
Learning Temporal Action Models via Constraint
Programming

Antonio Garrido and Sergio Jiménez1

Abstract. We present a solver-independent Constraint Program-
ming (CP) formulation for learning action models in temporal plan-
ning scenarios beyond PDDL2.1. Inspired by the CP approach for
temporal planning, our formulation bases on a temporal plan trace
and represents observations (as time-stamped states), actions, causal-
link relationships, condition threats and effect interferences. This
formulation is very expressive and supports a wide range of input
knowledge. It also evidences the connection between the tasks of: i)
action model learning, ii) plan validation, and iii) plan synthesis. Our
experiments evaluate the quality of the learned models under differ-
ent learning scenarios and in different planning domains.

1 INTRODUCTION

Temporal planning relaxes the assumption of instantaneous actions
of classical planning [10]. Actions in temporal planning are durative,
as they have a duration, and their conditions/effects may hold/happen
at different times [7]. This means that durative actions can overlap in
different ways [4]. Therefore, valid solutions for temporal planning
instances must specify the precise time-stamp when durative actions
start and end [15].

Despite the potential of state-of-the-art planners, their applica-
tion to real world problems is still somewhat limited mainly because
of the difficulty of specifying correct and complete planning mod-
els [17]. The more expressive the planning model, the more evident
becomes this knowledge acquisition bottleneck, which jeopardizes
the usability of planning technology. There are, however, growing
efforts in the planning community for the machine learning of action
models from sequential plans: since pioneering learning systems like
ARMS [22], we have seen systems able to learn action models with
quantifiers [2, 28], from noisy actions or states [20, 24], from null
state information [3], or from incomplete domain models [25, 27].
These systems use planning, SAT and genetic algorithm techniques,
but they do not exploit constraint programming paradigms nor ad-
dress the complex temporal planning aspects.

Most of the previous approaches are purely inductive and require
large input datasets, e.g. hundreds of plan samples or observations,
to compute statistically significant models. These approaches could
learn a little from each sample, but not a complete valid model for
a particular sample. We follow a different approach and address the
learning setting where one (or more) model is learned from a single
sample, i.e. one-shot learning. If hundreds of samples are available
we will learn many models and return the most learned model, that
is, the most repeated one.

1 VRAIN, Valencian Research Institute for Artificial Intelligence. Universitat
Politecnica de Valencia, Spain, email: {agarridot,serjice}@dsic.upv.es

As far as we know, this paper proposes the first approach for learn-
ing temporal action models. On the one hand, while learning action
models for classical planning means computing the actions condi-
tions and effects that are consistent with the input observations, learn-
ing temporal action models requires additionally: i) identifying the
time-stamps (temporal annotations) of conditions and effects and,
when necessary, ii) estimate the actions duration. This contributes
with an appealing way to learn from plan traces with overlapping
actions in multi-agent environments [8]. On the other hand, our ap-
proach bases on the CP formulation of [9], which is used for planning
and/or scheduling a whole plan. We keep the philosophy of using CP
but, contrarily to [9], we address the inverse task now: learning the
temporal action model given a plan trace. We also contribute with a
solver-independent formulation that integrates the learning of tem-
poral planning action models with their synthesis and validation.

2 BACKGROUND
2.1 Temporal planning
We assume that states are factored into a set F of Boolean variables.
A state s is a time-stamped assignment of values to all the variables in
F . A temporal planning problem is a tuple P = 〈F, I,G,A〉 where
the initial state I is a fully observed state (i.e. a total assignment of
the state variables |I| = |F |) time-stamped with t = 0; G ⊆ F is
a conjunction of goal conditions over the variables in F that defines
the set of goal states; and A represents the set of durative actions. A
durative action has a duration and conditions/effects on F at different
times [9, 21]. To compactly represent temporal planning problems,
we assume that the state variables in F are instantiations of a given
set of predicates Ψ (like in the PDDL language [23]) and that durative
actions in A are fully grounded from operators.

PDDL2.1 is the language for the temporal track of the Interna-
tional Planning Competition (IPC) [7, 12]. A PDDL2.1 durative ac-
tion a ∈ A is defined with the following elements:

1. dur(a), a positive value indicating the duration of the action.
2. conds(a), condi(a), conde(a) representing the three types of ac-

tion conditions. Unlike the preconditions of classical actions, ac-
tion conditions in PDDL2.1 must hold: before a is executed (at
start), over the duration of a (invariant/over all) or when a fin-
ishes (at end), respectively.

3. effs(a) and effe(a) represent the two types of action effects. In
PDDL2.1, effects can happen at start or at end of action a respec-
tively, and can be either positive or negative.

Figure 1 shows an example of two PDDL2.1 durative actions from
the driverlog domain of IPC. board-truck defines a fixed dura-

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

tion of two time units whereas the duration of drive-truck de-
pends on the driving time associated to the two given locations.

(:durative-action board-truck
:parameters (?d - driver ?t - truck ?l - location)
:duration (= ?duration 2)
:condition (and (at start (at ?d ?l))

(at start (empty ?t))
(over all (at ?t ?l)))

:effect (and (at start (not (at ?d ?l)))
(at start (not (empty ?t)))
(at end (driving ?d ?t))))

(:durative-action drive-truck
:parameters (?t - truck ?l1 - location

?l2 - location ?d - driver)
:duration (= ?duration (driving-time ?l1 ?l2))
:condition (and (at start (at ?t ?l1))

(at start (link ?l1 ?l2))
(over all (driving ?d ?t)))

:effect (and (at start (not (at ?t ?l1)))
(at end (at ?t ?l2))))

Figure 1. Two PDDL2.1 durative actions of the IPC-driverlog domain.

PDDL2.2 is an extension of PDDL2.1 that includes the notion
of Timed Initial Literal (TIL) [13], denoted as til(p, t), and repre-
senting that variable p ∈ F becomes true at a certain time t > 0,
independently of the actions in the plan [5]. TILs are useful to
model exogenous events; for instance, in a logistics scenario, the
8h-20h time window when a warehouse is open can be modeled
with these two timed initial literals: til(openWarehouse, 8) and
til(¬openWarehouse, 20).

A temporal plan is a set π = {(a1, ta1), (a2, ta2) . . . (an, tan)},
where each pair (ai, ti) contains a durative action ai and the start
time ti = start(ai). The execution of π, starting from a given initial
state I , induces a state sequence formed by the union of all states
{sti , sti+dur(ai)}, where there exists an initial state s0 = I , and a
state send that is the last state induced by the execution of π. A so-
lution to P is a plan π such that its execution, starting from s0, is
valid (i.e. it holds all the involved action conditions) and eventually
satisfies G ⊆ send.

2.2 Constraint Satisfaction Problems
A Constraint Satisfaction Problem (CSP) is a tuple 〈X,D,C〉, where
X is a set of finite-domain variables, D represents the domain for
each of these variables and C is a set of constraints among the vari-
ables in X that bound their possible values in D.

A solution to a CSP is an assignment of values to all variables in
X that is consistent with C. If we do not define a metric over X ,
many solutions, i.e. different variable assignments that are consistent
with the input constraints, are possible and equally valid.

3 LEARNING A TEMPORAL ACTION MODEL
We formalize the task for learning a temporal action model as a tuple
L = 〈F, I,G,A?, O,C〉 where:

• 〈F, I,G,A?〉 is a temporal planning problem such that actions in
A? are incomplete. By incomplete we mean that the exact con-
ditions+effects, their temporal annotation (at start, over all or at
end), and the duration of actions are unknown. The operator, name
and instantiated parameters (i.e. constants) of actions are known.
The alphabet of a ∈ A? (denoted α(a)) is defined as the set of
all predicates p ∈ F that appear in the set of FOL interpretations

over the instantiated parameters of a. For instance in the driverlog
domain, α(board-truck(driver1,truck1,loc1)) = {(at
driver1 loc1), (at truck1 loc1), (empty truck1),

(driving driver1 truck1), (path loc1 loc1), (link

loc1 loc1)} of size 6. On the other hand, we formally de-
fine candidates(a) as the two-set tuple 〈{pi}, {pi ∪ ¬pi}〉,
where pi ∈ α(a). The first set {pi} denotes all candi-
dates that can be conditions of a, whereas the second set
{pi ∪ ¬pi} denotes all candidates that can be effects of a.
Without loss of generality, we learn positive conditions and
positive+negative effects. Intuitively, candidates(a) contains
all the potential predicates that action a (or the corresponding
operator) could learn; its size depends on the size of α(a), e.g.
|candidates(board-truck(?d,?t,?l))| = 6 ∗ 3 = 18, for
any ?d, ?t and ?l.

• O is the set of observations over a plan trace. It contains a full
observation of I (time-stamped with t = 0) and a final state ob-
servation, which equalsG (time-stamped with tend, the makespan
of the observed plan). Although I represents a full state observa-
tion, the final observation can represent a full or partial state: in
plan synthesis and plan validation it is the partial goal state, and in
learning it is the partial or full state to be explained by the learned
model. O also contains the observations over the start and/or end
times of actions and, optionally, other time-stamped observations
of traversed intermediate partial states2. Figure 2 shows an exam-
ple of O from the driverlog domain.

• C is an optional set of constraints that captures domain-specific
expert knowledge. In this work these constraints are:

– Mutually-exclusive (mutex) constraints that allow us to: i) auto-
matically deduce new observations, and ii) prune action models
inconsistent with these constraints. For instance, we can pro-
vide input knowledge to avoid drivers to be in two different
locations at the same time. Hence, if we learn the driver is in
one location we can automatically deduce an observation (s)he
is no longer in the other locations. Figure 3 shows an example
of six mutex constraints for the driverlog domain.

– Constraints over candidates(a) to represent partially specified
action models [27]. For instance, we may know in advance that
path and link are unnecessary for board-truck, while
path is unnecessary for drive-truck. These constraints
reduce the size of candidates(a), thus improving the learning.

A solution to a learning task L is a fully specified model of dura-
tive actions A such that the conditions+effects, their temporal anno-
tations and the duration of any action in A are: i) completely speci-
fied, and ii) consistent with L = 〈F, I,G,A?, O,C〉. By consistent
we mean that there exists a valid plan that exclusively contains ac-
tions in A and whose execution, starting in I , produces all the ob-
servations in O at the associated time-stamps, while it satisfies all
constraints in C, and reaches a final state that satisfies G.

4 FORMULATING THE LEARNING TASK AS A
CSP

Given a learning task L as defined in Section 3, we automatically
create a solver-independent CSP whose solution induces an action
model that solves L.

2 This work supports partial observations under the hypothesis that not all
variables must be observed at any time. Observations are noiseless, which
means that observed values are actual values with no uncertainty.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

(:objects driver1 driver2 - driver
truck1 truck2 - truck
package1 package2 - obj
s0 s1 s2 p1-0 p1-2 - location)

(:init (at driver1 s2) (at driver2 s2) (at truck1 s2)
(empty truck1) (at truck2 s0) (empty truck2)
(at package1 s0) (at package2 s0)
(path s1 p1-0) (path p1-0 s1) (path s0 p1-0)
(path p1-0 s0) (path s1 p1-2) (path p1-2 s1)
(path s2 p1-2) (path p1-2 s2)
(link s0 s1) (link s1 s0) (link s0 s2)
(link s2 s0) (link s2 s1) (link s1 s2))

(:goal (and (at driver1 s1) (at truck1 s1)))

(:observation :time 1
:start (board-truck driver1 truck1 s2)

(:observation :time 11
:start (drive-truck truck1 s2 s1 driver1)

...
(:observation :time 56 (at driver1 s1) (at truck1 s2))
(:observation :time 78 (at package1 s0) (at package2 s0))

Figure 2. Example of O containing a full state I , a partial state G, the start
time of two actions, and two optional time-stamped partial states.

∀ ?d,?l1,?l2: ¬at(?d,?l1) ∨¬at(?d,?l2), 6=(?l1,?l2)
∀ ?t,?l1,?l2: ¬at(?t,?l1) ∨¬at(?t,?l2), 6=(?l1,?l2)
∀ ?t,?d: ¬empty(?t) ∨¬driving(?d,?t)
∀ ?d,?t1,?t2: ¬driving(?d,?t1) ∨¬driving(?d,?t2),

6=(?t1,?t2)
∀ ?d1,?d2,?t: ¬driving(?d1,?t) ∨¬driving(?d2,?t),

6=(?d1,?d2)
∀ ?d,?l,?t: ¬at(?d,?l) ∨¬driving(?d,?t)

Figure 3. Examples of six mutex constraints in C for the driverlog domain
with drivers (?d, ?d1 and ?d2), locations (?l, ?l1 and ?l2) and trucks

(?t).

4.1 The variables

For each action a ∈ A? and predicate (condition or effect) p ∈
candidates(a), we create the variables of Table 1. X1 represents
the time-stamp when a starts, X2 when a ends and X3 its duration.
The values of X1, X2 and X3 can either be observed in O or derived
from the expression end(a) = start(a) + dur(a). We model time in
Z+ and bound all maximum times to the plan makespan (tend if ob-
served in O). If tend is not observed, we consider a large enough do-
main for time. Boolean variables X4/X5 model whether p is actually
a condition/effect of a. X6.1 and X6.2 define the interval through-
out condition p must hold for the application of action a (provided
is cond(p, a)=true). X7 models a causal link, representing that ac-
tion b supports p, which is required by a. If p is not a condition of a
(is cond(p, a)=false) then sup(p, a)=∅, representing an empty sup-
porter. X8 models the time-stamp when effect p happens in a (pro-
vided is eff(p, a)=true).

Table 1. The CSP variables, their domain and description.

ID Variable Domain Description
X1 start(a) [0..tend] Start time of action a
X2 end(a) [0..tend] End time of action a
X3 dur(a) [0..tend] Duration of action a
X4 is cond(p, a) {true, false} true if p is a condition of a; false oth-

erwise
X5 is eff(p, a) {true, false} true if p is an effect of a; false other-

wise
X6.1 req start(p, a),
X6.2 req end(p, a) [0..tend] Interval when action a requires p
X7 sup(p, a) {b}b∈A? ∪ ∅ Supporters for causal link 〈b, p, a〉
X8 time(p, a) [0..tend] Time when the effect p of a happens

Additionally, we create two dummy actions:

• init, which represents the initial state I (start(init) = 0 and
dur(init) = 0). It has no conditions so it has no associated
variables is cond, req start, req end and sup. It has as many
is eff(pi, init)=true and time(pi, init) = 0 as pi in I .

• goal, which represents the goals G (start(goal) = tend and
dur(goal) = 0). It has no effects so it has no is eff and time
variables. It has as many is cond(pi, a)=true, sup(pi, goal) 6= ∅
and req start(pi, goal) = req end(pi, goal) = tend as pi in G.

This formulation is powerful enough to model TILs and obser-
vations. A til(p, t) is analogous to init, and it is modeled as a
dummy action that starts at time t and has instantaneous duration
(start(til(p, t)) = t and dur(til(p, t)) = 0) with no conditions and
the single effect p that happens at time t (is eff(p, til(p, t))=true
and time(p, til(p, t)) = t). An observation obs(p, t) is analo-
gous to goal, and it is modeled as a dummy action that starts at
time t and has instantaneous duration (start(obs(p, t)) = t and
dur(obs(p, t)) = 0) but with only one condition p, which is the value
observed for p (is cond(p, obs(p, t))=true, sup(p, obs(p, t)) 6= ∅
and req start(p, obs(p, t)) = req end(p, obs(p, t)) = t), and no ef-
fects at all. Observations can also refer to start(a), end(a) or dur(a).

4.2 The constraints
Table 2 shows the constraints among the variables of Table 1. C1 and
C2 model the end of any action, which must happen no later than
goal. C3 models valid supporters. C4 forces to have a well-defined
[req start, req end] interval, throughout condition p is required in a.
C5 models that the time when b supports p must be before a requires
it because of the causal link 〈b, p, a〉3. Given a causal link 〈b, p, a〉,
C6 avoids the threat of action c deleting p (threats are solved via
promotion or demotion [12]). C7 prevents action a from being a sup-
porter of p when is eff(p, a)=false. C8 models the fact that when the
same action requires and deletes p the effect cannot happen before
the condition. Note the ≥ inequality here: if one condition and one
effect of the same action happen at the same time, the underlying
semantics in planning considers the condition is checked instantly
before the effect [7]. C9 prevents two actions from having contra-
dictory effects at the same time. C10 only applies to non-dummy
actions and forces them to have at least one condition and one effect
(as usual, true is counted as 1 and false as 0).

Some conditions of Table 2 are redundant. For instance in C5 and
C6, sup(p, a) = bmeans obligatorily is eff(p, b) = true. We include
them here to define an homogeneous formulation but they are not
included in our implementation. For simplicity, the value of some
unnecessary variables is not bounded in the table. For instance, if
is cond(p, a)=false, the values for req start(p, a) and req end(p, a)
become useless.

Specific constraints for PDDL2.1

Our formulation is more expressive than PDDL2.1. For in-
stance, it allows conditions/effects to be at any time: constraint
req start(p, a) = start(a) − 2 and req end(p, a) = start(a) + 2
easily allows condition p to hold in start(a)± 2.

Making our formulation PDDL2.1-compliant is straightforward
by adding the constraints of Table 3 for all non-dummy actions. C11

3 time(p, b) < req start(p, a) and not ≤ because our temporal planning
model assumes ε > 0 (ε denotes a small tolerance that implies no collision
between the time when effect p is supported and when it is required, like in
PDDL2.1 [7]). When time is modeled in Z+, ε = 1 so ≤ becomes <.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Table 2. The CSP constraints and their description.

ID Constraint Description
C1 end(a) = start(a) + dur(a) Relationship among start, end and duration of a
C2 end(a) ≤ start(goal) Always goal is the last action of the plan
C3 iff (is cond(p, a)=false) then sup(p, a) = ∅ p is not a condition of a ⇐⇒ the supporter of p in a is ∅
C4 if (is cond(p, a)=true) then req start(p, a) ≤ req end(p, a) [req start(p, a)..req end(p, a)] is a valid interval
C5 if (is eff(p, b)=true) AND (is cond(p, a)=true) AND (sup(p, a) = b)) Modeling the causal link 〈b, p, a〉: supporting p before it is

then time(p, b) < req start(p, a) required (obviously b 6= ∅)
C6 if (is eff(p, b)=true) AND (is cond(p, a)=true) AND (is eff(¬p, c)=true) AND (sup(p, a) = b) Solving threat of c to causal link 〈b, p, a〉 by promotion or

AND (c 6= a) then (time(¬p, c) < time(p, b)) OR (time(¬p, c) > req end(p, a)) demotion (obviously b 6= ∅)
C7 if (is eff(p, a)=false) then forall b that requires p: sup(p, b) 6= a a cannot be a supporter of p for any action b
C8 if (is cond(p, a)=true) AND (is eff(¬p, a)=true) then time(¬p, a) ≥ req end(p, a) a requires and deletes p: the condition holds before the effect
C9 if (is eff(p, b)=true) AND (is eff(¬p, c)=true) then time(p, b) 6= time(¬p, c) Solving effect interference at the same time (p and ¬p)
C10 forall condition pi and effect pj of a:

∑
is cond(pi, a) ≥ 1 AND

∑
is eff(pj , a) ≥ 1 Every non-dummy action has at least one condition and effect

limits the conditions to be only at start, over all or at end. C12 limits
the effects to happen at start or at end. In PDDL2.1, all actions {aj}
grounded from the same operator share the same structure of condi-
tions/effects. C13 guarantees this for the conditions and C14 for the
effects. C15 makes the duration of all occurrences, which can hap-
pen many times and are modeled separately, of the same action equal
(this is optional in PDDL2.1). C16 forces all actions to have at least
one of its n-effects at end, since actions with only at start effects turn
the value of the duration irrelevant. Strictly speaking, C16 is not spe-
cific of PDDL2.1, but it requires to have at end effects and produces
more rationale models for their durative actions.

Table 3. Constraints to learn PDDL2.1-compliant action models.

ID Constraint
C11.1 (req start(p, a) = start(a)) OR (req start(p, a) = end(a))
C11.2 (req end(p, a) = start(a)) OR (req end(p, a) = end(a))
C12 (time(p, a) = start(a)) OR (time(p, a) = end(a))
C13.1 ∀pi : (∀aj : req start(pi, aj) = start(aj)) OR

(∀aj : req start(pi, aj) = end(aj))
C13.2 ∀pi : (∀aj : req end(pi, aj) = start(aj)) OR

(∀aj : req end(pi, aj) = end(aj))
C14 ∀pi : (∀aj : time(pi, aj) = start(aj)) OR

(∀aj : time(pi, aj) = end(aj))
C15 ∀ai, aj occurrences of the same action: dur(ai) = dur(aj)
C16

∑n
i=1 time(pi, a) > n× start(a)

Mutex constraints

As seen in Section 3, mutex constraints in C can be exploited as
input knowledge to automatically deduce new observations in L. If
two predicates 〈pi, pj〉 are mutex they cannot hold simultaneously,
and the learned action model needs to satisfy this. Consequently, if
pi holds, we can infer ¬pj (despite ¬pj was not actually observed).
This reasoning is specially relevant for correctly learning negative
effects when there is a lack of input observations. After all, what is
the necessity to learn negative effects if they are not required nor
directly observed? Mutex reasoning helps us to fill this void by auto-
matically inferring the observation of negated variables, which forces
later to satisfy the causal links of negative variables, and improves
the learned models (as we will see in Section 6). Note however that,
given a 〈pi, pj〉-mutex in a durative actions setting, ¬pi does not
necessarily imply pj . See, for example, the effects (not (at ?t
?l1)) and (at ?t ?l2) of action drive-truck in Figure 1,
which respectively happen at different times (at start vs. at end). As
defined in Figure 3, these two predicates are mutex as a truck cannot
be in two locations simultaneously; although it is valid for a truck
to be, for some time (from start to end), at no location. Note this
situation does not happen in classical planning, where actions have
instantaneous effects and if 〈pi, pj〉 are mutex, then pi implies ¬pj
and vice versa.

Dynamic observations are necessary to exploit mutex constraints
at any intermediate state, even if such state was not observed at
all. Reasoning on a mutex 〈pi, pj〉 means that, immediately after
a asserts pi we need to ensure the observation ¬pj . Technically,
when is eff(pi, a) takes the value true, then the observation
obs(¬pj , time(pi, a) + ε) needs to be dynamically added. The time
of the observation cannot be just time(pi, a), as we first need to
assert pi and one ε later observe ¬pj . Adding the variables and
constraints for this new observation during the CSP search is trivial
for Dynamic CSPs (DCSPs) [19]. Otherwise, we need to statically
define a new type of observation obs(pi, a,¬pj), where a supports
pi which is mutex with pj and, consequently, we will need to
observe ¬pj . The difference w.r.t. an original obs is twofold: i) the
observation time is now initially unknown, and ii) the observation
will be activated or not according to the following constraint:

if (is eff(pi, a)=true) then (start(obs(pi, a,¬pj)) = time(pi, a) + ε) AND
(is cond(¬pj , obs(pi, a,¬pj))=true)

else is cond(¬pj , obs(pi, a,¬pj))=false

Reasoning on mutex depends on optional input knowledge in C
and increases notably the size of our formulation, specially in non-
DCSPs, but it is automated together with the creation of all the con-
straints of Table 2.

4.3 The heuristics

In a pure satisfaction problem, all possible solutions are equally
valid. We have investigated the use of several metrics (e.g. reducing
the number of causal links or side effects), and although they allow
the user to specify preferences over the space of possible solutions,
we have not found a metric that leads to learn the best model. There-
fore, we have focused on simple heuristics that show effective in the
tradeoff quality of learning vs. performance, and guide the search
in a univocal way. Hence, we propose the following variable+value
ordering heuristics:

1. X4 (is cond). True first, which learns the most restrictive model
of conditions.

2. X5 (is eff). False first, which learns a model with the min number
of causal links, which reduces the number of side effects.

3. X8 (time). Lower values first for negative effects, while upper val-
ues first for positive effects. This learns delete and positive effects
as effs and effe, respectively.

4. X6 (req start and req end). Lower values first for req start, while
upper values first for req end. This gives priority to condi, trying
to keep conditions as long as possible in the model learned.

5. X7 (sup). Lower values first to learn supporters that start earlier in
the plan trace.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

6. X3 (dur). Lower values first, which learns a model with the short-
est actions.

5 A UNIFIED FORMULATION FOR
PLANNING, VALIDATION AND LEARNING

Our formulation has been primarily designed to solve the task of
model learning, but it is strongly connected to the tasks of plan syn-
thesis and plan validation. This connection lies on the fact that we
can leverage the input knowledge on the planning domain over a
wide range of (un)known levels. This section provides an integrative
view for these three tasks in a temporal planning setting, although
this connection also applies to a classical planning model4, that is,
the vanilla model of planning where actions are instantaneous and a
solution is a totally ordered sequence of actions [10].

Plan synthesis Given a learning task L = 〈F, I,G,A?, O,C〉,
each action in A? is completely specified. This is equivalent to know
in advance the values for variables {X3,X4,X5} of Table 1 and the
OR-constraint that holds in {C13,C14} of Table 3, while other vari-
ables/constraints remain open/unknown. The observations in O are
incomplete as no information on the start/end time of actions is given,
i.e. the values of {X1,X2} are to be determined. This provides the
complete model of actions, with the duration, conditions and effects
(and their temporal annotation), as defined in the PDDL2.1 domain.
In this case, solving the resulting CSP is equivalent to solve the tem-
poral planning problem P = 〈F, I,G,A?〉. The solution is a plan
that reaches G from state I under the complete action model defined
in A?. Also, the observations over a plan trace in O can be under-
stood as a sequence of time-stamped landmarks [14] for P that are
given as input (the predicates of the sets in O must be achieved by
any plan that solves P and at the time-stamps given by O).

Moreover, it is important to note that our formulation allows us
to synthesize a plan despite some of the variables that represent the
conditions, effects and duration of an action are unknown. This sub-
sumes the capabilities of off-the-shelf planners that require the com-
plete model of actions for planning.

Plan validation Given a learning task L = 〈F, I,G,A?, O,C〉,
each action in A? is completely specified like in plan synthesis. The
observations over a plan trace in O are specified like in plan syn-
thesis and, additionally, the observations on the start/end times of
actions are also complete, which means that the values of {X1,X2}
are now known. This provides both the complete model of actions,
as defined in the planning domain, and the complete plan trace for all
actions (the temporal plan π = {(a1, ta1), (a2, ta2) . . . (an, tan)} is
consequently known). This allows us to know in advance the values
of all variables {X1,X2. . . X8}. In this case, solving the resulting
CSP is equivalent to check whether this full assignment of the CSP
is consistent, which means validating the plan π. In the event of in-
consistency, π will need to be executed from I until a condition is
unsatisfied to identify the source of the plan failure.

Moreover, our formulation allows us to validate plans despite
some of the variables that represent the conditions, effects and du-
ration of an action are unknown, and despite some (a, ta) pairs in
the input plan trace are incomplete. In such scenarios, the plan vali-
dation ability of our formulation is beyond the functionality of VAL

4 In practice, we can transform our temporal planning model into a classical
one by setting for every action dur(a) = 1 and adding the extra constraint
start(a) = end(a) = req start(?, a) = req end(?, a) = time(?, a).

(the standard plan validation tool [15]) since it can address plan val-
idation of partial, or even empty, action models and with partially
observed plan traces. On the contrary, VAL requires both a full plan
and a full action model for plan validation. Note, however, that find-
ing a solution for our formulation means it is verified at least once,
rather than no matter what will be filled in there, like VAL checks.

Action model learning Given a learning task L =
〈F, I,G,A?, O,C〉, we can learn the action model from scratch by
using our formulation, which is the most expensive and less scalable
task; it requires finding a solution to the resulting CSP that builds
the full action model. But we can also learn from several partially
specified action models, thus simplifying the learning task. Solving
the resulting CSP in those cases is equivalent to fill the gaps of a
partial action model where, optionally:

• Some conditions and/or effects are known (some {X4,X5} have
initial values); e.g. we know that an action requires for sure certain
conditions and we are mainly interested in learning their temporal
annotations (at start, over all or at end).

• The temporal annotation of some conditions and/or effects is
known (we know some OR-constraints that hold in {C13,C14});
e.g. we know that some effects always happen at end of the action.

• Some start/end times or durations are known (some {X1,X2,X3}
have initial values); e.g. the duration of some actions is known.

In addition to the three previous options that simplify and improve
the performance of the learning task, there are two additional options
that can help us to improve the quality of the learned models where:

• Some candidates(a) are filtered in a. If the alphabet α(a) is
big, the size of candidates(a) can be huge. This not only makes
the learning task more expensive but also facilitates a bad learn-
ing of predicates. A static predicate represents information that
is always true and never changes. For instance, as shown in Sec-
tion 3, {(path loc1 loc2), (link loc1 loc2)} rep-
resent the fact that there is a path/link between loc1 and loc2.
They can be necessary in the conditions of some actions (e.g.
drive-truck), but never in the effects so they should never be
learned as effects. Therefore, as a preprocessing stage to improve
the input knowledge ofA?, we can filter static predicates from the
effects-set of candidates(a) and make it smaller.

• The final state observation in G contains a full goal state, i.e. the
total assignment of the last state variables, rather than a partial
assignment. Similarly to the mutex reasoning, having a full state
forces to satisfy the causal links of all state variables, which re-
duces performance but improves the quality of the learning. Intu-
itively, since G is more informative now, the learning is better.

Finally, it is important to note that our learning task learns one
model from one plan trace. A more general learning task could
learn one model from dozens of plan traces but, though very ap-
pealing, this has serious problems of scalability (the number of vari-
ables+constraints grows alarmly). To learn from many traces, we
can apply the learning task to each individual trace and then re-
turn the most learned model, i.e. the most repeated one. The ben-
efit here is twofold: i) the overall learning time is shorter; and ii)
the learned model explains the 100% of, at least, one plan trace. Al-
though this seems too obvious, it is the main limitation of the learning
approaches that learn statistically models from many samples.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

6 EVALUATION
Our formulation has been implemented in Choco
(http://www.choco-solver.org), an open-source Java
library for CP that provides an object-oriented API. Choco uses
a static model of variables and constraints, i.e. it is not a DCSP.
We have used this implementation to evaluate the quality of the
learned models, from both a syntactic and semantic perspective. We
have used four IPC PDDL2.1 domains, thus needing their specific
constraints of Section 4.2, and solved a collection of instances by
using five planners (LPG-Quality [11], LPG-Speed [11], TP [16],
TFD [6] and TFLAP [18]). We have randomly chosen 50 plans (up
to 20-30 actions) per domain, which are automatically compiled
into 50 learning tasks that configure our experiments dataset. Then
we solved each learning task, in satisfaction mode, and got the
first five action models found. We also calculate the most learned
models. The solving time was limited to 300s on an Intel i5-6400 @
2.70GHz with 8GB of RAM.

There are several elements in a learning task L that can be consid-
ered, as seen in Sections 4.2 and 5. First, we can enable mutex rea-
soning or not (named mutexON or mutexOFF). Second, the static
effect predicates can be filtered in candidates of all operators as a
preprocessing stage (denoted as +F) or not. Third, the final state in
Gmeans observing Only partial Goals (named OG) or observing the
Full goal State (named FS). This way, we run six learning scenar-
ios: OG, OG+F and FS+F, each with mutexON and mutexOFF (we
discard FS with no Filtering because of the size of G).

6.1 Experimental setup
Table 4 summarizes our experiments. #O is the number of Operators
and #PTL the number of Predicates To Learn. #candidates is the size
of candidates for all the operators when no Filtering (not +F) and
when such Filtering (+F) is done. The number of #tasks solved is
given for the six learning scenarios used in this section: OG, OG+F,
FS+F, and these in both mutexOFF (first line) and mutexON (sec-
ond line) versions. For instance, in zenotravel we need to learn 5
operators and 28 predicates. In absence of filtering, the number of
candidates is 105, which is reduced to 71 when +F. This reduction
depends on the domain definition, and ranges from zero (parking) to
significant values (floortile). As can be seen, not all the tasks were
solved in 300s. This depends on the complexity of the domain, the
#PTL and, specially, the #candidates. Dealing with a scenario task of
OG is easier because there are fewer predicates in G (though this is
less informative) than in the FS version. Furthermore, learning with
mutexOFF is usually easier than learning with mutexON because no
deduced observations are necessary, but less informative.

Table 4. Summary of our experiments. For the #tasks solved, the first line
reports the results for mutexOFF and the second line for mutexON.

#O #PTL #candidates #tasks solved
not +F +F OG OG+F FS+F

zenotravel 5 28 105 71 50 (0.27) 50 (0.11) 50 (0.04)
50 (0.26) 50 (0.21) 50 (0.02)

driverlog 6 28 144 96 49 (0.34) 50 (0.24) 42 (0.28)
42 (0.39) 50 (0.33) 46 (0.31)

floortile 7 44 417 217 50 (0.62) 50 (0.48) 21 (0.48)
28 (0.89) 49 (0.97) 21 (0.48)

parking 4 32 131 131 50 (0.67) 50 (0.60) 50 (0.36)
50 (0.82) 50 (0.51) 50 (0.45)

In zenotravel the 50 tasks were solved for all six scenarios. Since
five action models are returned per solved task, up to 250 potential

different models are to be learned per scenario in zenotravel. How-
ever, this is not the case and this number is usually lower, which is a
good indication that models tend to converge more easily; i.e. many
different tasks learn the same model. This indication of convergence
is depicted in the table between brackets and in bold text, as the rela-
tion between the number of different learned models and the poten-
tial number of models (clearly lower values are better). In zenotravel
OG+mutexOFF only 67 different models were found, which gives a
value of 67/250=0.27. These values are good in zenotravel (particu-
larly in OG+F and FS+F) and driverlog, and worse in parking and
floortile, where OG+F+mutexON shows the worst result (0.97).

6.2 Syntactic evaluation. Precision and recall
From a pure syntactic perspective, learning can be considered as an
automated design task to create a new model that is similar to a ref-
erence (or ground truth) model. Hence, the aim is to assess the pre-
cision and recall of the learned model, two common metrics in learn-
ing [1, 26, 28], that give us an intuitive idea on the soundness and
completeness, respectively, of the new model.

Given two models, precision = p=

p=+p¬ , where p= counts the
number of predicates (i.e. conditions+effects) that appear correctly
and are temporally annotated equally in both models, and p¬ counts
the number of predicates that appear in the learned model but should
not appear. On the other hand, recall = p=

p=+p 6=
, where p 6= counts

the number of predicates that should appear in the learned model but
are not present. Table 5 depicts these metrics for our six learning
scenarios as average scores for all the learned models. We show the
scores for the Start, Invariant and End Conditions (SC, IC and EC
respectively), Start and End Effects (SE and EE respectively), and
All Conditions and All Effects (AC and AE respectively) for the six
learning scenarios (mutexOFF and mutexON are shown in the first
and second line, respectively).

The use of mutexON has a positive impact in the precision of
AC, but not in AE, and improves the scores of the recall in both
AC and AE. Note the recall of SE, which is 0 for mutexOFF in OG
and OG+F, and significantly higher when mutexON. With mutex-
OFF there is no need to learn negative effects, typically modeled as
start effects, and the learned models are relaxed models where nega-
tive effects are not included. FS generally improves the precision of
AC and AE, and also improves the recall of AE because the nega-
tive effects present in the full final state cannot be relaxed so need
to be learned. Consequently, mutexON or FS help to improve the
completeness of the learned effects. The Filtering scenarios (+F) im-
proves the precision of AC and AE, specially where there exists ir-
relevant static information (e.g. floortile). Due to lack of space in the
table, we do not show all the precision and recall scores for the most
learned model. But we do show its precision and recall of AC and
AE (between brackets and in bold text). Although the most learned
model generally produces scores above the average, this cannot be
guaranteed. Actually, we have detected that sometimes there are sev-
eral most learned models, i.e. different models that are learned the
same number of times. But we have not found a safe tie-breaking
mechanism to decide the model that leads to the best scores.

6.3 Semantic evaluation. Validation
There is not a unique reference model when learning temporal mod-
els; e.g. at start and over all can be interchangeable in some domains,
but they are syntactically different. Consequently, a pure syntax-
based measure might return misleading results. From this standpoint,

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Table 5. Precision and recall scores.

OG Precision; mutexOFF: first line, mutexON: second line Recall; mutexOFF: first line, mutexON: second line
SC IC EC SE EE AC AE SC IC EC SE EE AC AE

zenotravel 0.62 0.23 0.94 0.80 0.81 0.60 (0.76) 0.81 (1.0) 0.09 0.92 1.0 0.0 0.72 0.64 (0.72) 0.36 (0.40)
0.88 0.43 0.84 0.66 0.76 0.72 (0.83) 0.71 (0.88) 0.75 0.69 1.0 0.97 0.70 0.81 (0.89) 0.84 (0.90)

driverlog 0.25 0.17 0.86 0.59 0.52 0.43 (0.73) 0.56 (0.72) 0.04 0.95 1.0 0.0 0.93 0.65 (0.73) 0.47 (0.72)
0.60 0.20 0.74 0.66 0.28 0.51 (0.61) 0.47 (0.37) 0.71 0.60 1.0 0.92 0.70 0.77 (0.81) 0.81 (0.65)

floortile 0.17 0.15 0.44 0.44 0.25 0.25 (0.38) 0.35 (0.66) 0.02 0.96 1.0 0.0 0.68 0.65 (0.67) 0.34 (0.34)
0.73 0.27 0.36 0.61 0.27 0.45 (0.36) 0.44 (0.62) 0.76 0.90 1.0 0.80 0.77 0.89 (0.92) 0.79 (1.0)

parking 0.62 0.0 0.76 0.98 0.76 0.46 (0.33) 0.87 (0.85) 0.05 1.0 1.0 0.0 0.94 0.67 (1.0) 0.47 (1.0)
0.76 0.96 0.50 0.50 0.48 0.74 (0.92) 0.49 (0.54) 0.82 1.0 1.0 0.92 0.76 0.94 (0.67) 0.84 (0.50)

OG+F Precision; mutexOFF: first line, mutexON: second line Recall; mutexOFF: first line, mutexON: second line
SC IC EC SE EE AC AE SC IC EC SE EE AC AE

zenotravel 0.52 0.25 0.98 0.82 1.0 0.58 (0.75) 0.91 (1.0) 0.08 0.87 1.0 0.0 0.73 0.62 (0.73) 0.37 (0.35)
0.82 0.38 0.74 0.65 0.89 0.65 (0.53) 0.77 (0.88) 0.67 0.47 1.0 0.95 0.68 0.71 (0.50) 0.82 (0.80)

driverlog 0.33 0.23 0.96 0.64 0.90 0.51 (0.74) 0.77 (0.61) 0.06 0.94 1.0 0.0 0.93 0.65 (0.67) 0.47 (0.50)
0.58 0.34 0.87 0.64 0.43 0.60 (0.52) 0.54 (0.54) 0.68 0.49 1.0 0.87 0.73 0.72 (0.56) 0.80 (0.84)

floortile 0.39 0.23 0.74 0.56 0.77 0.45 (0.75) 0.67 (0.80) 0.06 0.99 1.0 0.0 0.70 0.66 (0.67) 0.35 (0.38)
0.72 0.41 0.51 0.60 0.47 0.55 (0.79) 0.54 (0.42) 0.71 0.93 1.0 0.72 0.66 0.88 (0.79) 0.69 (0.36)

parking 0.62 0.0 0.78 0.98 0.76 0.47 (0.67) 0.87 (0.85) 0.05 1.0 1.0 0.0 0.94 0.67 (0.67) 0.47 (0.50)
0.76 0.99 0.48 0.50 0.48 0.74 (0.92) 0.49 (0.47) 0.80 1.0 1.0 0.90 0.75 0.93 (1.0) 0.83 (1.0)

FS+F Precision; mutexOFF: first line, mutexON: second line Recall; mutexOFF: first line, mutexON: second line
SC IC EC SE EE AC AE SC IC EC SE EE AC AE

zenotravel 0.84 0.42 0.90 0.71 0.99 0.72 (0.83) 0.85 (0.88) 0.70 0.60 1.0 1.0 0.75 0.53 (0.89) 0.88 (0.90)
0.85 0.51 0.88 0.65 0.99 0.75 (0.83) 0.82 (0.88) 0.71 0.59 1.0 0.99 0.74 0.77 (0.89) 0.87 (0.90)

driverlog 0.60 0.36 0.98 0.64 0.94 0.65 (0.67) 0.79 (0.84) 0.57 0.89 1.0 0.64 0.95 0.63 (0.83) 0.80 (0.84)
0.62 0.34 0.69 0.69 0.57 0.55 (0.44) 0.63 (0.61) 0.74 0.48 1.0 0.96 0.83 0.74 (0.86) 0.90 (0.88)

floortile 0.69 0.35 0.62 0.66 0.74 0.55 (0.37) 0.70 (0.84) 0.67 0.96 1.0 0.66 0.73 0.65 (0.93) 0.70 (1.0)
0.70 0.45 0.39 0.59 0.67 0.51 (0.38) 0.63 (0.65) 0.86 0.88 1.0 0.89 0.87 0.91 (0.92) 0.88 (1.0)

parking 0.86 0.0 1.0 0.89 0.89 0.62 (0.67) 0.89 (1.0) 0.53 1.0 1.0 0.72 0.95 0.67 (0.87) 0.84 (0.92)
0.74 1.0 0.50 0.50 0.46 0.75 (0.58) 0.48 (0.46) 0.87 1.0 1.0 0.94 0.82 0.96 (0.93) 0.88 (0.85)

the quality of the learned model can be assessed by analyzing the
success ratio of the learned model against unseen samples of a test
dataset, analogously to a classification task.

Formally, success ratio = samples+

|dataset| , where samples+ counts
the number of samples the learned model explains on a test dataset.
A ratio of 1.0 implies learning a model that explains the full dataset:
a solution is found which is consistent with the constraints of the
learned model together with the test samples ones.

Table 6 shows the average success ratios, where each learned
model is validated against the remaining tasks of the same domain.
For instance, in zenotravel there are 50 tasks solved per learning sce-
nario (see Table 4). The five models of each task should be vali-
dated against the 49 remaining tasks, which means a huge evaluation
(250*49=12250 instances). For simplicity, we only consider the first
model learned per task, and the experiment contains 50*49=2450
evaluations per scenario. As usual, mutexOFF and mutexON are
shown in the first and second line, respectively The best results are in
zenotravel and the worst results in floortile, which corresponds with
the convergence tendencies shown in Table 4. The semantic evalua-
tion for the most learned model against the remaining tasks is shown
between brackets and in bold text. Such a model generally produces
ratios above the average in most scenarios, but this cannot be guar-
anteed for all the domains.

Table 6. Success ratio of the models learned against the test dataset.

OG OG+F FS+F
zenotravel 0.77 (1.0) 0.88 (0.80) 0.95 (1.0)

0.77 (1.0) 0.91 (1.0) 1.0 (1.0)
driverlog 0.40 (0.63) 0.69 (0.71) 0.52 (0.51)

0.44 (0.61) 0.67 (0.63) 0.56 (0.69)
floortile 0.22 (0.04) 0.29 (0.67) 0.32 (0.60)

0.34 (0.41) 0.31 (0.21) 0.31 (0.35)
parking 0.40 (0.37) 0.40 (0.37) 0.71 (0.92)

0.52 (0.59) 0.48 (1.0) 0.65 (1.0)

All in all, we have found out the semantic evaluation is a bit con-

voluted. One subtle syntactic difference might not affect the semantic
evaluation (e.g. interchangeable conditions). On the contrary, an ef-
fect that is not correctly learned involves a subtle penalization in the
syntactic evaluation, but it affects negatively the semantic evaluation
(that difference might not explain a huge number of samples, as usu-
ally happens in floortile). Therefore, we have detected that in some
domains the success ratio can also return misleading results.

7 CONCLUSIONS
There is a growing interest for learning action models in AI planning
due to its application to recognition of past behavior for prediction,
decision taking, robotics motion capturing, etc. Learning is appealing
because these scenarios include a huge number of tasks, sometimes
difficult to be described formally, which require expert knowledge
that is impractical in complex domains.

The general contribution of this paper is a solver-independent CP
formulation to learn action models in temporal planning, which is
more complex than in classical planning because actions can overlap
in different ways. We have formulated all variables and constraints
under a flexible schema that accommodates a high level of expres-
siveness, where all relations of Allen’s algebra for temporal reason-
ing are supported. What is more, we also support different levels of
specification of the input knowledge. This knowledge, as a partially
specified action model, can be adapted to address not only the learn-
ing task but also the planning and validation tasks.

We have proposed variable+value ordering heuristics that prove
effective in our experiments, which test different learning scenarios.
As a summary, the results show that reasoning on mutex (mutexON)
is more expensive than mutexOFF, but it improves the quality of the
learned models. Filtering static predicates reduces the number of de-
cisions to take, simplifies the task and improves the learning. Ob-
serving only partial goal states (OG) is easier than observing full
goal states (FS), but the latter provides a more complete learning. In
general, mutexON or FS help to learn negative effects, which in other
scenarios are relaxed and not learned. FS is useful when (negative)

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

effects do not change frequently throughout the plan trace, whereas
mutexON is very useful to learn strong interactions between contra-
dictory predicates (when one is true the other should be immediately
and automatically observed as false).

Our formulation can be solved by Satisfiability Modulo Theories,
which is part of our current work. As for future work, we want to
extend our formulation to learn from intermediate observations (we
need to investigate how many and how frequent they must be) and to
learn meta-models (as combinations of several learned models).

ACKNOWLEDGEMENTS

This work is supported by the Spanish MINECO project TIN2017-
88476-C2-1-R. S. Jimenez is partly supported by the RYC15/18009.

REFERENCES
[1] D. Aineto, S. Jiménez, and E. Onaindia, ‘Learning STRIPS action mod-

els with classical planning’, in Proc. of the International Conference on
Automated Planning and Scheduling (ICAPS-18), pp. 399–407, (2018).

[2] Eyal Amir and Allen Chang, ‘Learning partially observable determinis-
tic action models’, Journal of Artificial Intelligence Research, 33, 349–
402, (2008).

[3] S. N. Cresswell, T.L. McCluskey, and M.M West, ‘Acquiring planning
domain models using LOCM’, The Knowledge Engineering Review,
28(2), 195–213, (2013).

[4] William Cushing, Subbarao Kambhampati, Daniel S Weld, et al.,
‘When is temporal planning really temporal?’, in Proceedings of
the 20th International Joint Conference on Artificial Intelligence, pp.
1852–1859. Morgan Kaufmann Publishers Inc., (2007).

[5] S. Edelkamp and J. Hoffmann, ‘PDDL2.2: the language for the classi-
cal part of IPC–4’, in Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS-04) – International Plan-
ning Competition, pp. 2–6, (2004).

[6] Patrick Eyerich, Robert Mattmüller, and Gabriele Röger, ‘Using the
context-enhanced additive heuristic for temporal and numeric plan-
ning’, in Nineteenth International Conference on Automated Planning
and Scheduling, (2009).

[7] Maria Fox and Derek Long, ‘PDDL2.1: An extension to PDDL for ex-
pressing temporal planning domains’, Journal of artificial intelligence
research, 20, 61–124, (2003).

[8] Daniel Furelos Blanco, Antonio Bucchiarone, and Anders Jonsson,
‘CARPooL: Collective adaptation using concurrent planning’, in AA-
MAS 2018. 17th International Conference on Autonomous Agents and
Multiagent Systems; 2018 Jul 10-15; Stockholm, Sweden.[Richland]:
IFAAMAS; 2018. International Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS), (2018).

[9] Antonio Garrido, Marlene Arangu, and Eva Onaindia, ‘A constraint
programming formulation for planning: from plan scheduling to plan
generation’, Journal of Scheduling, 12(3), 227–256, (2009).

[10] Hector Geffner and Blai Bonet, ‘A concise introduction to models and
methods for automated planning’, Synthesis Lectures on Artificial In-
telligence and Machine Learning, 8(1), 1–141, (2013).

[11] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina, ‘Planning
through stochastic local search and temporal action graphs in LPG’,
Journal of Artificial Intelligence Research, 20, 239–290, (2003).

[12] Malik Ghallab, Dana Nau, and Paolo Traverso, Automated Planning:
theory and practice, Elsevier, 2004.

[13] J. Hoffmann and S. Edelkamp, ‘The deterministic part of IPC-4: an
overview’, Journal of Artificial Intelligence Research, 24, 519–579,
(2005).

[14] Jörg Hoffmann, Julie Porteous, and Laura Sebastia, ‘Ordered landmarks
in planning’, Journal of Artificial Intelligence Research, 22, 215–278,
(2004).

[15] Richard Howey, Derek Long, and Maria Fox, ‘VAL: Automatic plan
validation, continuous effects and mixed initiative planning using
PDDL’, in Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th
IEEE International Conference on, pp. 294–301. IEEE, (2004).

[16] Sergio Jiménez, Anders Jonsson, and Héctor Palacios, ‘Temporal plan-
ning with required concurrency using classical planning’, in Proceed-

ings of the 25th International Conference on Automated Planning and
Scheduling (ICAPS), (2015).

[17] Subbarao Kambhampati, ‘Model-lite planning for the web age masses:
The challenges of planning with incomplete and evolving domain mod-
els’, in Proceedings of the National Conference on Artificial Intelli-
gence (AAAI-07), volume 22(2), pp. 1601–1604, (2007).

[18] Eliseo Marzal, Laura Sebastia, and Eva Onaindia, ‘Temporal landmark
graphs for solving overconstrained planning problems’, Knowledge-
Based Systems, 106, 14–25, (2016).

[19] Sanjay Mittal and Brian Falkenhainer, ‘Dynamic constraint satisfac-
tion’, in Proceedings eighth national conference on artificial intelli-
gence, pp. 25–32, (1990).

[20] Kira Mourão, Luke S. Zettlemoyer, Ronald P. A. Petrick, and Mark
Steedman, ‘Learning STRIPS operators from noisy and incomplete
observations’, in Conference on Uncertainty in Artificial Intelligence,
UAI-12, pp. 614–623, (2012).

[21] Vincent Vidal and Héctor Geffner, ‘Branching and pruning: An optimal
temporal pocl planner based on constraint programming’, Artificial In-
telligence, 170(3), 298–335, (2006).

[22] Qiang Yang, Kangheng Wu, and Yunfei Jiang, ‘Learning action models
from plan examples using weighted MAX-SAT’, Artificial Intelligence,
171(2-3), 107–143, (2007).

[23] Håkan LS Younes and Michael L Littman, ‘PPDDL1.0: An extension
to PDDL for expressing planning domains with probabilistic effects’,
Techn. Rep. CMU-CS-04-162, 2, 99, (2004).

[24] Hankz Hankui Zhuo and Subbarao Kambhampati, ‘Action-model ac-
quisition from noisy plan traces’, in International Joint Conference on
Artificial Intelligence, IJCAI-13, pp. 2444–2450, (2013).

[25] Hankz Hankui Zhuo and Subbarao Kambhampati, ‘Model-lite plan-
ning: Case-based vs. model-based approaches’, Artificial Intelligence,
246, 1–21, (2017).

[26] Hankz Hankui Zhuo, Hector Muñoz Avila, and Qiang Yang, ‘Learning
hierarchical task network domains from partially observed plan traces’,
Artificial Intelligence, 212, 134–157, (2014).

[27] Hankz Hankui Zhuo, Tuan Anh Nguyen, and Subbarao Kambhampati,
‘Refining incomplete planning domain models through plan traces’, in
International Joint Conference on Artificial Intelligence, IJCAI-13, pp.
2451–2458, (2013).

[28] Hankz Hankui Zhuo, Qiang Yang, Derek Hao Hu, and Lei Li, ‘Learn-
ing complex action models with quantifiers and logical implications’,
Artificial Intelligence, 174(18), 1540–1569, (2010).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

