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Abstract. The social proof marketing strategy assumes that the
marketer provides a novel product for free to some users of a social
network and then promptly recommends the product to other users,
by informing them that a number of their friends are already using
it. In this paper we study this popular marketing strategy in scenarios
where the new product enters in markets where two old products are
already competing. We show that if customers tend to adopt the prod-
uct that is the most popular one (over the three alternative products)
among their friends, then this marketing strategy allows to maximize
the diffusion of the new product only on a narrow class of networks.
Moreover, even if we focus on this narrow class of networks, com-
puting the best order of the recommendations is computationally in-
tractable.

Instead, if customers are less prone to change their mind, that is,
if they are willing to adopt some product only when an absolute ma-
jority of their friends has already agreed on it, then the marketing
strategy always works well and, furthermore, an optimal order of rec-
ommendations can be computed in polynomial time.

1 INTRODUCTION
In 2011 Google launched Google+, its own social networking ser-
vice. In order to diffuse Google+, a common marketing strategy has
been put in place, consisting of providing a free version of the prod-
uct to some customers and then recommending the product to other
potential customers by exhibiting a social proof of its quality, i.e.,
a list of contacts that are influential for them and that are currently
using the proposed product. Note that customers may receive their
recommendations at different times, by allowing in this way the mar-
keter to include in the social proof not only the first adopters of the
novel product, but also those customers that changed their mind by
effect of recommendations. In other words, the order of recommen-
dations is a very important ingredient of this marketing strategy.

There have been plenty of examples of effective applications of
this marketing strategy [11], and many theoretical studies have al-
ready provided formal arguments to explain the reasons for its suc-
cess. For instance, given any set of seeds, we know that there is
an order of recommendations (that can be computed efficiently and)
that always maximizes the number of final adopters of the sponsored
product, regardless of the topology of the social network [15, 17].
Moreover, whereas it can be hard even to approximate within a sub-
linear factor the selection of the “optimal” seeds when a budget
for their selection is given [15, 16], polynomial time algorithms are
known to compute a set of seeds leading a minority to become a
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majority or a bare majority to become a consensus through social
influence [25, 5, 7, 8, 10].

However the social proof marketing strategy failed with Google+
and the company announced that the service has been recently shut
down [1]. In fact, the failure cannot be due to Google having a scarce
knowledge of its customers’ influence network. Moreover, it did
not depend on a limited choice of initial adopters: Google provided
Google+ to a very large set of seeds, for instance to every customer
using an Android phone. Hence, it is natural to ask how this failure
of the social proof marketing strategy can be explained at the light of
the positive theoretical results discussed above.

The crucial observation is that all results described above assume
a binary market, where customers have to choose among two prod-
ucts only, an innovation and a pre-existing one. However, this is not
the setting of the market in which Google+ was entering. Indeed,
Google+ has been introduced in a market where several other social
networking services were already running, with Facebook and Twit-
ter being the most prominent ones. This suggests that the positive
results characterizing the binary markets do not longer hold when
moving to markets with multiple competing products.

Our Contribution. The main goal of this paper is to shed light on
the effectiveness of the social proof marketing strategy for promoting
a novel product in a setting where there are already two competing
products4 and to highlight similarity and differences with the case
in which only two products are available. In particular, we look for
those network topologies where there is an order of recommenda-
tions that maximizes the number of final adopters of the novel prod-
uct. Moreover, we would like to characterize networks where this
optimal order of recommendations not only exists, but it can be com-
puted in polynomial time, regardless of the chosen seeds.

In our model, we assume that the marketer does not lie to cus-
tomers: indeed, in this setting, lies can be easily verified and they can
undermine the credibility of the marketer.

Our analysis highlights that the success of the marketing strategy
crucially depends on the behavior of the customers, i.e., on how they
react to the social proof provided them with the recommendation.

In more details, we first focus on customers who tend to adopt
the same product as the one adopted by most of their neighbors on
the network.5 This behavior has been used as a reference model in
most of the works discussed above and in a number of works related
to opinion diffusion in social networks (see, e.g., [26, 15, 16, 25, 5,
10]). Our results for markets with multiple competing products are in

4 Since our results are mainly negative, the limitation to only three products,
makes our results even stronger. We also remark that the positive results
about “absolute majority” customers still hold with more products.

5 Clearly, as we have three products at hand, the majority can be well formed
by less than half of the neighbors.
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sharp contrast with those that are known to hold for binary markets.
Indeed, we give a complete picture of the problem with respect to
the network topology. Our results then prove that every social proof
marketing strategy leads to maximize the number of adopters of a
given alternative only on very trivial topologies (namely, star, path,
cycle, and a special six-node graph, that we will refer as bi-triad)
(cf. Thm 1). And, even if we simply require that there exists some
social proof marketing strategy maximizing the number of adopters
of the desired product, still the topologies on which this occurs are
very limited (cf., Thm 2). Thus, even if it would be expected that the
social proof marketing strategy does not work on all topologies, we
find highly surprising that this strategy works for so few graph struc-
tures. Moreover, through our characterization, we provide a polyno-
mial time algorithm to the marketeer to decide if the marketing strat-
egy can be optimal for the topology at the hand if acyclic, and a proof
that no polynomial time algorithm achieves this goal on cyclic net-
works (cf., Thm 6). We believe that our algorithm may be an useful
tool for designing opportune marketing campaign in future.

Then, we consider a more restricted class of customers, who adopt
a novel product only when it is already supported by an absolute ma-
jority of their neighbors in the network. Clearly, over binary markets
the two behaviours (majority and absolute majority) coincide. How-
ever, over markets where the novel product competes with two other
products, it exhibits completely different properties. Indeed, for such
kinds of customers, who are less prone to innovations, we show that
the social proof marketing strategy is always effective and an optimal
order of recommendations can be computed in polynomial time.

Related Works. The framework considered in the paper can be
linked to similar models emerged in the literature about the analy-
sis of (discrete) opinion formation in social networks [17, 19, 23].
Indeed, our results can be easily rephrased in terms of opinion diffu-
sion: When more than two opinions are available, a specific kind of
manipulation is effective (resp., not effective) for agents with abso-
lute majority (resp., majority) behaviour.

Most of the works appeared on opinion formation focus on bi-
nary opinions, and the case of multiple opinions has been considered
only rather recently [17, 9]. However, Chierichetti et al. [17] did not
address the question of how the dynamics of the opinions can be ma-
nipulated and their results are unrelated to ours. Instead, Auletta et
al. [9] showed that finding the order of updates, over all possible or-
ders, that maximizes the diffusion of an opinion is computationally
intractable. In the paper we depart from that work by studying a spe-
cific class of updates’ orders, namely those emerging from the social
proof marketing strategy; moreover, we focus on characterizing the
power and the effectiveness of this strategy, which is an issue not
considered in earlier literature.

Note that some recent literature on opinion diffusion considered
more complex behaviors in addition to majority-based ones—see,
e.g., [6, 2]. Moreover, recent works considered opinion formation on
evolving networks [12, 20, 13]. Understanding to which extent our
results can be lifted to these more complex settings is an interesting
avenue for further research.

Finally, we remark that our setting is related to the works on com-
petitive diffusion of products on social networks. Differently from
our setting, however, most of these works assume that competitors
can decide the placements of their seeds on the network. Indeed,
some works [14, 29, 18] deal with the problem of approximating
the best-response strategies of competitors for the seeds’ placement,
that is, the strategy to compute the set of seeds that maximizes the
adopters of the promoted product given the other promoters’ seeds.
Other works characterize the cases in which the competition leads to

an equilibrium [3, 28]. Finally, performances of these equilibria with
respect to the total number of nodes adopting one of the products
have also been evaluated [28, 22, 24, 4].

In contrast with these works, in this paper we assume that the
seeds placement is given and/or is out of control of the marketer,
and we concentrate on the order in which recommendations have to
be presented to the customers (with dynamics starting from the initial
given configuration). However, we refer the reader to conclusions for
a more detailed analysis of our contribution in relation with the seed
placement problem.

2 MODEL
Customers and their Behaviour. Let G = (N,E) be a connected
and undirected network encoding the social interactions over a set
N of customers. For each customer i ∈ N , the set of her neighbors
in G will be denoted as δ(i) = {j | (i, j) ∈ E} for short. Each
customer i ∈ N initially owns a product bi ∈ {black , gray}, and a
novel product, say white, has to be injected in the network.6

Let P be the set {black , gray ,white}. A profile p is a function
p : N → P mapping customers to products. In particular, we denote
with p0 the profile in which each customer is associated with her
own original product, i.e., p0(i) = bi for each i ∈ N . For any subset
A ⊆ N , we will use pA to denote the restriction of the profile p to
the customers in A only, i.e., pA is the function pA : A → P such
that pA(i) = p(i) for every i ∈ A.

The behaviour of a customer i ∈ N is modeled as a function Bi
that, given a profile p{i}∪δ(i) for i and her neighbors, returns the
product Bi(p{i}∪δ(i)) that i prefers. In this work, we will consider
two behaviors:

• A customer i has a majority behaviour ifBi(p{i}∪δ(i)) is the prod-
uct supported by most of i’s neighbors. In case of ties7 involving
the product that is owned by i, we assume that Bi(p{i}∪δ(i)) =
p(i), i.e., the preference of i does not change. For the other ties, we
assume an optimistic tie-breaking rule: white is always preferred,
while ties between black and gray are broken arbitrarily.8

• A customer i has an absolute majority behaviour if Bi(p{i}∪δ(i))
returns the product supported by at least

⌊
|δ(i)|

2

⌋
+ 1 neighbors,

if any exists, or the innate product bi, otherwise. Note that no tie
can occur in this case.

A customer i ∈ N is stable in p if Bi(p{i}∪δ(i)) = p(i), that is, if
i has no incentive to adopt a different product. A profile p is stable if
all customers are stable in p.
Marketing Strategy. We consider a marketing strategy for the prod-
uct white that is articulated in two phases:

Seeding: At step t = 1, a subset S ⊆ N of the customers is seeded
with a trial version of the product, i.e., p1(i) = white if i ∈
S, and p1(i) = p0(i), otherwise. As we have pointed out in the
Introduction, we assume that the seeding is out of the control of
the “marketer”. That is, the profile p1 is actually given as input
and our focus is on studying the second of the two phases.

6 Colors are used here to make graphical representations clearer (gray is not
an “intermediate” product between white and black).

7 For example, a ties occurs when a gray node of degree four has two white
neighbors and two black neighbors. Hence, the node, if it has majority be-
havior, is not stable (gray is not a majority in its neighborhood) but we have
to break ties among white and black to decide which product this node have
to adopt.

8 The results we shall provide for such customers are essentially negative. So,
our tie-breaking rules make them even stronger.
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Recommendation: At each step t > 1 and until a stable profile
is reached, the “marketer” checks whether there is some unstable
customer in pt−1 that, according to her behaviour, might be in-
clined to adopt product white. If this is the case, then a customer
i ∈ N of this kind (i.e., with Bi(pt−1

{i}∪δ(i))= white) is selected by
the marketer and is advertised that a majority of her friends have
already adopted the innovation. We assume that this recommen-
dation is effective; hence, it leads to a novel profile pt such that:
pt(i) = white and pt(j) = pt−1(j) for every j ∈ N \ {i}. Note
however that if there is no agent i ∈ N that can adopt the product,
then no recommendation is possible and the profile evolves au-
tonomously: pt is derived from pt−1 by changing the product of
some arbitrarily chosen unstable agent so that she becomes stable.

Roughly speaking, this marketing strategy is modeling an initial
environment in which two products, namely black and gray are com-
peting. Note that we do not require that the starting profile p0 is sta-
ble, i.e., there may be agents willing to change their product from
black to gray and vice versa.

At the time 1, a new product, namely white, enters the network:
formally, some nodes (the seeds) are selected to get product white.
From this time on, the behaviour of the agents cannot be “con-
trolled”. In particular, seeds are not forced to stay with the white
product, and some nodes might be still willing to change from black
to gray and vice versa.

Recommendation are used for “nudge” the nodes to carry out these
changes. However, updates can occur even without being “nudged”
by the recommendations. These only influence the order of updates:
we do not wait till nodes realize which is the majority in their neigh-
borhood, but we exhibit them a social proof (i.e., messages such as
“Look! Most of your contacts are using this product”) to induce the
change. Clearly, this marketing operation is done only towards the
promoted product (i.e., white). And we assume that recommenda-
tions are always and immediately effective: after being advertised by
the marketer, customers adopt the innovation before any other update
occurs in the network.9 Whenever no customer can be advertised, in-
stead, the evolution of the profile cannot be controlled by the mar-
keter (as it involves the adoption of products different from white).
Evolutions. In this paper, we are not interested in the seed-selection
problem (i.e., how we can derive the profile p1 starting from p0),
whose study is entirely orthogonal to our contribution (we refer the
reader to conclusions for a more detailed discussion about the rela-
tion between our results and the seed-selection problem). The focus
of this work is instead on the effectiveness of the social proof market-
ing strategy described above with respect to the goal of maximizing
the diffusion of the promoted product.

To this aim we would like to compare the number of adopters
of the white product at the end of the application of the marketing
strategy to the maximum number of adopters of the novel prod-
uct that can be reached at the end of some feasible evolution.10

Here, we define a feasible evolution for the network as a sequence
of profiles p1, p2, ..., p` such that p` is a stable profile and, for
each k ∈ {1, ..., ` − 1}, there is a customer ik that is unstable in

9 Studying settings where this assumption is relaxed to some extent (e.g., by
introducing delays or probabilities of adoptions) is an interesting avenue
for further research. However, we highlight that, since we mainly provide
negative results, this assumption enforces most of our results.

10 By a simple potential function argument, it is easy to see that feasible
evolutions always converge to a stable state both for customers with ma-
jority and absolute majority behavior. Indeed, each sequence of profiles
converging to a stable one and where, at each step, one agent that is not
stable changes her current opinion, is a feasible evolution—regardless of
the order of updates.

pk and such that pk+1(j) = pk(j) for every j ∈ N \ {ik} and
pk+1(ik) = Bi

(
pk{ik}∪δ(ik)

)
. Note that in a feasible evolution it is

not required that changes occurs contiguously. However, at each time
step only one customer is allowed to change her product.

Clearly, feasible evolutions include the ones resulting from the ap-
plication of the recommendation phase of the marketing strategy,
where updates to white have priority with respect to other updates.
We note, however, that the application of this phase does not univo-
cally determine a feasible evolution for the network. Indeed, at each
time step, there might be multiple customers that can be chosen as
the target of the marketer and, whenever no manipulable customer
exists, the unstable customer that changes her mind is selected non-
deterministically. So, the recommendation phase of the Social Proof
Marketing Strategy defines in general a number of different feasi-
ble evolutions, which we name SPMS evolutions. In a nutshell, these
evolutions promote the adoption of the innovation as soon as this is
possible, no matter the other products spread over the network.

We remark that it is possible that a customer adopts the black or
gray product in the course of a feasible evolution. In SPMS evolution
this can occurs only if there are no customers willing to adopt product
white, but in general evolutions this can occur at any time.

Problems of Interest. Let us denote by W (p) the number of cus-
tomers adopting white in a profile p, i.e., W (p) = |{i | p(i) =
white}|. Then, we say that a feasible evolution p1, p2, ..., p` is opti-
mal ifW (p`) ≥W (p̂h) holds, for each alternative feasible evolution
p̂1, p̂2, ..., p̂h.

With the above concepts at hand, we can now state the problems
that will be addressed in the rest of the paper: Given a starting profile
p1 (resulting from the seeding phase over the original profile p0), is it
the case that all SPMS evolutions are also optimal (i.e., the marketing
strategy effectively maximizes the diffusion of the promoted product,
regardless of how ties are broken)? Does at least one SPMS evolu-
tion always exist that is also optimal (i.e., a way of choosing the next
node to update when more than one is available, so that the result-
ing evolution maximizes the diffusion of white)? Can we compute in
polynomial time an optimal SPMS evolution (whenever one is guar-
anteed to exist)? Answers to these questions will be given w.r.t. the
behaviour of the customers and the network topologies.

3 MAJORITY BEHAVIOUR
In this section we focus on the case where all customers have ma-
jority behavior. We shall mainly present results that are negative. In-
deed, we shall show in Section 3.1 that there are few networks for
which SPMS evolutions are always optimal. We shall also present in
Section 3.2 a few of other networks for which some SPMS evolutions
(but not all of them) are optimal. However, not only these networks
are still highly constrained, but it is in many cases also NP-hard to
efficiently compute on them an optimal SPMS evolution. Eventually,
in Section 3.3, we shall also show that these results are tight and
rather precisely identify the classes of networks on which the social
proof marketing strategy is effective to some extent.

3.1 Every SPMS Evolution is Optimal
We start by considering classes of networks on which every SPMS
is optimal. Hence, on these networks, any non-deterministic imple-
mentation of the recommendation phase is suitable to optimize the
propagation of white and therefore the marketing strategy can be im-
plemented in polynomial time.

3

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Figure 1. The bi-triad.

Actually, it turns out that the class of graphs enjoing this properties
is very limited, since it consists only of paths, rings, stars, and the
six-node graphs showed in Figure 1, that we will name bi-triad.

Theorem 1. For customers with majority behaviour, if G is a star, a
path, a cycle, or a bi-triad, then every SPMS evolution is optimal.

Proof Sketch. Assume that G is a star and let c be its center node.
Let p1 be the starting profile. We observe that if either p1(c) = white
or white is the most popular product among the neighbors of c, then
all the SPSM evolutions always lead to a consensus on white. On
the other hand, for the remaining profiles, all the feasible evolutions
reach a stable profile where no customer has product white.

Consider the case where G is a path or a cycle. In these networks
all nodes have degree either 1 or 2. This implies that if in a profile
pt there are two neighbors, i and j, adopting the same product, then
both customers are stable and they do not change their products in
all feasible evolutions starting from pt. It can be checked that, for
every customer i that has no neighbors with the same product, ei-
ther i adopts white in every SPSM evolution or there is no feasible
evolution ending in a stable profile where i adopts white.

Finally, for the case that G is a bi-triad, the result follows by a
simple case analysis.

We will show next that the characterization above is tight for
acyclic networks. Indeed, for all networks different from paths, stars,
and bi-triad, it happens that the optimality of SPMS evolution de-
pends on the order in which customers change to non-white products.

3.2 There is an Optimal SPMS Evolution
We now move to isolate a class of networks where some (but not all)
SPMS evolutions works well. Moreover, we show that identifying
such optimal SPMS evolutions turns out to be an intractable problem.
In particular, we shall evidence that the source of the intractability
lies in the uncertainty about how the two competing products will
spread over the network—which is clearly outside of the control of
the manipulator. From the practical viewpoint, the result tells us that
there is no a-priori guarantee that the social proof marketing strategy
is effective on these networks.

Let us formally define the class of networks on which we focus in
this section.

Definition 1. The class of augmented quasi-paths (augmented cy-
cles, resp.) contains all acyclic (cyclic, resp.) networks such that each
node of degree 3 or at least 5 has all neighbors of degree 1 except at
most one.

The name of the class above derives by the observation that net-
works in the class that do not have any node of degree 4, must be
either a cycle, or a quasi-path, defined as follows.

Definition 2. The class of quasi-paths consists of all paths whose
extremes are allowed to have degree 3 or more (but with remaining
neighbors of degree 1).

Figure 2. A quasi-path network. Note that stars, paths and the bi-triad are
degenerate quasi-paths.

An example of quasi-path is depicted in Figure 2. As we will see
below, customers of degree 4 play a special role in the hardness of
computing an optimal SPMS evolution.

Theorem 2. For customers with majority behaviour, if G is aug-
mented quasi-path or an augmented cycle, then an SPMS evolution
always exists that is also optimal.

Proof Sketch. First, observe that a kind of white-monotonicity holds:
given a customer u, if in a profile p u is willing to adopt the white
product, then it will also adopt this product in the profile p′ achieved
from p by setting to white the product of a non-white neighbor of u.

Let now consider the feasible evolution p1, ..., p` that maximizes
the numbers of white in the stable profile p`. We shall show that either
this sequence is SPMS or it can be transformed in a SPMS evolution
p1 = p̃1, ..., p̃k ending in a profile with at least the same number of
final adopters of the innovation.

To this aim, let us define, for each profile p, w(p) as the set of
agents that want to adopt product white in p. Then for i = 2 un-
til w(p̃i−1) 6= ∅, we build p̃i from p̃i−1, by updating to white the
product of some u ∈ w(p̃i−1).

Let p̃k be the profile at the end of this phase. Until a new node
willing to become white appears, we apply all non-white changes of
the original sequence that are still allowed in p̃k exactly in the same
order as in the original sequence.

Then, we can repeat the first phase of the procedure (i.e., change
all nodes willing to become white) until for every node u such that
p`(u) = white , it occurs that p̃k

′
(u) = white too.

Finally, we complete the sequence of profiles p̃1, ..., p̃k
′′

, by sta-
bilizing those nodes that are not stable in p̃k

′′
, exactly in the same

order as done in the original sequence.

However, for these networks, selecting the SPMS evolution that
maximizes the diffusion of white is computationally infeasible.

Theorem 3. For customers with majority behaviour, computing an
SPMS evolution that is also optimal is NP-hard even on classes of
networks that are augmented quasi-paths or augmented cycles.

Proof Sketch. We exhibit a reduction from the well-known 3-SAT
problem. Given a Boolean formula Φ in conjunctive normal form
and where each clause contains three distinct literals, we build the
network GΦ (and the profile p1 given by the colors associated to the
customers in the illustration) as follows. For each variable x,GΦ con-
tains (as a subgraph) the gadget shown in Figure 3; for each clause
with precisely one negated variable, GΦ contains a gadget as in Fig-
ure 4; for each clause where all variables are negated, GΦ contains a
gadget as in Figure 5; finally, for clauses with precisely two negated
variables (resp., no negated variable),GΦ contains a gadget as in Fig-
ure 4 (resp., Figure 5), but where colors black and gray are swapped.
We set n to be the length of the long tail of clause gadgets. Note that
GΦ is either an augmented quasi-path or an augmented quasi-cycle.

We shall show that the formula Φ is satisfiable if, and only if,
there exists a SPMS evolution converging to a stable profile where
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x x̄

x1x2xs x̄1 x̄2 x̄r

Figure 3. The gadget for variable x. We assume that x appears positively
(resp., negatively) in s (resp., r) clauses. The edges without an endpoint are

between the given node with its corresponding node in the clause gadget.

xi ȳj zk

Figure 4. The gadget for a clause with one negated variable

all customers in the clause gadgets adopt product white. Hence, by
taking n large enough, any algorithm computing an optimal SPMS
evolution is able to distinguish whether Φ is satisfiable or not.

In order to have a clear intuition on the salient features of the re-
duction, observe that in p1 no customer is willing to adopt product
white. Moreover, for every variable x, the two customers x and x̄
would like to exchange the product they currently adopt. Then, if
one of these two customers, say x, adopts the product currently held
by x̄, then all customers on its side will eventually adopt white, and
x̄ and all customers on the side of x̄ become stable.

In the proof of Theorem 3 a fundamental role is played by nodes
with degree 4: this is necessary. Indeed, if we exclude these nodes
we have that G is either a cycle (for which we know that each SPMS
evolution is optimal) or a quasi-path, for which Proposition 1 shows
that an optimal SPMS is easy to compute.

Proposition 1. For customers with majority behaviour, if G is a
quasi-path, then an optimal SPMS evolution can be computed in
polynomial time.

Besides augmented quasi-paths, even for the following quasi-star
networks an optimal SPMS evolution always exists.

Definition 3. A quasi-star network satisfies one of the following
conditions:

(a) It consists of a center customer c of degree 3 or at least 5, with all
neighbors x such that either x has degree 1 or it has degree 2 or 3
and all the neighbors of x different from c have degree 1; or

(b) It consists of two neighbors x and y of degree 3 whose remaining
neighbors either have degree 1 or have degree 3 and all neighbors
of degree 1.

An example of these networks is depicted in Figure 6.
Next Proposition states that on these graphs an optimal SPMS

evolution always exists. Moreover, given the finiteness of these net-
works, this evolution can be clearly computed efficiently.

x̄i ȳj z̄k

Figure 5. The gadgets for a clause with three negated variables

c

(a)

x y

(b)

Figure 6. Examples of quasi-stars.

Proposition 2. For customers with majority behaviour, if G is a
quasi-star, then an optimal SPMS evolution always exists.

3.3 Tightness of the Characterization
To complete the picture of our analysis of customers with majority
behaviour, we observe that the classes we have identified on which
the social proof marketing strategy works are essentially the largest
possible ones. We formalize this claim by focusing on networks that
are acyclic. First, we prove the tightness of Theorem 1.

Theorem 4. For customers with majority behaviour, if G is an
acyclic graph that is not a star, a path, or a bi-triad, then there is
an SPMS evolution that is not optimal.

Proof Sketch. If a graph is neither a star nor a path or a cycle, then
it must be the case that either there is a node u of degree at least 3
with a neighbor v with degree either 2 or at least 4, or there is a line
of three nodes, u, v, and w, of degree 3.

In the first case, consider the initial profile represented in Fig-
ure 7. Consider then the following SPMS evolution: u adopts product
black, then v adopts product white, finally x1 and x2 adopt product
gray if they are not stable (indeed, if the degree of x1 and x2 is 1
or 2, then they are stable), and possibly also u changes back to gray.
Note that this evolution ends withW + 1 white. Consider instead the
following evolution: x1 and x2 adopt the gray product (they always
have an incentive to do so, even if their degree is 1). It is immediate
to see that after that no node has incentive to change (except possibly
y if its degree is 1). In particular, since no node want to assume the
white product, the sequence is SPMS. However, it ends up in a stable
profile with at most W white nodes.

In the second case, consider the initial profile given in Figure 8.
Consider then the following SPMS evolution:w adopts product gray,
and then the non-stable neighbors of w′ and w′′ stabilize themselves
(note that it they change their color, they do not assume white). Note
that this evolution ends in a stable state, and let W be the number of
white nodes in this state. Consider instead the following evolution:
w′ and w′′ adopts black, v changes to black, and then the non-stable
neighbors of v, w′ and w′′ stabilize themselves (note that it they
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Figure 7. A starting profile from which there is a SPMS evolution that is
not optimal.

u v wu′

u′′ v′

w′
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Figure 8. A starting profile from which there is a SPMS evolution that is
not optimal.

change their color, they do not assume white). Note that white neigh-
bors of w′ or w′′ change their product in the first sequence if and
only if they will do also in the second one. Hence the second evo-
lution ends in a stable state in which there are at most W − 1 white
nodes. Observe that, since no node want to assume the white product,
this sequence is SPMS.

Next, we prove that Theorem 2 and Proposition 2 enumerate all
acyclic network topologies on which there is an optimal SPMS.

Theorem 5. Let G be any acyclic network defined on customers
with majority behaviour. If G is neither a quasi-star not an aug-
mented quasi-path, then an initial profile p1 always exists for which
no SPMS evolution is optimal.

Proof Sketch. Consider the following classes of networks:

H1: It consists of a customer x of degree either 3 or at least 5, with
a neighbor y of degree either 2 or at least 4, and a neighbor z of
degree at least 3;

H2: It consists of a customer x of degree at least 5, with at least
three neighbors of degree at least 2 such that their neighbors all
have degree 1;

H3: It consists of a customer x of degree either 3 or at least 5, with
two neighbors of degree 2, and at least one of them has a neighbor
of degree at least 2, whereas the other one has a neighbor that
either has degree 1 or at most

⌊
δ(y)−1

2

⌋
neighbors of degree 1;

H4: It consists of a line (x, y, z, w) of four customers of degree 3
with x having a neighbor of degree at least 2.

By simple inspection one can verify that if G is neither a quasi-star
nor an augmented quasi-path, then G contains a subgraph that be-
longs to one of these classes.

We can then prove that if an acyclic network G contains a sub-
graph belonging to one of these classes, then the maximum number

of adopters of the white product cannot be achieved by any SPMS
evolutions. Below we detail the case of the class H1, with the proof
for the other classes being similar.

Consider the following profile p1: p1(x) = black, p1(y) =
black, and p1(z) = gray. Then, let x1, . . . , x|δ(y)|−2 be the
neighbors of x different from y and z. We partition them in three
sets: Bx = {x1, . . . , xκ}, Gx = {xκ+1, . . . , xκ+λ}, and Wx =
{xκ+λ+1, . . . , x|δ(x)|−2}, where κ = b|δ(x)− 1|/2c − 1 and λ =
d|δ(x)|/2e−1 (observe that Bx is empty if |δ(x)| = 3,Wx is empty
if |δ(x)| is odd). We set to black the product of all customers in the
subtree whose root is in Bx, to white the product of all customers
in the subtree whose root is in Wx, and to gray the product of all
customers in the subtree whose root is in Gx.

Similarly, let y1, . . . , y|δ(y)|−1 be the neighbors of y different
from x. We partition them in three sets: By = {y1, . . . , yk},
Wy = {yk+1, . . . , yk+`}, and Gy = {yk+`+1, . . . , y|δ(y)|−1},
where k = b|δ(y)|/2c − 1 and ` = b|δ(y)|/2c (observe that
By is empty if |δ(y)| = 1, Gy is empty if |δ(y)| is even, and
|Gy|+ 1 ≤ |Wy| = |By|+ 1). In the profile p1, we set to black the
product of all customers in the subtree whose root is in By , to white
the product of all customers in the subtree whose root is inWy , and
to gray the product of all customers in the subtree whose root is in
Gy . We finally set to white the product of remaining customers (this
include the (at least two) neighbors of z).

Now, let us denote by W 1 the number of customers with product
white in p1, except those having degree 1 in the neighborhood of x
and y. Observe that in p1 the customers that are not stable are: x
(for which Bx(p1

{x}∪δ(x)) = gray), z, (for which Bz(p1
{z}∪δ(z)) =

white , and the neighbors of degree 1 of x, y, and z (that would like
to adopt the same product as their neighbors and thus not white).

Then it is not hard to check that any SPMS evolution leads to a
profile where at most W 1 + 1 customers adopted white. However,
if x adopts the gray product before any adoption of white, then we
can find an evolution that leads to a stable configuration with at least
W 1 + 2 white customers.

The arguments in the proof of Theorem 5 can be extended to prove
that SPMS evolutions are not optimal on large classes of cyclic net-
works that are neither cycles nor augmented cycles. However, a suc-
cinct and sharp characterization cannot be achieved in this case, in
the light of the following complexity-theoretical argument.

Theorem 6. For customers with majority behaviour, it is coNP-hard
to decide whether, for a given networkG that is neither a cycle nor an
augmented cycle, an optimal SPMS evolution exists for each initial
profile.

Proof Sketch. Consider the NP-hard ONE-IN-THREE POSITIVE 3-
SAT problem of deciding whether, given an instance Φ of 3-SAT
where each of itsm clauses consists of three positive variables, there
is a truth assignment such that each clause is satisfied by precisely
one variable [21]. W.l.o.g., we assume that each variable occurs pre-
cisely in three clauses. We build a network GΦ as follows.

For each variable X in the set V of the variables occurring in Φ,
the set N of the customers contains a customer X̂ and GΦ contains
as a subgraph the network GX depicted in Figure 9. Moreover, for
each clause cj , if X , Y and Z are the variables occurring in it, then
GΦ contains the subgraphs Gj , GX,Yj , GX,Zj , and GY,Zj as depicted
in Figure 9. Finally, for each variable X , the customer X̂ has three
further neighbors as depicted in the bottom part of Figure 9, one of
them being the distinguished customer R. Note that R is connected
to all the customers associated to the variables in V .
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chain of      agents

chain of      agents

chain of                        agents
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Figure 9. Gadgets exploited in the proof of Theorem 3.

Now, any SPMS evolution is such that all customers associated
to the variables will adopt white , and in turn R and the chain at-
tached to it, and all chains in the subgraphs GX . Let ` (in the chain
attached to R) be the maximum number of customers outside the
various chains that will eventually hold opinion white in this evolu-
tion. By construction and by taking the value of n large enough, it
can be checked that this evolution is optimal if, and only if, there is
no assignment that is a “yes” instance to ONE-IN-THREE POSITIVE

3-SAT. In particular, if an assignment σ of this kind exists, then we
can build a feasible evolution (which is not SPMS) such that X̂ takes
product white (resp., black ) if X evaluates to true (resp., false) in
σ. This leads to a profile where all chains, but the one attached to R,
adopt product white .

4 ABSOLUTE MAJORITY BEHAVIOUR
We now move to analyze customers having an absolute majority be-
haviour. We shall show that, for these customers, the social proof
marketing strategy still works, no matter the underlying network
topology. A crucial role in our analysis is played by the following
“monotonicity” property.

Definition 4. The behavior Bi of a customer i ∈ N is locally
monotone if, for every pair of profiles p and p′ that differ only
in the product assigned to some neighbor j ∈ δ(i) and such that
{p(j), p′(j)} ∩ {white} = ∅, it holds that Bi(p{i}∪δ(i)) 6= white
if, and only if, Bi(p′{i}∪δ(i)) 6= white . 2

In words, the behavior of a customer i ∈ N satisfies the above
property if, whenever i does not want to adopt white , then she will
not change her mind if one of her neighbors adopts a product differ-
ent from white . Observe that, armed with this property, we are able
to prove the following theorem.

Theorem 7. For customers with locally monotone behavior, every
SPMS evolution is also optimal.

Proof Sketch. We first prove that for customers with locally mono-
tone behavior, an optimal evolution exists that first updates the prod-
uct of each customer that is willing to become white until one exists,
and then it stabilizes remaining customers. Note that during the first
phase the order of white changes does not matter. Moreover, by lo-
cal monotonicity, the stabilization phase cannot enable any new node
to become white, regardless of the order in which these changes are
done. Hence, we can conclude that every SPMS evolution is opti-
mal.

It is immediate to check that absolute majority customers are lo-
cally monotone. We then have the following corollary.

Corollary 1. For customers with absolute majority behavior, every
SPMS evolution is also optimal.

Absolute majority behavior allows also to map our setting with
three products to the setting with just two products.

Lemma 1. If there is a SPMS evolution p̃1, ..., p̃t for customers with
majority behavior, then there is a SPMS evolution p1, ..., pt for cus-
tomers with absolute majority behavior, such that p̃1(i) = white if
p1(i) = white , and p̃1(i) = black if p1(i) ∈ {black , gray} and
W (pt) = W (p̃t).

Proof Sketch. We can make the latter mimic the former evolution.
Indeed, a majority of white in the binary setting corresponds to an
absolute majority when multiple products are available. Similarly,
the adoption of a non-white product in the former setting implies that
either that product is an absolute majority in the latter setting, or that
no product is supported by an absolute majority, which causes the
given customer i to assume her innate product bi.

Roughly speaking, Lemma 1 states that the diffusion of innovation
in a market with two pre-existing competing products is equivalent
to the diffusion of the same new product in a market with a single
pre-existing product, whenever the behavior of customers is locally
monotone with respect to the new product. Hence, for the former set-
ting, all the properties known for the latter setting still hold. In partic-
ular, Lemma 1 allows us to borrow other recent results from binary
markets. For instance, the follow result follows from [5] and [10].

Theorem 8. For every non-clique G with an odd number of cus-
tomers, there is a set of seeds S, with |S| < |N |/2 from which
any SPMS evolution leads to a stable profile p∗ such that W (o∗) >
|N |/2.

Moreover, for everyG, there is a set of seed S, with |S| ≤ d|N |/2e
from which any SPMS evolution leads to a stable profile p∗ such that
W (o∗) = |N |. Both sets are computable in polynomial time.

5 CONCLUSION
In this paper we analyzed the effectiveness of social proof marketing
strategies with respect to maximizing the adopters of a product in a
market with multiple competing products.

We remark that our perspective is different from the seed-selection
perspective, in which one is interested in finding a set of seeds maxi-
mizing the diffusion of the promoted product. In our setting, instead,
we focus on the design of the marketing strategy and we assume that
the seeding is given before the marketing strategy takes place and that
it is not under the control of the marketer. Our results describe the ef-
fectiveness of the social proof marketing strategy, which emerged as
being not able—when customers’ behavior is to follow the majority
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of their neighbors—of ensuring the maximum possible spread of the
innovation (except few cases). In particular, our intractability results
are not about finding the optimal seeds, but they are about finding the
optimal way of propagating white given some initial configuration of
the seeds (so that they are entirely different in nature if compared
with earlier results in the literature).

Nevertheless, some of our results can be still seen in a seed-
selection perspective: in particular, some of our results highlight that,
when customers’ behavior is to follow the majority of their neigh-
bors, for every network topology (except simple cases), there are
seeds from which SPMS evolutions lead to sub-optimal stable con-
figurations. Hence, it would be interesting to understand what hap-
pens when we merge the two perspectives, i.e., when we allow the
manipulator to both choose the seeds, and the nodes receiving the
social proof recommendation at each step. For instance, can we al-
ways select seeds so that SPMS evolutions are optimal starting from
the corresponding profile?

We also highlight that we hereby do not consider the marketer
as operating in a game-theoretic setting. Whereas this would clearly
be an interesting direction to follow in future, in this work we only
consider the optimization task of marketers. Our results can be seen
as stating that the best-response of each marketer cannot be to simply
run an SPMS evolution, as instead it is the case with only two product
in the market.

In this work we focused only on two customers’ behavior, namely
majority and absolute majority. This is motivated by our goal to com-
pare the effectiveness of the marketing strategy in a setting with mul-
tiple products to the known results for binary products. Since the
latter ones mainly consider customers with majority behavior, we fo-
cused only on the most natural extensions of this behavior to more
than two products. However, our analysis shows sharp differences
between majority to absolute majority behaviours. Clearly, among
these two extremal behaviors, there is a wide range of different cus-
tomers’ behaviors. Hence, another direction for further work is to
extend our analysis to such intermediate cases.

Finally, note that we assumed that seeds are selected only once.
However, in many cases it is possible to inject new seeds in the net-
work from time to time. Can such an adaptive seeding [27] strategy
help in making more effective the social proof marketing strategy?
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[13] Vittorio Bilò, Angelo Fanelli, and Luca Moscardelli, ‘Opinion forma-
tion games with dynamic social influences’, in Proc. of WINE ’16, vol-
ume 10123, pp. 444–458, (2016).

[14] Allan Borodin, Yuval Filmus, and Joel Oren, ‘Threshold models for
competitive influence in social networks’, in Proc. of WINE ’10, pp.
539–550, (2010).

[15] Robert Bredereck and Edith Elkind, ‘Manipulating opinion diffusion in
social networks’, in Proc. of IJCAI ’17, pp. 894–900, (2017).

[16] Ning Chen, ‘On the approximability of influence in social networks’,
in Proc. of SODA ’08, pp. 1029–1037, (2008).

[17] Flavio Chierichetti, Jon Kleinberg, and Sigal Oren, ‘On discrete pref-
erences and coordination’, Journal of Computer and System Sciences,
93, 11 – 29, (2018).

[18] Arastoo Fazeli and Ali Jadbabaie, ‘Targeted marketing and seeding
products with positive externality’, in Proc. of ALLERTON ’12, pp.
1111–1117, (2012).

[19] Diodato Ferraioli, Paul W Goldberg, and Carmine Ventre, ‘Decentral-
ized dynamics for finite opinion games’, Theoretical Computer Science,
648, 96–115, (2016).

[20] Diodato Ferraioli and Carmine Ventre, ‘Social pressure in opinion ga-
mes’, in Proc. of IJCAI ’17, pp. 3661–3667, (2017).

[21] Michael R. Garey and David S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman & Co.,
1979.

[22] Sanjeev Goyal, Hoda Heidari, and Michael Kearns, ‘Competitive con-
tagion in networks’, Games and Economic Behavior, (2014).

[23] Umberto Grandi, ‘Social choice and social networks’, in Trends in
Computational Social Choice, ed., U. Endriss, chapter 9, 266–290,
(2017).

[24] Xinran He and David Kempe, ‘Price of anarchy for the n-player com-
petitive cascade game with submodular activation functions’, in Proc.
of WINE ’13, pp. 232–248, (2013).

[25] Elchanan Mossel, Joe Neeman, and Omer Tamuz, ‘Majority dynamics
and aggregation of information in social networks’, Autonomous Agents
and Multi-Agent Systems, 28(3), 408–429, (2014).

[26] David Peleg, ‘Local majority voting, small coalitions and controlling
monopolies in graphs: A review’, in Proc. of SIROCCO ’97, pp. 152–
169, (1997).

[27] Lior Seeman and Yaron Singer, ‘Adaptive seeding in social networks’,
in Proc. of FOCS ’13, pp. 459–468, (2013).

[28] Vasileios Tzoumas, Christos Amanatidis, and Evangelos Markakis, ‘A
game-theoretic analysis of a competitive diffusion process over social
networks’, in Proc. of WINE ’12, pp. 1–14, (2012).

[29] Ercan Yildiz, Daron Acemoglu, Asuman E Ozdaglar, Amin Saberi, and
Anna Scaglione, ‘Discrete opinion dynamics with stubborn agents’,
Available at SSRN 1744113, (2011).

8

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain


