
A Convergent Off-Policy Temporal Difference Algorithm
Raghuram Bharadwaj Diddigi and Chandramouli Kamanchi and Shalabh Bhatnagar 1

Abstract. Learning the value function of a given policy (target pol-
icy) from the data samples obtained from a different policy (behav-
ior policy) is an important problem in Reinforcement Learning (RL).
This problem is studied under the setting of off-policy prediction.
Temporal Difference (TD) learning algorithms are a popular class of
algorithms for solving the prediction problem. TD algorithms with
linear function approximation are shown to be convergent when the
samples are generated from the target policy (known as on-policy
prediction). However, it has been well established in the literature
that off-policy TD algorithms under linear function approximation
may diverge. In this work, we propose a convergent on-line off-policy
TD algorithm under linear function approximation. The main idea is
to penalize the updates of the algorithm in a way as to ensure con-
vergence of the iterates. We provide a convergence analysis of our
algorithm. Through numerical evaluations, we further demonstrate
the effectiveness of our algorithm.

1 Introduction

The two important problems in Reinforcement Learning (RL) [3] are
Prediction and Control. The prediction problem deals with comput-
ing the value function of a given policy. In a discounted reward set-
ting, value function refers to the total expected discounted reward ob-
tained by following the given policy. The control problem refers to
computing the optimal policy, i.e., the policy that maximizes the total
expected discounted reward. When the model information (probabil-
ity transition matrix and single-stage reward function) is fully known,
techniques like value iteration and policy iteration are used to solve
the control problem. Policy iteration is a two-step iterative algorithm
where the task of prediction is performed in the first step for a given
policy followed by the policy improvement task in the second step.
However, in most of the practical scenarios, the model information
is not known and instead, (state, action, reward and next-state) sam-
ples are only available. Under such a model-free setting, popular RL
algorithms for prediction are Temporal Difference (TD) and for con-
trol are Q-Learning and Actor-Critic algorithms [17]. Actor-Critic
algorithms can be seen as model-free analogs of the policy iteration
algorithm and involve a model-free prediction step. Model-free pre-
diction is an important problem for which optimal and convergent
solutions are desired since it is also the stepping stone for the control
problem.

TD algorithms under the tabular approach (where there is no ap-
proximation of the value function) are a popular class of algorithms
for computing the exact value function of a given policy (henceforth
referred to as target policy) from samples. In many of the real-life

1 Equal Contribution by the first two authors. All the authors
are with the Department of Computer Science and Automation
(CSA), Indian Institute of Science (IISc), Bangalore, India. Emails:
{raghub,chandramouli,shalabh}@iisc.ac.in

problems though, we encounter situations where the number of states
is large or even infinite. In such cases, it is not possible to use tab-
ular approaches and one has to resort to approximation based meth-
ods. TD algorithms are shown to be stable and convergent under lin-
ear function approximation, albeit under the setting of on-policy [3].
On-policy refers to the setting where state and action samples are
obtained using the target policy itself. As we approach practical sce-
narios, it can be noted that such samples are not always available to
the practitioner. For example, in games, say a practitioner would like
to evaluate a (target) strategy. However, the data available might be
from a player following a different strategy. The question that arises
in this scenario is whether the practitioner can make use of this data
and still evaluate the target strategy. These problems are studied un-
der the setting of off-policy prediction where the goal is to evaluate
the value function of the target policy from the data generated from a
different policy (commonly referred to as behavior policy). The em-
pirical success of the Deep Q-Learning algorithm [23] (a model-free
control algorithm) motivates us to understand its convergence be-
havior, which is a very difficult problem. In fact, it has been noted in
Section 11.3 of [17] that convergence and stability issues arise when
we combine three components - function approximation, bootstrap-
ping (TD algorithms) and off-policy learning, what they refer to as
the “deadly triad”.

In our work, we propose an online off-policy stable TD algorithm
for a prediction problem under linear function approximation. The
idea is to penalize the parameters of the TD update to mitigate the
divergence problem. We note here that the recent work [6] provides
a comprehensive survey of algorithms for off-policy prediction prob-
lems and performs a comparative study. We now discuss some of the
important and relevant works on the off-policy prediction problem.

In [4], Least-Squares TD algorithms (LSTD) with linear function
approximation have been proposed that are shown to be convergent
under both on-policy and off-policy settings. However, the per-step
complexity of LSTD algorithms is quadratic in the number of pa-
rameters. In [15], off-policy TD algorithms are proposed that make
use of an importance sampling idea to convert the expected value of
total discounted reward under behavior policy to expected value un-
der target policy. However, the variance of such algorithms is very
high [19]. In [20], the Gradient TD (GTD) algorithm has been pro-
posed that is stable under off-policy learning, linear function approx-
imation and has linear (in the number of parameters) per-step com-
plexity. Since then, there have been a lot of improvements on the
GTD algorithm under various settings like prediction, control, and
non-linear function approximation [12–14, 18]. The idea of adding
the penalty in the form of a regularization term has been consid-
ered in [11] where Regularized off-policy TD (RO-TD) algorithm
has been proposed based on GTD algorithms and convex-concave
saddle point formulations. The regularization terms considered in the
RL literature use the 2-norm or 1-norm or∞-norm. However, in our

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

setting, the regularization norm considered is the norm obtained from
the stationary distribution of the Markov Chain realized by following
the behavior policy. Emphatic TD algorithms (ETD) [7, 10, 19, 24]
are another popular class of off-policy TD algorithms that achieve
stability by emphasizing or de-emphasizing updates of the algorithm.
These updates also have linear-time complexity. Moreover, these al-
gorithms learn only one set of parameters, unlike GTD algorithms
which are two-time scale stochastic approximation algorithms that
learn two sets of parameters. Recently in [5, 9], a co-variance off-
policy TD (COP-TD) algorithm has been proposed that includes a co-
variance shift term in the TD update. This shift term is also learned
along with the parameters of the algorithm.

Our algorithm, like the Emphatic TD algorithm, trains only one
set of parameters and like ETD and GTD algorithms, has per-update
complexity that is linear in the number of parameters. The contribu-
tions of our paper are as follows:

• We propose an on-line off-policy TD learning algorithm with lin-
ear function approximation. Our algorithm has linear per-iteration
computational complexity in the number of parameters.

• We prove the convergence of our algorithm (Theorem 2 of Section
4) utilizing the techniques of [19, 21]. We also characterize the
point of convergence of our algorithm (Section 5).

• We show the empirical performance of our algorithm and compare
it with ETD and TDC (an algorithm from the GTD family) on
standard benchmark off-policy divergent RL environments.

The rest of the paper is organized as follows. In Section 2, we intro-
duce the background and preliminaries. We propose our algorithm
in Section 3. Sections 4 and 5 describe the analysis of our algo-
rithm. Section 6 presents the results of our numerical experiments.
Finally, Section 7 presents concluding remarks and future research
directions.

2 Background and Preliminaries
We consider a Markov Decision Process (MDP) given by
(S,U, p, r, γ) where S denotes the state space. U is the set of ac-
tions, p is a probability transition rule where p(s′|s, a) denotes the
probability of transition to state s′ when action a is chosen in state
s. r is the single-stage reward function where r(s, a) denotes the re-
ward obtained by taking action a in state s. Finally, γ denotes the
discount factor. Let π : S −→ ∆(U) be the target policy where ∆(U)
denotes the set of probability distributions over actions. The objec-
tive of the MDP prediction problem is to estimate the value function
(V π) of the target policy π, where the value function of a state s ∈ S
denoted by V π(s) is given by:

V π(s) = E
[∞∑
i=0

γir(si, ai)
∣∣∣s0 = s, π

]
, (1)

where the state-action trajectory (s0, a0, s1, . . .) is obtained follow-
ing the policy π and E[.] denotes the expectation over the trajectories.

As the number of states of the MDP can be very large, we re-
sort to approximation techniques to compute the value function. In
our work, we consider the linear function approximation architecture
where

V̂ (s) = θTφ(s), (2)

where V̂ (s) denotes the approximate value function associated with
state s (that we desire to be very close to the exact value function),

φ(s) is a K × 1 feature vector associated with state s and θ is a
K × 1 weight vector. Note that the exact value function V π may not
be representable by (2). Therefore, the objective is to estimate the
weight vector θ so that the approximate value function denoted by
(2) is as close as possible to the exact value function.

The on-policy TD(0) [17] is a popular on-line algorithm for com-
puting the weight vector θ. The update equation is given by:

θn+1 = θn + αn(rn + γθTnφ(sn+1)− θTnφ(sn))φ(sn), (3)

where (sn, rn, sn+1) is the state, reward and next state samples ob-
tained at time n, αn, n ≥ 0 is the step-size sequence and θ0 denotes
the initial parameter vector.

The stability of the on-policy TD(0) algorithm is well established
in the literature [19]. We now outline the proof of convergence of this
algorithm. Following the notation of [19], note that the update rule
(3) can be re-written as:

θn+1 = θn + αn(bn −Anθn), (4)

where An = φ(sn)(φ(sn)− γφ(sn+1))T and bn = rn+1φ(sn).
It is shown in [21] that the algorithm with update rule (4) is stable

if the matrix A given by:

A = lim
n−→∞An = ΦTDπ(I − γPπ)Φ (5)

is positive definite. In (5), Φ is a |S| × K matrix with the feature
vector φ(s) in row s. Dπ is the |S| × |S| diagonal matrix with the
diagonal being the stationary distribution of the Markov chain (as-
sumed ergodic) obtained under policy π. Finally, Pπ is a |S| × |S|
matrix with [Pπ]ij =

∑
a π(i, a)p(j|i, a). For the on-policy TD(0)

algorithm, A is shown to be positive definite [19], thereby proving
the stability of the algorithm.

In the off-policy prediction problem, the data samples are obtained
from a behavior policy µ instead of the target policy π. In this case,
the off-policy TD(0) update [19] is given by:

θn+1 = θn + αnρn
(
rn + γθTnφ(sn+1)− θTnφ(sn)

)
φ(sn), (6)

where rn is the reward obtained by taking action an in state sn and
ρn is the importance sampling ratio given by π(sn,an)

µ(sn,an)
. The corre-

sponding matrix A for this algorithm is given by:

A = ΦTDµ(I − γPπ)Φ, (7)

where Dµ is a diagonal matrix with diagonal being the stationary
distribution of the Markov chain obtained under policy µ.

The matrix A defined in (7) need not be positive definite [19] in
general. Therefore stability and convergence of the off-policy TD(0)
are not guaranteed.

The off-policy TD(0) algorithm, if converges, may perform com-
parably to some of the off-policy convergent algorithms in the lit-
erature. For example, in Figure 5 of [6], it has been shown that the
performance of off-policy TD(0) is comparable to that of the GTD(0)
algorithm. However, as the algorithm is not stable, off-policy TD(0)
can diverge. In this paper, we propose a simple and stable off-policy
TD algorithm. In the next section, we propose our algorithm and in
Section 4, we provide its convergence analysis.

3 The Proposed Algorithm
The input to our algorithm is the target policy, whose value function
we want to estimate and the behavior policy, from which the sam-
ples are generated. Also, provided as an input to our algorithm is the

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Algorithm 1 Perturbed Off-Policy Prediction Algorithm
Input:
µ, π: behaviour and target policies respectively
(sn, an, rn, sn+1)∞n=0: data from behaviour policy
θ0: initial parameter vector
γ: discount factor
φ(s): feature vector of state s
η: non-negative perturbation parameter
{αn}: step-size sequence
Iter: total number of iterations
Output: θIter

1: procedure OFF-POLICY PREDICTION:
2: while n < Iter do
3: ρn = π(sn,an)

µ(sn,an)

4: δn = rn + γφ(sn+1)T θn − (1 + η)φ(sn)T θn
5: θn+1 = θn + αnρnδnφ(sn)

6: return θIter

perturbation parameter (η ≥ 0). The algorithm works as follows. At
each time step n, we obtain a sample (sn, an, rn, sn+1) using which
importance sampling coefficient ρn is computed as shown in Step 3.
We then compute our modified temporal difference term as shown in
Step 4. Finally, the parameters of the algorithm are updated as shown
in Step 5.

Remark 1 From steps 3, 4 and 5 of the Algorithm 1, we infer that the
per-step complexity isO(K), where K is the number of parameters.

Remark 2 The choice of η is critical in our algorithm. Larger values
of η ensure convergence (see Theorem 2) and smaller values of η
ensure more accurate solution (see Lemma 4).

In the next section, we provide the convergence analysis of our pro-
posed algorithm.

4 Convergence Analysis
In this section, the norms considered are as follows. For any vector

v ∈ RK , ‖v‖2 denotes the 2-norm of v, that is ‖v‖2 =

(
K∑
i=1

v2i

) 1
2

.

Similarly for a K ×K matrix A, ‖A‖ denotes the norm induced by

the 2-norm, that is ‖A‖ = sup
‖v‖2=1

‖Av‖2
‖v‖2

. Also, given a diagonal

matrixD with positive entries, we define ‖v‖D as ‖v‖D =
√
vTDv.

Finally ‖v‖∞ =
K

max
i=1
|vi|.

Now, the update rule of Algorithm 1 can be rewritten as follows.

θn+1 = θn + αnρnδnφ(sn)

= θn + αn(bn −Anθn),

where An and bn are given by

An = −ρn
(
γφ(sn)φ(sn+1)T − (1 + η)φ(sn)φ(sn)T

)
, (8)

bn = ρnrnφ(sn). (9)

We state and invoke Theorem 2 of [21] (also see Th. 17, p. 239 of [2])
that we use to show the convergence of our algorithm.

Theorem 1 Consider an iterative algorithm of the form

θn+1 = θn + αn (b(Xn)−A(Xn)θn) ,

where

A1. the step-size sequence satisfies
∞∑
n=0

αn =∞,
∞∑
n=0

α2
n <∞.

A2. Xn, n ≥ 0, is a Markov process with a unique stationary distri-
bution.

A3. A = E0[A(Xn)] and b = E0[b(Xn)]. Here E0 is the expecta-
tion with respect to the stationary distribution of the Markov chain
{Xn}.

A4. The matrix A is positive definite.
A5. There exist positive constants C, q and a positive real valued

function h from the states of the Markov chain {Xn} such

that
∞∑
n=0

‖E[A(Xn)|X0 = X] − A‖ ≤ C (1 + hq(X)) and

∞∑
n=0

‖E[b(Xn)|X0 = X]− b‖ ≤ C (1 + hq(X)) .

A6. For any q > 1 there exists a constant κq such that for all X and
n, E[hq(Xn)|X0 = X] ≤ κq (1 + hq(X)) .

Under these assumptions, i.e., A1-A6 above, θn converges to the so-
lution of b−Aθ = 0, almost surely.

To begin with, we define the process {Xn} as follows. Let Xn =
(sn, an, sn+1), n ≥ 0. Observe that {Xn} is a Markov chain as
sn+1 is a deterministic function of Xn and the distribution of an+1

and sn+2 depends only on sn+1. Also note that, in our algorithm,
A(Xn) = An and b(Xn) = bn are given by equations (8) and (9)
respectively with Xn = (sn, an, sn+1).

Several step-size sequences satisfy assumption A1, for e.g. an =
1

n+1
, n ≥ 0. Assumption A2 is fairly general. For example, A2 holds

under the assumption that the Markov chain {sn} from the policy µ
is ergodic. We now validate assumptions A3, A4, A5 and A6 below.
The assumption A3 is shown in Lemma 1. The assumption A4, i.e.,
the matrix A is positive definite, is shown in Theorem 2. Finally,
assumptions A5 and A6 are shown to be true in Theorem 3.

We start by proving some important lemmas that are used in our
main theorems.

Lemma 1 Let Φ be the |S| × K matrix where the ith row of Φ is
given by φ(i), the feature vector of state i and rπ be the |S|×1 vector
where the ith component is given by rπ(i) =

∑
a∈U r(i, a)π(i, a).

Let E0 be the expectation with respect to the stationary distribution
of the Markov chain {Xn} and dµ be the stationary distribution of
the Markov chain {sn}. ThenA = E0[An] and b = E0[bn] are given
by

A = ΦTDµ ((1 + η)I − γPπ) Φ,

b = ΦTDµrπ,

where Dµ is a diagonal matrix with the ith diagonal element being
dµ(i), the steady state probability of {sn} being in state i under
policy µ.

Proof:

E0[An]

= −E0

[
ρn
(
γφ(sn)φ(sn+1)T − (1 + η)φ(sn)φ(sn)T

)]
= −

∑
i,j∈S,a∈U

µ(i, a)

[
π(i, a)

µ(i, a)

(
γφ(i)φ(j)T dµ(i)p(j|i, a)

− (1 + η)dµ(i)φ(i)φ(i)T
)]

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

= −
∑
i,j

γdµ(i)φ(i)φ(j)T pπ(j|i)

+
∑
i

dµ(i)(1 + η)φ(i)φ(i)T

= ΦTDµ((1 + η)I − γPπ)Φ.

Similarly,

b = E0[bn] = E0[ρnrnφ(sn)]

=
∑

i,j∈S,a∈U

dµ(i)µ(i, a)p(j|i, a)

[
π(i, a)

µ(i, a)
r(i, a)φ(i)

]
= ΦTDµrπ,

which proves the existence of A and b that in-turn validates assump-
tion A3. �

Definition 1 A K × K matrix M is positive definite if for all 0 6=
y ∈ RK , yTMy > 0.

Lemma 2 Given a K ×K matrix M , M is positive definite iff the
symmetric matrix S = M +MT is positive definite.

Proof: For 0 6= y ∈ RK , observe that

yTSy = yTMy + yTMT y = 2yTMy,

since (yTMy)T = yTMy as both are scalars and yTMT y =
(yTMy)T . Hence S is positive definite if and only if M is positive
definite. �

Theorem 2 Suppose M = D ((1 + η)I − γP) where D =
diag(d) is a diagonal matrix with positive diagonal entries, P =

[p(j|i)] is a Markov matrix and η > max

(
max
i

γdT p(.|i)
di

− 1, 0

)
and 0 < γ < 1 are positive constants. Then M = [mij] is positive
definite.

Proof: Consider the symmetric matrix S = M + MT . From
Lemma 2, it is enough to show that S is positive definite. Since S
is symmetric, it is diagonalizable. Therefore it is enough to show
that the eigen-values of S are positive. From the Gershgorin circle
theorem (see [8]) for any eigen-value λ of S, there exists i such that

|λ− 2mii| ≤
∑
j 6=i

|mij |+
∑
j 6=i

|mji|

=⇒ λ ≥ 2mii −
∑
j 6=i

|mij | −
∑
j 6=i

|mji|.

Now, mii = di ((1 + η)− γp(i|i)) and for i 6= j we have mij =
−diγp(j|i). Therefore mii −

∑
j 6=i |mij | = (1 + η − γ)di and

mii −
∑
j 6=i |mji| =

(
(1 + η)di − γdT p(i|.)

)
.

=⇒ λ ≥ (1 + η − γ)di +
(

(1 + η)di − γdT p(i|.)
)
> 0

from the hypothesis η > max
i

γdT p(i|.)
di

− 1. Since λ is an arbitrary

eigen-value, it is clear that every eigen-value of S is positive, i.e., S is
positive definite. HenceM is positive definite. In particular, given the
behaviour policy µ and the target policy π, there exists η > 0 such
that A = ΦTDµ ((1 + η)I − γPπ) Φ is positive definite, thereby
satisfying assumption A4. �

The following lemma makes use of the arguments similar to those
in Section VII of [21].

Lemma 3 There exists positive constant C such that for any given
initial state X ,

∞∑
n=0

‖E[A(Xn)|X0 = X]−A‖ ≤ C and

∞∑
n=0

‖E[b(Xn)|X0 = X]− b‖ ≤ C.

Proof: Let dnµ(s) = Pr(sn = s|X0 = X) for any X =
(s0, a0, s1) and Dn

µ be the |S| × |S| diagonal matrix with the diag-
onal element Dn

µ(s, s) = dnµ(s) for any given X. Since the Markov
chain {Xn} has an invariant distribution there exist [16] scalars
L > 0 and 0 < α < 1 such that

|Pr(sn = s|X0 = X)− dµ(s)| ≤ Lαn, ∀X and n ≥ 0.

Therefore,

‖Dn
µ −Dµ‖ ≤ Lαn.

Now,

E[A(Xn)|X0 = X]

= −E
[
ρn
(
γφ(sn)φ(sn+1)T − (1 + η)φ(sn)φ(sn)T

)
|X0 = X

]
= −

∑
i,j∈S,a∈U

dnµ(i)µ(i, a)p(j|i, a)

[
π(i, a)

µ(i, a)

(
γφ(i)φ(j)T

− (1 + η)φ(i)φ(i)T
)]

= −
∑
i,j

γdnµ(i)φ(i)φ(j)T pπ(j|i) +
∑
i

dnµ(i)(1 + η)φ(i)φ(i)T

= ΦTDn
µ((1 + η)I − γPπ)Φ.

Therefore, with G = ‖(1 + η)I − γPπ‖ we have

∞∑
n=0

‖E[A(Xn)|X0 = X]−A‖

=

∞∑
n=0

‖ΦT (Dn
µ −Dµ)((1 + η)I − γPπ)Φ‖

≤
∞∑
n=0

K2 max
k,j
|φTk (Dn

µ −Dµ)((1 + η)I − γPπ)φj |

≤K2 max
k
‖φk‖Gmax

j
‖φj‖

∞∑
n=0

‖Dn
µ −Dµ‖

≤GK2 max
k
‖φk‖2

L

1− α.

Similarly,

E[b(Xn)|X0 = X]

= E[ρnrnφ(sn)|X0 = X]

=
∑

i,j∈S,a∈U

dnµ(i)µ(i, a)p(j|i, a)

[
π(i, a)

µ(i, a)
r(i, a)φ(i)

]
= ΦTDn

µrπ,

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

where the ith component of rπ is given by rπ(i) =∑
a∈U r(i, a)π(i, a). We then have

E[b(Xn)|X0 = X]− b

= E[ρnrnφ(sn))|X0 = X]− ΦTDµrπ = ΦT (Dn
µ −Dµ)rπ

and
∞∑
n=0

‖E[b(Xn)|X0 = X]− b‖

=

∞∑
n=0

‖ΦT (Dn
µ −Dµ)rπ‖

≤
∞∑
n=0

K max
k
|φTk (Dn

µ −Dµ)rπ|

≤ K max
k
‖φk‖‖rπ‖

∞∑
n=0

‖Dn
µ −Dµ‖

≤ K max
k
‖φk‖‖rπ‖

L

1− α.

The choice

C = max

{
GK2 max

k
‖φk‖2

L

1− α,K max
k
‖φk‖‖rπ‖

L

1− α

}
proves the lemma. �

Theorem 3 The assumptions A5 and A6 are valid.

Proof: From Lemma 3 and with the choice of κq = 1, h ≡ 1

and C = max
{
GK2 maxk ‖φk‖2 L

1−α ,K maxk ‖φk‖‖rπ‖ L
1−α

}
assumptions A5 and A6 are satisfied. �

Hence by Theorem 1, θn → θ∗ almost surely, where Aθ∗ = b.
To describe the point of convergence of our algorithm consider for
a given policy µ and a parameter η, T ηµ : R|S| → R|S| as T ηµ =

1
1+η

Tµ. We state and prove the following properties about T ηµ .

Lemma 4 T ηµ is a ‖.‖∞-contraction and converges point-wise to Tµ
as η → 0.

Proof: From the definition T ηµ = 1
1+η

Tµ, for any V ∈ R|S|,

T ηµV =
1

1 + η
TµV → TµV as η → 0.

Moreover, for any V,W ∈ R|S|,

‖T ηµV − T ηµW‖∞ =
γ

1 + η
‖Pµ(V −W)‖∞

≤ γ

1 + η
‖V −W‖∞.

Hence T ηµ is ‖.‖∞- contraction. �
This Lemma shows that T ηµ is an approximation to Tµ and smaller

values of η ensure that the fixed points of T ηµ and Tµ are close.

5 About the Point of Convergence
The algorithm converges to the point θ∗ such that b−Aθ∗ = 0, from
the analysis of Section 4. Now

b−Aθ∗ = 0

=⇒ ΦTDµ ((1 + η)I − γPπ) Φθ∗ = ΦTDµrπ

=⇒ ΦTDµ

(
I − γ

1 + η
Pπ

)
Φθ∗ = ΦTDµ

rπ
1 + η

=⇒ ΦTDµΦθ∗ = ΦTDµ

(
rπ

1 + η
+

γ

1 + η
PπΦθ∗

)
=⇒ Φθ∗ = Φ(ΦTDµΦ)−1ΦTDµ

(
rπ

1 + η
+

γ

1 + η
PπΦθ∗

)
=⇒ Φθ∗ = ΠDµT

η
πΦθ∗,

where ΠDµ = Φ(ΦTDµΦ)−1ΦTDµ is the projection operator that
projects any V ∈ R|S| to the subspace {Φr|r ∈ RK} with respect
to the norm ‖.‖Dµ . Hence we observe that, similar to on-line on-
policy TD(0), our on-line off-policy variant of TD(0) also converges
to the fixed point of the projected perturbed Bellman operator. The
projected perturbed Bellman operator in this case is ΠDµT

η
π .

Remark 3 Note that, in the case of Φ = I and η = 0, the solution
of our algorithm θ∗ = Φθ∗ = Vπ .

Remark 4 Note that the bound derived for η in Theorem 2 is a suf-
ficient but not a necessary condition for the convergence of our pro-
posed algorithm. If the value of η is large, the algorithm converges
but to a poorly approximated solution. Therefore, in experiments, we
select the value of η that is large enough to ensure convergence and
small enough to ensure that the approximation is close.

6 Experiments and Results

Figure 1: Performance of algorithms on “θ −→ 2θ”. RMSE is the
value averaged across 10 independent runs.

Figure 2: Baird’s Counterexample. Figure taken from [25].

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

(a) step-size:0.001 (b) step-size:0.0001 (c) step-size:0.00001

(d) step-size:0.000001

Figure 3: Performance of algorithms on “Baird’s Counter-example”. RMSE is the value averaged across 10 runs. For the TDC algorithm,
β = 10× step-size (Figure 5 of [18]).

In this section, we describe the performance of our proposed algo-
rithm on three tasks. We first perform experiments on two benchmark
counter-examples for off-policy divergence. Finally, we analyze the
performance of our algorithm on a 3-state MDP example 2. The eval-
uation metric considered is Root Mean Square Error (RMSE) defined
as:

RMSE(θ) =

√∑
s∈S

dµ(s)(Vπ(s)− V̂θ(s))2, (10)

where θ is the parameter that is used to approximate the value
function, dµ is the stationary distribution of the Markov chain under
the behavior policy µ, Vπ is the exact value function of the target pol-
icy π and V̂θ is the approximate value function that is estimated. For
comparison purposes, we also implement Emphatic TD (ETD(0)) al-
gorithm [19] and a gradient-family algorithm, linear TD with gra-
dient correction (TDC) [18]. We perform 10 independent runs and
present the average of RMSE obtained on all the three experiments.

First, we consider the “θ −→ 2θ” example ([22], Section 3 of [19]).
In this example, there are two states - 1 and 2 and two actions - ‘left’
and ‘right’. Left action in state 1 results in state 1, while right action
results in state 2. Similarly, right action in state 2 results in state 2
and left action results in state 1. The target policy is to take right in
both the states, whereas the behavior policy is to take left and right
actions with equal probability in both the states. The value function is
linearly approximated with one feature. The feature of state 1 is 1 and
that of state 2 is 2. The discount factor is taken to be 0.9. The update
parameter θ is initialized to 1 and the η for our algorithm is taken
to be 1. The step-size for the algorithms is held constant at 0.01.
In Figure 1, we show the performance of algorithms over 100000
iterations. We can see that the standard off-policy TD(0) diverges
whereas the other three algorithms including our proposed perturbed

2 The implementation codes for our experiments is avail-
able at: https://github.com/raghudiddigi/
Off-Policy-Convergent-Algorithm

off-policy TD(0) converge to a point where the RMSE is zero.
Next, we consider the “7-star” example, first proposed in [1]. This

is completely described in Figure 2 [25]. There are 7 states repre-
sented as circles. The expression inside the circle i represents the
linear approximation of the state i. The policy π in Figure 2 rep-
resents the target policy and b represents the behavior policy. We
run all the algorithms, i.e., standard off-policy TD(0), Emphatic off-
policy TD(0), TDC and our algorithm, Perturbed off-policy TD(0)
for 1000000 iterations. In Figure 3, we present the results of all the
algorithms obtained by following different step-sizes. From Figures
3a,3b,3c, we can see that our perturbed off-policy TD converges to
the exact solution while the Emphatic TD(0) appears to oscillate.
Moreover, it is known that standard off-policy TD(0) diverges for
this example, which can also be observed from Figures. In Figure
3d, the step-size considered is 0.000001 (which is very small) and
therefore it may take a very large number of iterations to observe the
behavior of the algorithms.

Finally, we construct an MDP as follows. There are 3 states and
2 actions - ‘left’ and ‘right’ possible in each state. The ‘left’ action
in states 1 and 2 leads to state 1. And the ‘right’ action in states 2
and 3 leads to state 3. Finally ‘left’ action in state 3 leads to state 2.
The single-stage rewards in all transitions are taken to be 1 and the
discount factor is 0.9. The target policy π = [[0, 1], [0.5, 0.5], [1, 0]]
and the behavior policy µ = [[0.9, 0.1], [0.5, 0.5], [0.1, 0.9]] (where
the first component represents the probability to take ‘left’ and the
second component represents the probability to take ‘right’). The fea-
ture vectors of the three states are [1, 0], [1, 1], [0, 1] respectively. We
run all the algorithms for 1000000 iterations. Similar to our previous
experiment, we present the results of all the algorithms obtained by
following different step-sizes in Figure 4. From Figures 4a,4b,4c we
can see that our proposed perturbed off-policy TD(0) converges. For
this experiment, the best possible RMSE is 2.548 and our proposed
algorithm (refer Figure 4b) achieves 2.97.

In the experimental setting above, the value of η is set to 0.5. In
Figure 5, we run our algorithm with two other values of η = 0.4 and

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

https://github.com/raghudiddigi/Off-Policy-Convergent-Algorithm
https://github.com/raghudiddigi/Off-Policy-Convergent-Algorithm

(a) step-size:0.001 (b) step-size:0.0001 (c) step-size:0.00001

(d) step-size:0.000001

Figure 4: Performance of algorithms on a 3-state MDP. RMSE is the value averaged across 10 runs.The best possible RMSE for this example
is 2.548. For the TDC algorithm, β = 10× step-size.

0.6 respectively. We observe that, for η = 0.4, convergence is not
achieved as this η correction is not enough. On the other hand, for
η = 0.6, convergence is ensured. However, the converged solution is
not close due to the over-correction. Hence, it is to be noted that an
optimal value of η is desired for ensuring the convergence and near-
optimal solution at the same time (recall that a higher value of η is
enough to ensure the convergence alone).

Figure 5: Performance of our proposed algorithm with three different
η values.

Remark 5 Note that the objective of the experiments here is to show
that our proposed algorithm mitigates the divergence problem asso-
ciated with the standard off-policy TD. If we choose a good value
of η, it ensures that the algorithm converges to a solution close to
the optimal solution. At this point, we do not make any claims about
the quality of the converged solution of our proposed algorithm com-
pared to that of the Emphatic TD(0) and TDC algorithms. Further
empirical analysis is needed to conclusively make comparisons of
the quality of converged solution using our algorithm with Emphatic

TD(0), TDC as well as other off-policy algorithms in the literature.

7 Conclusions and Future Work
In this work, we have proposed an off-policy TD algorithm for mit-
igating the divergence problem associated with the standard off-
policy TD. Our proposed algorithm is simple in the sense that it
trains only one set of parameters unlike GTD algorithms and doesn’t
use emphatic weights as in the ETD algorithm. It makes use of a
perturbation parameter to ensure the convergence of the iterates. We
proved that this addition of parameter makes the matrix A positive
definite, which in turn ensures convergence. Finally, we empirically
show the convergence on benchmark counter-examples for off-policy
divergence.

As seen from the experiments, the choice of η is critical for our
algorithm. The lower-bound that we have provided in our analysis is
not tight and coming up with a tight bound is an interesting future
direction. Our algorithm, in its current form, cannot be applied to
compute the optimal policy (which is a control task). In future we
would like to extend this algorithm to control tasks. Also, we would
like to extend our algorithm to include eligibility traces and study its
applications on real-world problems.

8 Acknowledgements
We thank the reviewers for their comments, which helped us to im-
prove the paper. Raghuram Bharadwaj was supported by a fellowship
grant from the Centre for Networked Intelligence (a Cisco CSR ini-
tiative) of the Indian Institute of Science, Bangalore. This work was
supported by the Robert Bosch Centre for Cyber-Physical Systems,
Indian Institute of Science, and a grant from the Department of Sci-
ence and Technology, India. S.Bhatnagar was also supported by the
J.C.Bose Fellowship.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

References

[1] Leemon Baird, ‘Residual algorithms: Reinforcement learning with
function approximation’, in Machine Learning Proceedings 1995, 30–
37, Elsevier, (1995).

[2] Albert Benveniste, Michel Métivier, and Pierre Priouret, Adaptive al-
gorithms and stochastic approximations, volume 22, Springer Science
& Business Media, 2012.

[3] Dimitri P Bertsekas and John N Tsitsiklis, Neuro-dynamic program-
ming, volume 5, Athena Scientific Belmont, MA, 1996.

[4] Steven J Bradtke and Andrew G Barto, ‘Linear least-squares algorithms
for temporal difference learning’, Machine learning, 22(1-3), 33–57,
(1996).

[5] Carles Gelada and Marc G Bellemare, ‘Off-policy deep reinforcement
learning by bootstrapping the covariate shift’, in Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 3647–3655,
(2019).

[6] Sina Ghiassian, Andrew Patterson, Martha White, Richard S Sut-
ton, and Adam White, ‘Online off-policy prediction’, arXiv preprint
arXiv:1811.02597, (2018).

[7] Sina Ghiassian, Banafsheh Rafiee, and Richard S Sutton, ‘A first em-
pirical study of emphatic temporal difference learning’, arXiv preprint
arXiv:1705.04185, (2017).

[8] GH Golub and CF Van Loan. Matrix computations, (Johns Hopkins
University Press, Baltimore, 1996).

[9] Assaf Hallak and Shie Mannor, ‘Consistent on-line off-policy evalua-
tion’, in Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1372–1383. JMLR. org, (2017).

[10] Assaf Hallak, Aviv Tamar, Rémi Munos, and Shie Mannor, ‘General-
ized emphatic temporal difference learning: Bias-variance analysis’, in
Thirtieth AAAI Conference on Artificial Intelligence, (2016).

[11] Bo Liu, Sridhar Mahadevan, and Ji Liu, ‘Regularized off-policy TD-
learning’, in Advances in Neural Information Processing Systems, pp.
836–844, (2012).

[12] Hamid R Maei, Csaba Szepesvári, Shalabh Bhatnagar, Doina Precup,
David Silver, and Richard S Sutton, ‘Convergent temporal-difference
learning with arbitrary smooth function approximation’, in Advances
in Neural Information Processing Systems, pp. 1204–1212, (2009).

[13] Hamid Reza Maei and Richard S Sutton, ‘GQ(λ): A general gradient
algorithm for temporal-difference prediction learning with eligibility
traces’, in 3d Conference on Artificial General Intelligence (AGI-2010).
Atlantis Press, (2010).

[14] Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, and
Richard S Sutton, ‘Toward off-policy learning control with function ap-
proximation.’, in ICML, pp. 719–726, (2010).

[15] Doina Precup, Richard S Sutton, and Sanjoy Dasgupta, ‘Off-policy
temporal-difference learning with function approximation’, in ICML,
pp. 417–424, (2001).

[16] Jeffrey S Rosenthal, ‘Convergence rates for Markov chains’, SIAM Re-
view, 37(3), 387–405, (1995).

[17] Richard S Sutton and Andrew G Barto, Reinforcement learning: An
introduction, MIT press, 2018.

[18] Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatna-
gar, David Silver, Csaba Szepesvári, and Eric Wiewiora, ‘Fast gradient-
descent methods for temporal-difference learning with linear function
approximation’, in Proceedings of the 26th Annual International Con-
ference on Machine Learning, pp. 993–1000. ACM, (2009).

[19] Richard S Sutton, A Rupam Mahmood, and Martha White, ‘An em-
phatic approach to the problem of off-policy temporal-difference learn-
ing’, The Journal of Machine Learning Research, 17(1), 2603–2631,
(2016).

[20] Richard S Sutton, Csaba Szepesvári, and Hamid Reza Maei, ‘A conver-
gent O(n) algorithm for off-policy temporal-difference learning with
linear function approximation’, Advances in Neural Information Pro-
cessing Systems, 21(21), 1609–1616, (2008).

[21] J. N. Tsitsiklis and B. Van Roy, ‘An analysis of temporal-difference
learning with function approximation’, IEEE Transactions on Auto-
matic Control, 42(5), 674–690, (1997).

[22] John N Tsitsiklis and Benjamin Van Roy, ‘Feature-based methods for
large scale dynamic programming’, Machine Learning, 22(1-3), 59–94,
(1996).

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,

Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg and Demis Hassabis , ‘Human-level control
through deep reinforcement learning’, Nature, 518(7540), 529, (2015).

[24] Huizhen Yu, ‘On convergence of emphatic temporal-difference learn-
ing’, in Conference on Learning Theory, pp. 1724–1751, (2015).

[25] Jeremy Zhang. Bairdexample. https://github.com/
MJeremy2017/Reinforcement-Learning-Implementation/
tree/master/BairdExample, November 2019.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

 https://github.com/MJeremy2017/Reinforcement-Learning-Implementation/tree/master/BairdExample
 https://github.com/MJeremy2017/Reinforcement-Learning-Implementation/tree/master/BairdExample
 https://github.com/MJeremy2017/Reinforcement-Learning-Implementation/tree/master/BairdExample

	Introduction
	Background and Preliminaries
	The Proposed Algorithm
	Convergence Analysis
	About the Point of Convergence
	Experiments and Results
	Conclusions and Future Work
	Acknowledgements

