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Abstract. Automated Machine Learning (AutoML) is the challenge
of finding machine learning models with high predictive performance
without the need for specialized data scientists. Existing approaches
optimize a pipeline of pre-processing, feature engineering, model se-
lection and hyperparameter optimization, and assume that the user
is fully aware of the choice of the underlying metric (such as preci-
sion, recall or F1-measure). However, end-users are often unaware of
the actual implications of choosing a metric, as the resulting models
often significantly vary in their predictions.

In this work, we propose a framework to personalise AutoML for
individual end-users by learning a designated ranking model from
pairwise user preferences and using the latter as the metric function
for state-of-the-art AutoML systems. Given a set of possible metrics,
we generate candidate models by repeatedly running AutoML with
combinations of the former and have the user choose between pairs
of resulting models. We use RankNet to learn a personalized ranking
function for the end-user, which is used as loss function for final run
of a standard AutoML system.

To evaluate our proposed framework we define three preferences a
user could pursue and show that a ranking model is able to learn these
preferences from pairwise comparisons. Furthermore, by changing
the metric function of AutoML we show that a personalized prefer-
ence is able to improve machine learning pipelines. We evaluated the
ability of learning a personalized preference and the entire frame-
work on several OpenML multi-class classification datasets.

1 Introduction
Machine learning (ML) gains increasing importance in a broad range
of applications and has led to an ever-growing demand for ma-
chine learning systems [6]. To meet the growing demand for ma-
chine learning applications without the need of highly specialized
data scientists and domain experts automated machine learning (Au-
toML) simplifies the selection of suitable features, classifiers and
their hyperparameters. Current AutoML frameworks, such as Auto-
Weka 2.0 [16], autosklearn [6, 7] or TPOT [19] take a dataset D =
{(x1, y1), . . . , (xn, yn)} and a metric function L as input parameter
to train a suitable ML pipeline.

Previous research has either focused on (i) optimizing different
steps of the data mining pipeline, e.g. preprocessing [24], feature
engineering [15], feature selection [7, 12] and hyperparameter op-
timization or on (ii) integrating multiple metrics (also referred to as
objectives losses or criteria) in the optimization in order to find the
Pareto front [21]. However, it is always assumed that the user is fully
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aware about the available metrics functions and her/his optimal pref-
erence (e.g. combination of metrics).

In addition, approaches for integrating multiple metrics do only
cover few, significantly diverse metric functions (e.g. accuracy and
execution time), but do not explore sets of metrics which inher-
ently follow the same goal (e.g. optimizing predictive performance
with precision, recall, accuracy and F1-measure). It turns out that
such metric functions yield significantly diverging predictive perfor-
mances when evaluated for standard ML benchmarks (e.g. OpenML
datasets [25] used in [6]), also leading to different optimal classifiers
and hyperparameters.

In this work, we aim to close this gap by learning the user-specific
preference from a set of potential candidate metric functions and use
the resulting model for optimization in a standard AutoML process.
Given a set of metric functions, we first generate candidate weight-
ings of the available metric functions and the resulting sets of learned
models from AutoML processes in order to retrieve unlabeled dat-
apoints for interacting with the user. We then initiate a preference
learning session with the end-user, where he/she is presented with
pairwise choices of possible models. Based on the resulting relative
labeling of the dataset, we can learn a ranking function with estab-
lished approaches such as RankNet [2], which we use for a final Au-
toML process.

In order to evaluate our approach, we show in a first experiment,
that the ranking approach is able to learn a new metric (e.g. a linear
combination) from a set of predefined metric functions . The second
experiment evaluates the integration of the learned metric function
into AutoML and shows that a personalized metric function, such as
the metric learned within the ranking model is able to outperform
AutoML instances fitted on a metric from the predefined set.

In summary, we provide the following contributions:

1 An approach for personalizing AutoML from a set of metric func-
tions.

2 A formalization, implementation, and evaluation for learning a
personalized metric functions from pairwise comparisons.

3 The integration of a ranking model into the environment of Au-
toML and its evaluation.

After dwelling on related work to our problem setting in Sec 2,
we describe the foundations of our approach in Sec 3. Sec 4 then
presents our approach to Personalized AutoML with components to
generate the dataset for user interaction, choosing appropriate pair-
wise comparisons and learning the novel metric function. We eval-
uate our approach in terms of preference ranking and eventual Au-
toML performance in Sec 5. After discussion shortcomings of our
approach (Sec 6), we conclude the paper in Sec 7 and point out rele-
vant future directions in Sec 8.
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2 Related work

The field of human guided machine learning (HGML) [10] com-
prises heterogeneous goals, such as enabling end-users to request
novel quantities to be computed by the system. Goals of HGML are
e.g. to give the user the opportunity to directly interact with a ML
system by modifying its features, the instances used to train a model
and comparing the performance of different models.

Our work deals with a small fraction of HGML, namely to en-
able intuitive user interactions for learning a single machine learning
model. Here, a ground truth for the dataset is available, but the
user preference has to be learned on the basis of multiple available
metrics which strongly influence the actual predictions of the
resulting models.

AutoML targets to solve the CASH problem which was initially
introduced in [23] within the Auto-WEKA framework. The most
established frameworks for AutoML are Auto-Weka 2.0 [16], au-
tosklearn [6, 13, 8], TPOT [19] and h2o4. While Auto-Weka 2.0
and autosklearn use a random-forests and Gaussian processes [12,
SMAC], TPOT employs an evolutionary algorithm and h2o a grid
search approach, resulting in different features such as ensembles of
different pipelines, as solution or parallel evaluation. However, for
solving the CASH problem, the actual metric function L has to be
known in advance [26].

A line of research strongly related to personalising AutoML is
enabling to take into account multiple objectives within the search
process [21]. The authors find the Pareto front for all objectives and
enable end-users to interact with gradual version of the front in or-
der to guide the search. While the goal of weighting the importance
of individual objectives is equal to ours, the approach assumes that
the end-user is fully aware of all objectives and is able to interpret
the Pareto front. Our approach, on the other hand, aims to enable the
integration of appropriate user interfaces which provide labeled data
for preference learning.

Learning models from (human-) preferences has already been ap-
proached for reinforcement learning (RL) [4], where sparsely defined
reward functions are replaced by a learned ranking model. The ap-
proach also relies on pairwise comparisons of examples (here seg-
ments of the process to be learned) by end-users and the eventual
reward function is used for standard RL algorithms. Due to the rel-
atively long execution time of an AutoML component the initializa-
tion process to generate segments within the reinforcement learning
model would lead to excessively long response times for the user to
compare two segments. Our approach generates a set of segments
within an Evaluation Initiator component.

We now introduce the required background concepts for our per-
sonalized AutoML approach.

3 Background

Our approach mainly consists of two components, that are seperatly
well-researched topics. We first introduce the AutoML problem (see
Sec 3.1) and the formalized CASH-problem. Then we describe the
preference learning setting (see Sec 3.2), that is needed to personalize
AutoML and thus to integrate human preferences into the decision
for machine learning pipelines.

4 http://docs.h2o.ai/h2o, last accessed: 14.06.2019

3.1 Automated Machine Learning
Automated Machine Learning AutoML aims to automate a ML
pipeline containing the steps (i) data cleaning, (ii) feature engineer-
ing and (iii) modeling algorithm (see. [6]). Following the definition
from [26] a machine learning pipeline structure g ∈ G can be mod-
eled as an arbitrary directed acyclic graph (DAG), where each node
represents a algorithm type Acleaning, Afeature and Amodel from
each step. The problem to find a suitable combination of the pre-
sented algorithm steps can be modelled as Combined Algorithm Se-
lection and Hyperparameter optimization (CASH) problem [23].

With the definition of the CASH problem it emerges that the met-
ric is predetermined.

Definition 1 CASH problem, adopted from [6].
Let A = {A(1), . . . , A(R)} be a set of step independent algorithms,
and let the hyperparameters of each algorithm A(j) have a domain
Λ(j). Further, let Dtrain be a training and Dvalid be a validation set,
which is split into K cross-validation folds {D(1)

train, . . . , D
(K)
train } and

{D(1)
valid, . . . , D

(K)
valid}. Let L(P

g,
−→
A,
−→
λ

(D
(i)
train), D

(i)
valid) denote the met-

ric that algorithm combination P (j) achieves on D(i)
valid when trained

on D(i)
train with hyperparameters

−→
λ . Then the CASH problem is to

find the joint algorithm combination and hyperparameter setting that
minimizes the metric:

g∗,
−→
A ∗,
−→
λ ∗,∈ arg min

P (j)∈P,λ∈Λ(j)

1

K

K∑
i=1

L(P
g,
−→
A,
−→
λ

(D
(i)
train), D

(i)
valid)

(1)

3.2 Preference Learning
Learning to rank is a well-researched topic which can be categorised
into pointwise [5, 17], pairwise [11, 2, 18, 22] and listwise [3, 14]
approaches.

The pointwise approach assumes that each training document or
observation with features X is associated with a rating and thus the
problem can be reduced to a regression problem. Prominent exam-
ples are PRank [5] which performs the ranking by an ordinal re-
gression and McRank [17] which employs multiclass classification
and Gradient boosting techniques. Pointwise approaches are, how-
ever, not advantageous for our problem setting, as it is difficult for
end-users to assign an absolute target value for a machine learning
model.

The listwise approach uses a list of ranked documents or obser-
vations for training and learns to predict the order of a list. Exem-
plary listwise approaches are Combined Regression and Ranking
[22], PolyRank [18] and ES Rank [14]. While listwise approaches
enable end-users to provide relative feedback for lists of machine
learning models, it is too difficult to rank more than two models when
the underlying personalisation objective is too complex.

We thus base our work on pairwise ranking approaches which take
ranked document pairs as input and learn to classify each document
or object pair into correctly ranked or incorrectly ranked classes.
Ranking SVM [11] uses a support vector machine to maximize the
span between classes correctly and incorrectly ranked to solve the
pair wise ranking problem. RankNet [2] uses neural networks to on
the one hand learn the rating for both documents or observations in a
pair within a siamese architecture and on the other hand to maximize
the cross entropy between the predicted ratings (see Sec 5.1). Lamb-
daRank [1] extends RankNet by not using the actual costs (number of
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inversions in ranking) but their gradients for training. Lastly, Lamb-
daMART combines LambdaRank and multiple additive regression
trees [9].

4 Personalized AutoML

Figure 1. Personalized AutoML framework

In this section we first formalize our novel learning problem and
then present our approach to a Personalized Automated Machine
Learning framework.

Our baseline setting is similar to the prior defined CASH problem
(see Def 1), where we assume the availability of algorithms with hy-
perparameters as well as training and test data sets for calculating
a metric signal. However, instead of assuming a single metric func-
tion L, we now assume a set of available metric functions L, from
which we need to learn an approximation for the optimal combined
metric function L∗ for a specific user. We now formally define the
personalized CASH problem for AutoML in Def 2.

Definition 2 Personalized CASH problem.
We extend the CASH problem where algorithms A and metric func-
tionL are assumed to be given (see Def 1) with a set of available loss
functions L = {L(1), . . . ,L(l)}. The goal becomes to learn a novel
metric function L∗ which combines the individual metric functions:

L∗ : L(1) × · · · × L(l) → R

By assuming that one can model a function φ : L → Rl which
generates a feature vector for the available set of metrics, we can
reduce learningL to a regression problem, where we attempt to learn

fL∗ : φ(L)→ R

The resulting personalized CASH problem can then be defined as
follows.

g∗,
−→
A ∗,
−→
λ ∗,L∗,∈ arg min

P (j)∈P,λ∈Λ(j)

1

K

K∑
i=1

f̂L∗(P
g,
−→
A,
−→
λ

(D
(i)
train), D

(i)
valid)

(2)
where f̂L∗ is the approximated regressor for the novel metric func-
tion L∗ for which we we have to learn weights θ ∈ Rl, e.g.
f̂L∗ = φ(L)T θ for the linear case.

Our proposed framework (see Fig 1) consists of an Evaluation Ini-
tiator, an Evaluation Generator and a Metric Learner component
which can be paired with any standard AutoML algorithm.

A Evaluation Initiator generates a set of pipeline configurations
P
g,
−→
A,
−→
λ

from various AutoML instances trained based on a set of
metric functions L.

An Evaluation Generator component generates segment pairs
with different pipeline configurations P

g,
−→
A,
−→
λ

which can be evalu-
ated from humans. A Metric Learner component learns a new metric
functionL∗ with given preferences, which is used for a new AutoML
component. In a last step the new AutoML component is trained
based on the generated metric function L∗ and used to predict on
Xtest.

Besides the overall architecture shown in Fig 2, we describe the
overall workflow of our system in Algorithm 1.

Algorithm 1: Personalized AutoML
Input: Dataset Dtrain = {Xtrain, ytrain},
Dataset Dvalid = {Xvalid, yvalid},
Features Xtest,
Set of Metrics L,
Number of pairwise comparisons ω
\\ω is initialized with default value 1000
Output: Prediction ŷ

1 \\Generate pipeline configurations P:
2 Initialize set of pipeline configurations P ← ∅
3 Initialize set of segments S ← ∅
4 for L ∈ L do
5 Fit AutoML(L, Xtrain, ytrain)
6 PL ← Evaluated AutoML pipelines
7 P ← P ∪ PL
8 \\ Generate segment pairs U pair :

9 U pair ← Segment Generation(P,Dvalid, ω)
\\ see. Algorithm 2

10 \\ Get human preference U judged :

11 U judged ← Human Preference(U pair) \\ see Sec 4.3
12 \\ Train learning to rank see Sec 4.4 :

13 X(1), X(−1) ← Generate RankNet dataset from U judged

14 L∗ ← Fit NNRankNet(X
(1), X(−1))

15 Fit AutoML(L∗, Xtrain, ytrain)
16 ŷtest ← Predict AutoML(Xtest) Return ŷtest

We first describe the evaluation initiator, which generates a set of
candidate models from different AutoML processes.

4.1 Evaluation Initiator

In the initialization phase, we generate different pipeline configura-
tions P

g,
−→
A,
−→
λ

based on all metrics L ∈ L, so that for each Li ∈ L an
AutoML instance is trained onDtrain and a number of pipeline config-
urations PL

i

g,
−→
A,
−→
λ

exist. All generated configurations are denoted as

P
g,
−→
A,
−→
λ

=
⋃
Li∈L

PL
i

g,
−→
A,
−→
λ

. For easier use the set of pipeline configu-

rations P
g,
−→
A,
−→
λ

are further denoted as P = {P (1), . . . , P (j)} ∈ P .
Since not only the best pipeline configurations from the trained Au-
toML instances, but all pipeline configurations evaluated during Au-
toML training are used for P

g,
−→
A,
−→
λ

, the number of pipeline configu-
rations is higher than the number of metric functions.
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We now describe the evaluation generator, which is called after
the initialization phase has yielded a set of candidate models based
on different AutoML processes.

4.2 Evaluation Generator

The Evaluation Generator component receives a set of pipeline con-
figurations as input from the first AutoML instances a max number
of segments pairs (γ) to be generated and a validation dataset Dvalid.
Furthermore, we denote a segment as s = (X, y, ŷ(i)) as a tuple of
features X , its ground truth labels y and a prediction ŷ on X . With
Xvalid and each P (i) ∈ P we predict ŷ(i)

valid. Based on the predictions
we generate for each P (i) ∈ P a segment s(i) = (Xvalid, yvalid, ŷ

(i)
valid)

containing the features Xvalid, the ground truth labels y(i)
valid and the

predicted labels ŷ(i)
valid. Within the Evaluation Generator component

the question which Segments to compare for Ranking also takes part.
Since we aim to implement a pairwise learning to rank approach
the selection which segment pairs U pair to evaluate becomes appar-
ent. Algorithm 2 shows a random generation of segment pairs which
are parsed to the human preferences component. In Algorithm 1 the
Evaluation Generator is executed in line 9. In algorithm 2 the maxi-

Algorithm 2: Segment Generation
Input: Set of pipeline configurations P,
Number of segment pairs to be generated γ
Validation dataset Dvalid = {Xvalid, yvalid}
Output: Set of segment pairs U

1 Initialize U pair = ∅
2 Initialize ŷ = ∅
3 for pi ∈ P do
4 ŷ ← pi(Xvalid)

5 while |U pair| ≤ γ do
6 i, j ← Select random i, j ∈ P
7 si ← (Xvalid, yvalid, ŷi)
8 sj ← (Xvalid, yvalid, ŷj)

9 if (si, sj) 6∈ U pair then
10 U pair = U pair ∪ {(si, sj)}

11 Return U pair

mal number of segment pairs is given by all possible combinations of
P (i) ∈ P , without taking into account the order of segments within
the segment pairs U pair.

4.3 Human Preference Interface

Based on the generated segment pairs U pair, within the Segment Gen-
eration component a Human Preference component visualizes the
segment pairs (si, sj) ∈ U pair so that the user is able to judge which
segment is preferred to the other one. Based on the tuples (X, y, ŷ)
the component can build visualizations such as a confusion matrix,
the predictions or metric functions which allow the user to express
her/his preferences. Due to the need to have different visualizations
to evaluate segments for different users, the visualization of the seg-
ments represents an own field of research we do not discuss. Instead
we provide in our approach an interface to (i) retrieve segment pairs
and (ii) to send judgements from the user to the Metric Learner com-
ponent. In Fig 2 we provide an exemplary visualization of segment
pairs, where the user could decide whether to choose the left or right

Figure 2. Interface for selecting preferences

segment. All judgments from the user are stored in U judged as triples
(si, sj , c), where c ∈ {−1, 1} denotes the judgment whether the left
segment (-1) or the right segment (1) was chosen and parsed to the
Metric Learner component. In Algorithm 1 the Human Preference
component is executed in line 11.

4.4 Metric Learner
The Metric Learner component is the core component to personalize
AutoML. It gets a set of judgments U judged as input to generate a new,
personalized metric function L∗. While each segment si ∈ U judged is
related to a pipeline configuration P (i) ∈ P , we can compute for all
P (i) ∈ P all metrics L ∈ L based on the datasetD = {Xvalid, yvalid}
which are already used to visualize the pipeline configuration to a
user within the Human Preference component. The calculated met-
rics and the judgment from the user for each segment can be used for
a pairwise learning to rank approach. The Metrics Learner compo-
nent generates from the metrics a dataset which can be used to learn
a new metric function. We implemented the RankNet[2] algorithm
to learn the underlying ranking function. In Algorithm 1 the Metric
Learner component is executed from line 12 to 14.

The RankNet approach takes two training datasets X(1)
train for the

selected segments and X(−1)
train for the non-selected segments from all

judgments U judged. Both datasets have the same shape. The base net-
work from the RankNet approach is a deep convolutional neural net-
work (CNN) where the softmax function at the end is removed and
replaced with a single neuron (see. [2]). This output is used as a scor-
ing function to rank documents. The meta network has a siamese ar-
chitecture and predicts within two base networks the scores on X(1)

train

and X(−1)
train . The difference between both scores is parsed to a sig-

moid function which is used to distinguish if the predicted scores
provide a correct ranking within X(1)

train and X(−1)
train .

The Metric Learner component generates for each P (i) ∈ P all
metrics L ∈ L and uses them as features (X(1)

train or X(−1)
train ) to gen-

erate a training dataset for the RankNet approach. Considering e.g. a
judgement (s1, s2,−1) we calculate for s1 L1 = {L(1)

1 , . . . ,L(l)
1 }

and for s2 all metrics L2 = {L(1)
2 , . . . ,L(l)

2 }. From the human pref-
erence we know, that s1 is ranked lower than s2, so that the gener-
ated features L2 are added toX(1)

train and the generated features L1 are
added to X(−1)

train . With the resulting dataset X(1)
train and X(−1)

train from all
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judgements U judged we are able to train a RankNet instance, were the
base network is used as a new metric function L∗ for a new AutoML
instance that takes the human preference into account. In algorithm
3, we show how the learning to rank based metric function calcu-
lates the metric with a similar input to common metric functions e.g.
Laccuracy(y, ŷvalid) or Def 1. With this approach we are now able to
generate a metric function L∗ as prediction from a trained RankNet
model (see. algorithm 3). Based on the new personalized metric func-
tion L∗ a new AutoML instance can be fitted on Dtrain and evaluated
on Dtest.

Algorithm 3: Rank based Metric function L∗

Input: Ground truth y, and prediction ŷ
Trained RankNet model NNRankNet

Set of metric functions L = {L(1), . . . ,L(l)}
Output: MetricL∗(x)

1 Initialize X ← ∅
2 Initialize L∗ ← NNRankNet for L(i) ∈ L do
3 x← x ∪ L(i)(ŷ, y)

4 Return L∗(x)

5 Empirical Evaluation
In this section we evaluate our proposed approach. The first part
of the evaluation refers to the Metric Learner component and its
RankNet approach described in Sec 4.4. The second part refers to
the evaluation of the whole framework. We show that our approach
of a personalized AutoML is able to take user preferences into ac-
count and suggests AutoML classifiers that can outperform previous
AutoML instances based on the preferences a user wants to pursue.

To evaluate our approach, we used the metric functions explained
variance score, f1 score, hamming loss, jaccard score, log loss, max
error, mean squared error, precision score, and recall score from
the scikit-learn library [20] and trained for each metric and dataset
an AutoML instance with TPOT [19]. We evaluated our approach on
various established classification datasets e.g. already used by Feurer
et. al. [6]. As AutoML framework we used TPOT [19] as compo-
nent to create the pipeline configurations P . For each metric func-
tion L ∈ L we fitted an AutoML instance for one hour and extracted
all evaluated pipeline configurations. The execution of the first Au-
toML instances only serves to generate segments, whereby the eval-
uation time for each pipeline configuration depends on the size of
the training dataset Xtrain. Within one hour of training the AutoML
instances we generated on small dataset e.g. OpenML 38 with 30 fea-
tures and 3772 instances 19452 segments in total. On a larger dataset
e.g. OpenML 179 with 15 features and 48842 instances we generated
2349 segments in total. Based on the generated segments and prede-
fined preferences we evaluate in Sec 5.1 the chosen learning to rank
approach and in Sec 5.2 its integration into a new AutoML instance.

5.1 Metric Learner Evaluation
We introduced the Metric Generator component in Sec 4.4 and pro-
posed in Algorithm 3 an approach to use different metrics as features
to build a metric function a user wants to pursue. When not only
evaluating how capable the RankNet approach is of learning user
preferences, but also how many comparisons are needed to learn an
adequate model, the Evaluation Generator component would also

need to be integrated into the evaluation of the RankNet approach. To
evaluate the RankNet approach we generated with algorithm 2 and a
predefined metric (see. table 1 1250 judgements (see. algorithm 2).
We generated a 80/20 (1000/250) train-test split and trained different
RankNet models. On the one hand we evaluated how many pairwise
comparisons are necessary to learn a suitable metric by varying the
training size and using 10, 100, 250, 500 and 1000 judgements from
the training dataset for training. Table 1 shows the percentage of cor-
rect predicted rankings on the test dataset.

Human
Preference

OpenML
ID

Training Size
10 100 250 500 1000

Accuracy

38 0.913 0.963 0.972 0.975 0.977
179 0.913 0.945 0.960 0.966 0.967
772 0.963 0.956 0.966 0.975 0.977
917 0.943 0.974 0.981 0.984 0.986
1049 0.890 0.966 0.977 0.978 0.979
1120 0.917 0.958 0.967 0.971 0.973

Linear
Combination

38 0.896 0.935 0.935 0.935 0.935
179 0.791 0.825 0.810 0.810 0.805
772 0.593 0.687 0.888 0.933 0.937
917 0.949 0.965 0.968 0.968 0.969
1049 0.861 0.943 0.957 0.967 0.972
1120 0.913 0.961 0.968 0.974 0.979

F1

38 0.937 0.972 0.971 0.977 0.978
179 0.889 0.931 0.961 0.974 0.977
772 0.876 0.966 0.972 0.972 0.974
917 0.964 0.982 0.982 0.983 0.985
1049 0.883 0.932 0.970 0.980 0.981
1120 0.940 0.951 0.964 0.977 0.990

Table 1. RankNet - Percentage of correct predictions on test judgements

5.1.1 Accuracy

With the first experiment we show, that RankNet is able to learn a
new metric where the metric to pursue is in the set of metric func-
tions L ∈ L. We used the set of metric function introduced in Sec 5
and used the accuracy score from the sklearn library as preference to
learn. It shows, that a RankNet is able to learn a metric function that
is already in the set of features within 100 pairwise judgements.

5.1.2 Linear Combination

The second experiment shows that RankNet is able to learn a lin-
ear combination of metric functions. As in the first experiment (see
Sec 5.1.1) we used the metrics introduced in Sec 5. We implemented
a preference that pursues a linear combination, where each metric is
weighted and the sum of all weights is equal to 1. Taking a closer
look into the chosen metrics functions we also used metric functions
that exceeds a definition range between 0 and 1 (e.g. mean squared
error), so that the resulting metric from the preference could also
exceed the range of 0 to 1. Comparing the results from the linear
combination with the results from the first experiment, the results
are slightly worse than when only the accuracy needs to be deter-
mined and in general there are more judgements needed to learn a
new metric function (see OpenML dataset 179). This task is much
more complex since the chosen metric functions are not normalized
and few metric functions are interdependent (see Sec 5.1.3).
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5.1.3 F1

With the third experiment we show, that the RankNet approach is
able to learn even more complex metrics. As in the previous experi-
ments we used the metrics from the scikit-learn library (see Sec 5),
but without the f1 score. We implemented a preference that pursues
the f1 score, which can be expressed as function of the precision and
recall metric:

f(precision, recall) = 2
precision ∗ recall
precision + recall

(3)

By using the metrics from Sec 5 (without the f1 score) we show sim-
ilar to the first experiment, that the RankNet approach is able to se-
lect the important metrics functions (precision and recall) as features.
Furthermore, we show that RankNet is able to learn a complex (non-
linear) metric. The RankNet approach achieves within 500 judge-
ments results, that surpass 0.90.

When evaluating the Metric Learner component and describing
the possibilities of a pairwise learning to rank approach it is also
important to define the limitations and which functions cannot be
learned by the Metric Learner component. The limitations can be
depicted with the features chosen for the RankNet approach. For ex-
ample, learning a metric function that a user wants to pursue requires
that it the desired metric functions is describable by a combination
of the chosen features. In our evaluation for example it should be ex-
pressible by the chosen features explained variance score, f1 score,
hamming loss, jaccard score, log loss, max error, mean squared er-
ror, precision score and recall score from the scikit-learn library.

5.2 Personalized AutoML Evaluation
After evaluating the Metric Learner component, we show in this sec-
tion that the learned RankNet metric function is capable to work
as metric for AutoML. First we trained different RankNet Models
(see Sec 5.1) with 1000 judgements. The judgmenets were generated
from the Evaluation Generator component and three different hu-
man preferences (accuracy - Sec 5.1.1, linear combination of metrics
- Sec 5.1.2 and f1-score - Sec 5.1.3). We used the segments generated
in the initially executed AutoML instances.

The generated RankNet models (see Algorithm 3) for the accuracy
score, the linear combination and the f1-score are used to fit new Au-
toML instances on Dtrain. To evaluate the RankNet model we trained
for each dataset another AutoML instance onDtrain and with the met-
ric a user could pursue (accuracy score, linear combination of metrics
and f1-score). This leads to an AutoML instance, where the user al-
ready exactly knows how to measure the performance of different
pipeline configurations. In figures 3 and 4 we plotted the last 50 seg-
ments (pipeline configurations evaluated on Dvalid) for the AutoML
instance fitted on Dtrain and the metrics precision, recall and the
RankNet metric fitted with the f1-score preference. Additionally we
plotted various f1-scores as function of precision and recall, where a
higher color intensity means a better f1-score. In Fig 3 we see that
the AutoML instance fitted on the recall metric leads to higher re-
call scores, and the AutoML instance fitted on the precision metric
leads to higher precision scores. Would the users preference be the
f1-score, but fit the AutoML instance on the precision or recall met-
ric, the AutoML instance would use the pipeline configuration which
performs best on the y-axis in case of the recall metric and on the
x-axis in case of the precision metric. Using the RankNet model to
train a new AutoML instance leads in Fig 3 to slightly better results
than only fitting AutoML on precision or recall. In Fig 4 the results
for dataset 1049 are clearer. It shows that when an AutoML instance

is fitted on a metric a user only wants to pursue partially (see. Equa-
tion 3) the AutoML instance fitted on a metric the user defined by
pairwise comparisons outperforms the other AutoML instances.

In a next experiment we integrated the Metric Learner component
into our approach and trained based on different preferences different
metric functions L∗. We compared in Table 2 the performance of an
AutoML instance fitted on the RankNet metric and of on an AutoML
instance fitted on the metric the judgments of the RankNet model
were built. In Table 2 we evaluated our approach to a personalized

Preference
OpenML

ID
AutoML Metric

Preference RankNet

Accuracy

38 1.00 0.874
179 0.710 0.611
772 0.714 0.686
917 1.00 0.984

1049 0.774 0.618
1120 0.922 0.899

Linear
Combination

38 0.790 0.951
179 2.207 1.100
772 0.481 0.474
917 4.861 3.395

1049 6.261 2.023
1120 1.692 1.067

F1

38 0.971 0.966
179 0.706 0.700
772 0.793 0.754
917 1.000 0.978

1049 0.978 0.733
1120 0.984 0.963

Table 2. Personalized AutoML Evaluation

AutoML. We fitted AutoML instances based on the datasets already
used in Sec 5.1 and on different metrics. For each dataset and each
preference (accuracy, linear combination of metrics and f1-score) we
fitted one AutoML instance directly with the preference and one Au-
toML instance with the learned RankNet metric from the preference.
We evaluated the fitted instances on the chosen preference and on
Dtest. The aim of this experiment is to get as close as possible to the
preference of the user.

5.2.1 Accuracy

Table 2 shows that our proposed approach is able to almost manage to
get close to the accuracy performance an AutoML instance achieves
that is directly fitted on the preference. But nevertheless, it turns out
that using the RankNet approach to predict the accuracy metric re-
sults in some cases (e.g. datasets 38 and 1049) in significantly worse
accuracy scores. The AutoML instance fitted on the accuracy prefer-
ence performs on the preference metric on average 7.4% better than
the AutoML instance fitted on the RankNet metric.

5.2.2 Linear Combination

It becomes more difficult to evaluate the performance of a linear
combination of metrics. We chose metric functions that are not suit-
able for classification tasks and exceed a definition range between 0
and 1 (e.g. mean squared error). When choosing a linear combination
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Figure 3. AutoML instances on OpenML 38 - Precision, Recall curve Figure 4. AutoML instances on OpenML 1049 - Precision, Recall curve

of metrics that exceed a range between 0 and 1, the resulting metric
also exceeds that range and makes it difficult to compare the results
in terms of the results are close to each other or not. Nevertheless,
this experiment also shows the difficulty of evaluating personalized
metrics with each other and for the sake of completeness, we evalu-
ated this case anyway.

5.2.3 F1

In a last experiment we evaluated the f1-score as metric a user wants
to pursue. Already in the evaluation of the Metric Learner compo-
nent we showed, that the percentage of correct predictions for the
RankNet metric reached in few judgements results over 0.90%. This
result is reflected in the performance of the AutoML instances. In this
experiment the AutoML instance fitted on the f1 preference performs
on the preference metric on average 5.6% better than the AutoML in-
stance fitted on the RankNet metric.

6 Discussion

We evaluated our personalized AutoML framework based on syn-
thetic pairwise comparisons, i.e. without actual human feedback. A
central motivation for synthetic experiments was to empirically prove
that learned metrics can be utilized for improving the AutoML pro-
cess with respect to pre-defined targets. As the utility of the frame-
work has to be measured in terms of actual added value for end-users,
a human evaluation is an important next step. Since a human evalu-
ation is dependent on an adequate interface (as sketched in Fig 2), it
is essential to first develop and evaluate such an interface on its own.

A further limitation of our approach is the dependency of the
learned metric function on L, as it constraints the personalization
to weighted combinations of individual metrics. However, the set
of available metrics is easily extensible, where custom metrics (e.g.
from previous personalization processes) can be directly reused.

7 Conclusion

An approach for a personalized automated machine learning ap-
proach was developed. We extended the CASH problem to the pos-
sibility of integrating human preferences into the search for machine
learning pipelines. To enable the integration of human preferences
we showed that a pairwise learning to rank approach is able to learn
a new metric L∗ by using a set of metrics L as features. However,
the approach to learn a personalized metric function L∗ is limited by
the number of features (L). We evaluated within the Metric Learner
component the pairwise learning to rank approach on different met-
rics and on several OpenML datasets. Within the Human Preference
component we proposed a first visualization draft. Furthermore, we
integrated the pairwise learning to rank approach into the AutoML
pipeline building process (CASH problem) and evaluated the frame-
work against 3 generated preferences on several OpenML datasets.
We showed that our approach for a personalized AutoML is able to
outperform an AutoML instance fitted on different metric functions.
Furthermore, we published our approach on github5.

8 Outlook

A fruitful direction to extend our personalized AutoML system is im-
proving the Evaluation Initiator, which generates the model samples
which have to be ranked with the help of the user. Here, one could
minimize the required resources for initialization by running Au-
toML processes with weighted metric combinations, but it remains
challenging to guarantee that generated models remain sufficiently
different for the ranking problem. A possible direction would be to
warm-start the initiator based on learned metric functions for previ-
ous end-users, which is challenging when user-specific information
is unavailable. Such a warm-start would also be directly applicable to
the Metric learner, which could then converge with fewer samples.
Besides initialization, the Evaluation generator could be extended
in the form of active learning in order to gradually choose compari-
son tasks with higher utility. By choosing smarter comparisons, one

5 https://github.com/kulbachcedric/personalizing automl
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could reduce the number of required human interaction which would
increase usability of the system.
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