.
As ψ ≡ φ we have κh(ψ) = κh(φ) = 2, but |ψ| = 3 and, thus,
ψ’s γh-index is γh(ψ) = 2/3 > 0.4 = γh(φ), in agreement with
Proposition 22. ψ’s αh-index is 1. In summary, ψ is equivalent to φ,
so represents the same amount of knowledge, has the same accuracy,
but is more concise than φ. More precisely, ψ is Pareto optimal (see
Example 24).

5 CONCLUSION & FUTURE RESEARCH
DIRECTIONS

In this work we have introduced the notion of knowledge measure
for propositional logic, i.e. κ-index, whose aim is to quantify the
amount of knowledge a kb represents. To do so, we have defined
four axioms (T ), (E), (L), (M) that a knowledge measure we be-
lieve should have13: (i) (T ) establishes the conditions for tautology
and contradiction; (ii) (E) tries to encode the fact that if a formula
entails another one, then the former has more knowledge that the lat-
ter; (iii) (L) instead, states that symbols not occurring in a formula do
not contribute to represent additional knowledge; and eventually (iv)
axiom (M) provides us an upper bound and when the upper bound
is attained.

We also introduce related kb notions such as accuracy, conciseness
and Pareto optimality: the first one defines how precise a kb is in
describing the actual world, the second one defines how succinct a
kb is w.r.t. the knowledge it represents, while the last one establishes
when we may not increase accuracy without decreasing conciseness
(or vice-versa).

Eventually, we have provided a concrete example of such mea-
sures, based on the notion of entropy.

Of course, all measures can be implemented via propositional
model counting. Even if counting the number of assignments satis-
fying a given propositional formula14 is #P-complete, nowadays ef-
fective SAT solvers exists [6]15 .

Future research directions. Besides, of course, as in any other
axiomatic approach, one may discuss about the appropriateness of
the proposed axioms, we believe it is interesting to investigate on
how one may extend the notion of κ-index to other logics: no-
tably, the family of rule-like languages, modal logics, non-monotone
logics, probabilistic/possibilistic logics, many/multiple-valued and
fuzzy logics, all of them in the propositional as well as in the more
challenging First-Order Logic setting. Another interesting problem
is, given φ, to find (efficiently) a Pareto optimal solution w.r.t. φ.
Last, but not least, we will investigate whether we may take advan-
tage of what has been developed within the context of philosophy of
information (see, e.g. [1, 2]).
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