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Abstract. Significant advances have been achieved in bilingual
word-level alignment, yet the challenge remains for phrase-level
alignment. Moreover, the need for parallel data is a critical draw-
back for the alignment task. In particular, this makes multi-word
terms very difficult to align in specialized domains. This work pro-
poses a system that alleviates these two problems: a unified phrase
representation model using cross-lingual word embeddings as in-
put, and an unsupervised training algorithm inspired by recent works
on neural machine translation. The system consists of a sequence-
to-sequence architecture where a short sequence encoder constructs
cross-lingual representations of phrases of any length, then an LSTM
network decodes them w.r.t their contexts. After training, our encoder
provides cross-lingual phrase representations that can be compared
without further transformation. Experiments on five specialized do-
main datasets show that our method obtains state-of-the-art results
on the bilingual phrase alignment task, and improves the results of
different length phrase alignment by a mean of 8.8 points in MAP.

1 Introduction
We consider the problem of bilingual word alignment (BWA) from
non-parallel corpora. We are particularly interested in domain-
specific words and expressions extracted from modestly sized cor-
pora. Unlike machine translation, which is a text generation task,
bilingual alignment is a vector comparison task where word candi-
dates in target language are ranked according to their similarity w.r.t
a given word in source language. As a consequence, the vector rep-
resentation plays a key role.

Beginning with the seminal works of [12] and [37] based on word
co-occurrences for BWA, significant improvements have been re-
cently achieved by neural network based approaches [31, 10, 50, 2],
but most work on the subject focus on single words. Alignment of
multi-word expressions (MWE) from comparable corpora is much
less discussed [38, 34]. More in line with our work, [29] proposes a
unified approach able to handle single and multiple word expressions
at the same time. Since our goal is to handle both without distinction,
hereafter we refer to them as phrases.

The vector representation of phrases is one of the crucial parts of
alignment. An intuitive baseline representation can be obtained by
adding vectors of separate words in the phrase [32, 33, 18, 29]. Re-
gardless of its simplicity, it still hold comparable results on many
vector comparison tasks [29, 7]. Additive approaches will succeed
when the meaning of the phrase is yielded by the combination of each
component, like in “wind turbine” and “life quality”. However, less
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effective representations will be generated when it comes to domain-
specific phrases such as “Savonius rotor”3 and “her3”4. Moreover, for
phrases whose semantics are predominantly determined by one of its
components like in the phrases “sneaker shoe” and “blood serum”,
a uniform weight will be given to each component disregarding its
importance in the phrase. Finally, an obvious weak point is that addi-
tive models ignore word order, hence “control system” and “system
control” will have exactly the same representation.

In this paper we propose a new framework for bilingual phrase
alignment inspired by recursive neural networks (denoted by RNN
in this paper) and encoder-decoder architectures [4, 46]. The RNN
capture component word relations and distribute different weights
depending on word semantics but require tree structures and task-
oriented labeled data to calculate loss during training [44, 45, 22, 35].
As part of our framework, we propose a phrase encoder that can do
without a tree structure.

Since the meaning of domain-specific phrases is highly context
related, sequence-to-sequence systems fit naturally our needs. After
phrase encoding, we can decode its representation to predict its con-
text, thus establishing a relation between the phrase and its context.
Unlike common neural machine translation sequence-to-sequence
systems, our model encodes a phrase and decodes it with regard to its
context. In order to be able to align phrases in different languages, we
make the encoder cross-lingual which means that the input vectors
in different languages share the same vector space [29, 2]. We also
incorporate a back-translation mechanism [40] of single words dur-
ing training by using pre-trained bilingual word embeddings (BWE).
Other than that, our model relies exclusively on monolingual data,
and is trained in an unsupervised manner. After completion of train-
ing we obtain a shared cross-lingual phrase encoder that can generate
a unified representation of phrases of any length.

We provide four open datasets with 108 phrase pairs in the med-
ical domain and 90 pairs in the renewable energy domain with
phrase pairs in different languages: English-Spanish, English-French
and English-Chinese. We also evaluate our models on two existing
datasets of specialized domains [19, 29]. All the training corpora are
non-parallel comparable corpus. It is worth mentioning that the small
size of the reference lists can be explained by the small size of the
specialized corpora which contain few specialized terms and syn-
onym variants [20]. Our experiments on these datasets show that our
method outperforms existing unsupervised methods across multiple
language pairs.

The remaining of this paper is structured as follows. In Section
2 we present works related to ours, while Section 3 describes our
framework. Section 4 presents experiments and results obtained. Fi-

3 A kind of rotor used in wind turbines
4 A human protein
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nally Section 5 concludes the paper and opens new perspectives.

2 Related work
In this section we present three concepts related to our method. First
we describe cross-lingual word embeddings which are a prerequi-
site for our model. Next, recursive neural networks approaches are
briefly described, finally we describe several neural machine transla-
tion training systems which use little or no cross-lingual resources.

2.1 Cross-lingual word embeddings
Following the success of word embeddings [32] trained on monolin-
gual data, a large proportion of research aimed at mapping word em-
beddings into a common space for multiple languages. Cross-lingual
word embeddings were pioneered by [31] by using a linear transfor-
mation matrix. A large number of works tried since then to improve
the linear transformation method [26, 1, 29]. [2] compiled a sub-
stantial amount of similar works [31, 10, 50, 41, 52, 1, 42] into a
multi-step bilingual word embedding framework.

2.2 Short sequence representation
The additive approach remains an effective way to encode multi-
word expressions. However, it ignores word order and always dis-
tributes uniform weights to components regardless of their impor-
tance. We can also pre-train phrase embeddings if we consider them
as a single token, but it ignores compositionality and inner compo-
nent relations of the phrase. Besides, learning phrase embeddings
as individual vocabulary entries is extremely memory intensive and
will lead to a data sparsity problem. Finally, phrases not seen during
training cannot be handled by this approach.

[7] used an LSTM to encode two-word phrases in order to enhance
English-Estonian machine translation. Pre-trained language models
like ELMo [36] or BERT [8] obtained appealing results on various
NLP tasks, however pre-trained models such as the BERT multi-
lingual model cannot distinguish words like “pain” in English and
“pain”(bread) in French without context, as in our alignment phase.
Furthermore in many real life scenarios, although phrase contexts are
available during training, during alignment phrases are the only input
available.

Recursive neural networks [14] were proposed for encoding hi-
erarchical structured data, they can be seen as a generalization of
recurrent neural networks [9] and naturally handle word order in se-
quences. To distinguish it from the recurrent neural network, we de-
note it by RNN while the recurrent neural network is denoted by
RecurrentNN in this paper. Figure 1 shows an example with three
input tokens.

Given a tree structure, e.g. a parse tree, the network visits each
node in topological order, applying transformations to generate fur-
ther representations from previously computed representations, and
finally reaching the root level where one single representation is gen-
erated for the whole sequence.

The disadvantage of RNN in our scenario is the need of a tree
structure because as said before, we do not have the sentence where a
phrase appears during alignment, we could parse the multi-word ex-
pressions but it seems unreasonable to apply parsing on single words.
We would like to train a model similar to a RNN without the required
structure information.

This architecture has been successfully exploited in a variaty of
tasks, [43] use an untied weight RNN for the constituent parsing
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Figure 1. Diagram of a recursive neural network.

where they use different weight matrices depending on the con-
stituent syntactic category, [27] collect the context information by
adding an outer representation for each node. Their system is served
in a dependency parsing task. Besides, various works [45, 22, 35]
apply the RNN to generate sentence level representation for the sen-
timent analysis using some labeled data.

2.3 Sequence-to-sequence models in neural
machine translation

To train our network, we use the widely exploited sequence-to-
sequence model in neural machine translation (NMT) [4, 6, 13, 48].
Although there are many different models, they all implement an
encoder-decoder architecture optionally combined with an attention
mechanism [4, 30] to tackle long sequences. This type of model has
become the main trend in recent years producing the current state-of-
the-art results. It takes advantage of longer context information and
continuous representations and can be easily trained in an end-to-end
system.

In [6], a model to learn representations of variable-length se-
quences was proposed, however this approach requires parallel
phrase pairs for training. Therefore we looked at NMT models
making use of monolingual corpora to enhance translation in low-
resource scenarios. When no parallel data exists between source and
target languages, several works proposed the use of a pivot language
[11, 39, 5] acting as a bridge between source and target. Following
the same idea, [23] proposed a multilingual NMT model which cre-
ates an implicit bridge between language pairs for which no parallel
data is used for training. Whether explicit- or implicitly, all these
works still require the use of parallel corpora between the pivot lan-
guage and other languages.

More interestingly for our work, a few researches have been re-
cently conducted on training NMT models with monolingual corpora
only [25, 3, 51]. They all use pre-trained cross-lingual word embed-
dings as input. Then a shared encoder is involved to encode different
noised sequences in the source and the target languages. The decoder
decodes the encoded vector to reconstruct its original sequence. This
strategy is called denoising [49] with the objective to minimize the
following cross-entropy loss:

Ldenoising(θenc, θdec) =

− Ex∈DlH(x, dec→l(enc(N (x))))
(1)

where θenc and θdec respectively means the parameters in the en-
coder and the decoder, x ∈ Dl is a sampled sequence from the mono-
lingual data and dec→l(enc(N (x))) represents a reconstructed se-
quence from the noised version of the original sequence x.
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These works exploit the back-translation approach [40] to build
the link between the two languages by alternatively applying the
source-to-target model to source sentences to generate inputs for
training the target-to-source model (and vice versa):

Lbacktranslation(θenc, θdec) =

− Ex∈Dl1H(x, dec→l1(enc(y))),

y = transl(x) = dec→l2(enc(x))

(2)

where Dl1 is the source language corpora, dec→l1 means that the
decoder will decoder the sequence in l1 language (or l2 resp.). Sup-
pose y is the translation of x ∈ Dl1, then dec→l1(enc(y)) represents
the reconstructed source sentence from the synthetic translation.

Also pertaining to our work, [51] introduce a semi-shared encoder
to retain specific properties of each language, and directional self-
attention to model word order. Based on the works discussed in this
section, we propose an encoder-decoder network with a novel en-
coder architecture and a new unsupervised training objective, more
details will be presented in the next section.

3 Proposed method
We present our unified and unsupervised framework in this section,
first we introduce the tree-free phrase encoder which is a short se-
quence encoder in Section 3.1. Then Section 3.2 describes the global
architecture of our system and how we train it without parallel data.

3.1 Tree-free phrase encoder
Recall that our objective is to encode multi-word or single-word
phrases without tree structures, because we want our framework to be
robust enough without too much constraint. Extra information such
as tree structures is not always available. To this end we propose a
network that can be seen as a short sequence encoder similar to a re-
cursive neural network with three levels. In the first level we split the
semantics of each word by a linear transformation into two parts: the
right side and the left side. Then we associate these nodes by concate-
nation, the left side is supposed to be associated with the right side of
the previous token and vice versa. In fact, by doing this we recreate
a pseudo-tree structure where each word is directly associated with
its left and right neighbours. The second level is composed of a fully
connected layer that maps the input vectors to output vectors in a
specified dimension. Finally the third level consists in summing all
intermediate level nodes and outputting a single fixed-length vector.
The sum operation is motivated by the additive characteristics men-
tioned in [32]. Instead of summing directly over the input, we sum
over the combination of each pair to capture word inner relationship.

Figure 2 shows the schema of the proposed network. The input of
the network is a sequence of word vectors for a phrase of any length,
and the output is a fixed length vector which can be considered as the
representation of the whole sequence.

We use pre-trained cross-lingual embeddings as the input vector
sequence [v1, v2, v3, ..., vn] with vi ∈ Rd, the output vector vo ∈ Rp

is calculated as follows:

vi,l = tanh(Wlvi + bl)

vi−1,r = tanh(Wrvi−1 + br)

vinter,i = tanh(U [vi−1,r; vi,l] + b)

vo =

n∑
i=1

vinter,i

(3)

where Wl ∈ Rd×d and Wr ∈ Rd×d denote respectively the left
and the right weight matrix in the linear transformation of the se-
mantic association, bl ∈ Rd and br ∈ Rd are the corresponding
bias vectors, U ∈ Rp×d and b ∈ Rp are the parameters in the fully
connected layer with d the input dimension and p the output vector
dimension.

∑

Wl Wr Wl Wr Wl Wr

concat concat

fully connected layer

v1 v2 v3

vo

Figure 2. Illustration of the tree-free phrase encoder.

Consequently, our phrase encoder produces vector representations
that are word order sensitive and that can distribute different weights
for the different phrase components without using structured input.
In addition, the output dimension can be different from the input di-
mension unlike in the original RNN.

3.2 System overview

The general encoder-decoder architecture of our method is shown in
Figure 3. Since the input sequence is always a phrase, usually much
shorter than a sentence, we did not use attention which is intended
to capture long-range dependencies. The network tries to predict the
sentence containing the input phrase from its encoded vector.

For a phrase x in language Dl1, we first use the shared tree-free
phrase encoder, then the system can be trained in two subnetworks.
The first networks decodes the encoded output v0 of x w.r.t Dl1. The
second network is applied if x is a single-word phrase, it decodes
the encoded vector of BWE(x) ∈ Dl2 w.r.t Dl2. We alternatively
iterate through all the phrases in the two languages.

As illustrated in Figure 3, we input synthetic translations of single
words to the second subnetwork. Hence, we create a link between
the two languages in the absence of parallel bilingual data. This can
be seen as a pseudo back-translation mechanism based on bilingual
word embeddings [2, 29] in place of decoding it into the target trans-
lation.

The language decoders consist of a 2-layer LSTM and a fully con-
nected layer on top of it. The goal of the decoder is to reconstruct the
wrapped sentence which contains the current input phrase. We name
this process context prediction. The intuition behind context predic-
tion is based on the distributional hypothesis [17], i.e., words in sim-
ilar contexts tend to have similar meanings. Predicting the context
from a central language unit has already been applied in Skip-gram
which predicts the context independently. Using a generator to gener-
ate the context can be seen as a conditional Skip-gram which predicts
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pre-trained cross-lingual em-
beddings, x ∈ Dl1

phrase encoder

encoded output vo

LSTMs

reconstructed wrapped sentence

LSTMs

reconstructed wrapped sentence
x is single-word

synthetic translation

yes

BWE(x) ∈ Dl2

shared encoder for l1 and l2

context decoder for l1

context decoder for l2

Figure 3. Overview of the training architecture. The objective of the decoder is to reconstruct a wrapped sentence containing x (as described in Section 3.2).

a continuous sequence where each predicted token is related. In ad-
dition, in [7], instead of an end-to-end system, the authors first learn
all the phrase embeddings by Skip-gram considering them as a sin-
gle word, and then learn the composition function by a regression
model which predicts the pre-trained phrase embeddings from its
composing word embeddings. However they limit the phrase length
to 2, while we would like to propose a unified end-to-end framework
which is able to learn the phrase composition of variable length and
the mapping simultaneously. Overall, the system uses three key con-
cepts:

Wrapped sentences. Like in NMT, we use special tokens to mark
the start and the end of a sentence. But, apart from the standard
special tokens, we insert a universal 〈PHR〉 token to the left and
right border of each phrase in a sentence. This allows the system to
recognize the phrase when decoding and strengthen links between
languages.

Shared phrase encoder. The system treats input phrases in differ-
ent languages via the universal encoder detailed in 3.1. Works us-
ing a similar idea are [21, 28] and, [3]. As the input embeddings
are already mapped to a common space, the representation gen-
erated by the shared encoder is also a cross-lingual vector. After
the training, we use exclusively the shared encoder (TF-RNN) to
generate cross-lingual phrase representations, which is essential
for our final task: bilingual phrase alignment.

Pseudo back-translation. Since we do not have cross-lingual data,
a direct link between a phrase in language l1 and one in language
l2 is not feasible. However, synthetic translations of single words
can be easily obtained using bilingual word embeddings. By us-
ing translated single-word phrases to train our model, we create
stronger links between the two languages. This can be viewed as
pseudo back-translation as we generate synthetic translations by
BWE while in NMT systems the translation is generated by the
corresponding decoder [40, 3].

Therefore, the system potentially has four objective loss functions
when we alternatively iterate all phrases in the two languages l1 and
l2:

Lcp l1→l1(θenc, θdec→l1) =

− Ex∈Dl1H(ws(x), dec→l1(enc(x))),
(4)

Lcp l2→l1(θenc, θdec→l1) =

− Ex∈Dl1H(ws(x), dec→l1(enc(BWE(x)))),
(5)

Lcp l2→l2(θenc, θdec→l2) =

− Ex∈Dl2H(ws(x), dec→l2(enc(x))),
(6)

Lcp l1→l2(θenc, θdec→l2) =

− Ex∈Dl2H(ws(x), dec→l2(enc(BWE(x))))
(7)

where Lcp lp→lq means the context prediction loss from an
encoded phrase in language lp to the context of language lq,
dec→l(enc(x)) is the reconstructed version of the wrapped sentence,
ws(x) denotes the real wrapped sentence containing the phrase x
and BWE(x) is the translated single-word phrase for x using bilin-
gual word embedding. The alignment process for the reference phase
consists in a forward pass of the trained shared encoder for the source
phrase and all the candidate phrases in target language, then candi-
dates are ranked using cosine similarity.

4 Experiments
We evaluate the proposed method on four publicly available datasets
across three language pairs: English-French, English-Spanish and
English-Chinese. We first cover the datasets and the experiment set-
tings, then we present the baseline method along with the results of
our experiments.

4.1 Resource and data
Two corpora from specialized domains were used in our experiments:
breast cancer (BC) and wind energy (WE), these are comparable cor-
pora meaning that texts are not translations even if they share the
same domain. The BC corpus has English and Spanish texts, while
the WE corpus has English, French, Spanish and Chinese texts.

We use the IXA pipes library5 to tokenize and lemmatize French
and Spanish corpora. It is worth noting that the WE Chinese corpus is
already pre-segmented. Then we use the Stanford CoreNLP library6

pos-tagger for all languages, then pos-tags are used to extract phrases
of a maximal length of 7 tokens using PKE7. After hapax filtering,
each corpus contains roughly 6,000 phrases.

BC corpus was crawled from a scientific website8. The corpus is
based on open access articles in English and Spanish related to breast

5 http://ixa2.si.ehu.es/ixa-pipes/
6 https://stanfordnlp.github.io/
7 https://github.com/boudinfl/pke
8 https://www.sciencedirect.com
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cancer and related pathologies (e.g. ovarian cancer). The English cor-
pus has 26,716 sentences and the Spanish one has 62,804 sentences.
The gold standard was constructed based on the MeSH 2018 the-
saurus9 and contains 108 phrase pairs. We made the English-Spanish
breast cancer corpus and all the reference lists publicly available.10

WE corpora are available for download from the authors’ aca-
demic website11. The English, French, Spanish and Chinese corpora
contain 13,338, 33,887, 29,083 and 17,932 sentences respectively.
[19] proposed a reference list consisting of 139 single words for the
English-French corpus, while [29] provided a gold standard with 73
multi-word phrases for the same corpus. Based on the reference list
of [29], we propose a new gold standard including also single words.
Moreover, we extended this gold standard to other languages while
ensuring that all reference lists share the same 90 English phrases to
be aligned. Finally, reference lists were obtained for three languages
pairs: English-French, English-Spanish and English-Chinese. For the
sake of comparability, we report results on the datasets previously
published in [29] and [19]. Again, on the domain specialized corpora,
it is difficult to build a large reference list of the non general meaning
phrases because domain specific terms represent a small subset of all
the n-grams [20, 29].

4.2 Experiment settings
We implement the bilingual word embedding framework mentioned
in Section 2.1 using deeplearning4j 1.0.0-beta312. We also use this
library to train domain-specific 100-dimensional word embeddings
using the Skip-gram model, with 15 negative samples and a window
size of 5. Since our corpora are fairly small, we concatenate these
embeddings with the 300-dimensional fastText vectors pre-trained on
the wikipedia [15]13, resulting in 400-dimensional vectors. This tech-
nique follows the idea discussed in [20] and, [29]. Next we apply the
bilingual word embedding framework so all word embeddings at the
input level in each experiment are mapped to a common space. For
each language pair, the seed lexicon is selected by a frequency thresh-
old of 50, obtaining around 2,000 word pairs. We use unit length nor-
malization, mean centering, matrix whitening, re-weighting and the
de-whitening to generate cross-lingual word embeddings. Since our
goal is to evaluate the contributions of our system, we will not mea-
sure the impact of different pre-trained embeddings and focus those
achieving state-of-the-art results to date.

The dimension of the encoded vector (vo in Figure 2) for the
shared encoder is set to 500. This is also the hidden size for the
LSTM decoders. A max length of 100 tokens is applied to discard
the long sentences so that the training is quicker and more stable.
The model is trained by a minibatch of 20. We run our experiments
for a maximum of 200 epochs with an early-stop condition of three
consecutive loss increases. Each model takes about 2 days to train
on a single Geforce 1080 Ti GPU with Pytorch 1.0 and Cuda 10 on
Ubuntu 16.04.

4.3 Reference methods
We implement two baseline methods to compare with our approach.
The first one is a traditional co-occurrence based approach while the

9 https://meshb.nlm.nih.gov/search
10 https://bitbucket.org/stevall/phrase-dataset
11 https://www.ls2n.fr/corpus-comparable-multilingue
12 https://deeplearning4j.org/
13 https://github.com/facebookresearch/fastText/
13 This is the optimal application order reported by [2].

second used bilingual word embeddings and vector sum to gener-
ate phrase representations. We also compare the result of our phrase
encoder to the results of existing neural networks used as encoders.

Co-occurrence based approach The compositional approach [16,
47, 38] is a quick and direct method to align multi-word ex-
pressions. It is basically a dictionary look-up approach which
translates each word via a dictionary and sort all candidates by
frequency. [34] proposed a co-occurrence based approach called
compositional approach with context based method (CMCBP) to
tackle the problem of out of dictionary words. However, this ap-
proach can only align phrases of the same length, so we compare
only a subset of multi-word phrase pairs.

Addition based BWE approach. Using the addition to generate
multi-word expressions is originally mentioned in [32]. [29] make
a deeper review of this method and apply it to bilingual phrase
alignment. By summing up cross-lingual word vectors in a phrase
to represent the whole sequence, we can directly align each phrase
with this approach. We also implement this approach for the sake
of comparison, this method is fully comparable with our system.

Context prediction with baseline phrase encoders. We imple-
ment four baseline phrase encoders based on regular neural
networks which do not require structured input: RecurrentNN
(referred to as Rec. below), CNN LSTM and a Transformer
encoder [48] (referred to as TXM below). LSTM is reported to
obtain the best results in [7]. To be comparable with the other
architectures, we use a 4 headed transformer cell with 4 hidden
layers. The output dimension of the transformer encoder is the
same as the input word embedding dimension, 400. The other
encoders have the same output dimension of 500 and the CNN
has a kernel size of 2 and a zero-padding so that even single-word
phrases can be encoded. It should be worth mentioning that we
have tested both the max and the average pooling for the CNN
and TXM encoders because they both output a sequence of
representations without a pooling layer. We only report the best
results in the next section.

4.4 Results and discussion
Table 1 shows the overall results on all test phrases. Since the dis-
tributional approach [34] does not include the alignment of variable
length phrases, we ignore the corresponding results in the table.

It is also worth noting that we do not present the results of the
distributional approach on the English-Chinese corpus because we
do not have enough resources to build the co-occurrence matrix as in
the other language pairs14.

It is clearly shown that the proposed method has a better over-
all performance. Especially when it comes to different length phrase
alignment, the new approach improves significantly the results with
an average score of 8.8 points. This proves that the proposed method
is able to produce high-quality alignment for phrases of variable
length. Keep in mind that the different length distribution represents
a small proportion of all test phrases except for the English-Chinese
corpus, so the overall score would be furthermore improved if we
has uniform distribution over all kinds of alignment. The second best
method on overall results is the addition approach, previously re-
ported to obtain decent results [32, 7]. However, we observe that
between linguistically distant language pairs (English-Chinese), all

14 The distributional approach requires a high coverage bilingual dictionary,
furthermore if the dictionary does not use the same Chinese word segmen-
tation approach as the WE corpus, it is even harder to find words in it.
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Table 1. Overall MAP % for all phrase alignment. sw, n2n and p2q respectively mean single-word to single-word, same length multi-word and variable
length phrase alignment.

Dataset Method Encoder Our
Corpus Phrases CMCBP ADD Rec. CNN LSTM TXM method

sw (72) 35.72 47.46 46.71 45.12 46.25 43.37 47.76
BC n2n (21) 68.73 81.10 28.52 62.10 50.05 59.26 86.11

en-es p2q (9) - 42.18 1.11 10.65 7.04 4.49 49.11
all (108) - 52.85 36.78 43.04 43.72 43.22 55.40

sw (15) 65.56 78.25 77.22 78.33 79.36 85.56 79.44
WE n2n (61) 42.09 57.37 6.16 40.84 18.64 41.82 62.19
en-fr p2q (14) - 15.83 <0.5 10.07 9.09 12.35 37.95

all (90) - 55.77 17.25 43.33 27.42 44.53 62.10

sw (15) 63.35 77.92 88.89 75.78 87.18 84.44 87.62
WE n2n (61) 35.94 62.68 7.31 40.33 23.07 44.68 61.35
en-es p2q (14) - 43.28 <0.5 28.57 17.86 37.20 46.21

all (90) - 62.20 19.77 44.41 32.94 50.14 63.38

sw (17) - 53.43 70.26 76.47 71.43 65.92 66.50
WE n2n (47) - 23.34 17.53 16.55 25.24 18.86 23.01

en-zh p2q (26) - 4.97 5.13 7.60 2.37 5.80 12.32
all (90) - 22.67 23.91 25.28 27.36 23.98 28.13

WE n2n (40) 67.32 78.36 46.07 68.51 44.82 48.47 88.01
en-fr p2q (33) - 34.38 2.38 20.01 7.93 28.25 41.83

Liu2018 all (73) - 58.48 26.06 46.59 28.13 39.33 67.13

encoder-decoder systems outperform the addition based approach.
The CNN has some interesting results in same length alignment and
the LSTM is powerful at short phrase alignment but unlike in [7], it
falls much behind on other types. This difference may be explained
by the fact that they limit the alignment to two-word phrases. The
Transformer encoder does not obtain better results than the addition
based approach nor much better results than the other encoders. First,
the addition is still more adaptive and effective for short sequence
comparison between linguistically close language pairs [20, 29, 7].
Second, as we set a maximum epoch of 200, we think that the
transformer encoder may not be converged after 200 epochs be-
cause it has a much bigger parameter-sample ratio than the other
encoders. Finally, Transformer architectures are basically multi-head
self-attentions which are designed for capturing the relations in long
sequences while we encode mostly short sequences. On the English-
Spanish and English-Chinese wind energy corpus, the addition based
approach slightly outperforms our approach by 1.33 and 0.33 points
for the same length alignment but falls much behind our proposal in
other types of alignment.

The relative poor results on the English-Chinese corpus may be
due to the segmentation of Chinese words. More concretely, as the in-
put vectors for the Chinese sequences are in word-level, many words
in our gold standard are not segmented in the same way as in the
given corpus which is already pre-segmented. We would like to in-
corporate character-level embeddings in our future works as this par-
ticularly makes sense in Chinese. Concerning the single-word align-
ment on BC, 25 among the 72 single words are in fact acronyms
which are particularly difficult to align. This would explain why the
single-word alignment has much poorer results than other distribu-
tions. Besides, the proposed method obtains strong results for single-
word alignment, we believe this happens because the system sees
more single-word alignment samples generated by the pseudo back-
translation during training.

In order to show that the proposed method can still hold a reason-
able performance on single words, we present in Table 2 the results
for single words compared to state-of-the-art work on bilingual word
embedding [2], including the 139 English-French single word dataset
of [19] (suffixed -HM in the Table 2). In order to be comparable, we
only test on single-word phrases and the candidate list is limited to
all single words in the corpus vocabulary.

We can see that in general, compared to [2], the proposed approach
does not degrade much the results except for the English-Chinese
words. In addition to that, we succeed to hold better results with re-
gard to the original transformation matrix method [31] with only one
exception on the English-French wind energy dataset. This shows
that our approach is not biased by the compositionality of the multi-
word expressions.

Table 2. MAP (%) for bilingual alignment of single words only.

BC WE
Method en-es en-fr en-es en-zh en-fr-HM

Mikolov et al. [31] 39.96 91.33 87.27 45.88 79.47
Artetxe et al. [2] 49.13 95.56 90.39 73.52 84.01
Our method 45.96 89.44 88.89 58.75 82.23

4.5 Qualitative analysis

For a better understanding of how the proposed method succeed or
fail to align different types of phrases, we analyzed some of the align-
ments proposed by our system.

Table 3 shows examples extracted from top 2 nearest candidates
to the source phrase in column 2. Again we see that the proposed
method is capable of generating better results over different types
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of alignment. In the first example, with the proposed approach, the
source phrase breast cancer is aligned to cáncer de mama (lit. “can-
cer of breast”) which is the expected phrase in Spanish and is far
more idiomatic than cáncer mamario (lit. “cancer mammary”) ob-
tained by the addition approach. In line 7 we see that the perfect
translation for wind vane is found by our proposal: 风向标, while
the additive approach finds偏航 电机 (lit. “yaw electric machine”).
Besides, examples in lines 3, 5, 6, 7 and 8 are all composed of phrases
of variable length, the corresponding reference phrase can be found
in the fourth column. Interestingly, we find that the proposed sys-
tem find paraphrases referring to fairly domain-specific phrases like
blade tip which is aligned to côté supérieur de la pale (lit. “side top
of the blade”). This is also the case for Darrieus rotor aligned to ro-
tor vertical, which is remarkable since the Darrieus rotor is a kind of
vertical rotor.

Table 3. Phrase alignment examples within top 2 candidates.
( “ ” is the segmentation point for Chinese words)

Dataset Source Addition Our method

BC breast cancer cáncer mamario cáncer de mama
en-es cell death muerte celular muerte

WE blade tip angle des pales côté supérieur de la pale
en-fr Darrieus rotor rotor tripale rotor vertical

WE airflow freno aerodinámico flujo de aire
en-es wind power plant electricidad del viento planta eólica

WE wind vane 偏航 电机 风向标
en-zh electricity power 电力 电力

Though the proposed method performs generally well on phrases,
we observe that it emphasizes occasionally too much the syntactic
head in a multi-word phrase. For instance, in the second example,
cell death is aligned to muerte (“death”), while the addition based
approach succeeds to align it to muerte celular (lit. “death cellu-
lar”) which is the reference phrase in Spanish. Undoubtedly, death
is the syntactic head for the noun phrase cell death, it is clear that
the proposed method puts more weight on the syntactic information
rather than the compositional property for this phrase. This also ex-
plains why we do not obtain better results on equal-length phrase
alignment on the English-Spanish and English-Chinese wind energy
corpora (Table 1). This bias could be due to the increased amount
of single-word phrase samples of the pseudo back-translation rein-
forced learning. This suggests that we could improve the system by
adding synthetic translations for multi-word phrases while training.

5 Conclusion
This work proposes an unsupervised bilingual alignment framework
for phrases of variable length. We implement an adapted encoder-
decoder system that uses pre-trained cross-lingual embeddings as in-
put. The system does not require parallel data but instead includes
a shared encoder and a pseudo back-translation mechanism. Our ex-
periments show that our proposal improves significantly the results
of different length phrase alignment compared to existing methods
(+8.8 in MAP) while holding comparable results on equal length
phrases. It should be emphasized that this work focuses on the phrase
alignment task, one may argue that the output of this task is actually
a cross-lingual phrase table for statistical machine translation (SMT).
Indeed, we could have applied our output to the SMT task however
this does not directly evaluate our phrase encoder for the alignment.
Nonetheless, for our future work we would like to evaluate our sys-
tem in downstream tasks such as SMT.

Despite of the strong empirical performance, one aspect of our
method that we identified as sub-optimal is that the pseudo back-
translation is only used for single words, therefore we would like
to explore strategies for generating synthetic translations of multi-
word phrases. In addition, incorporating character-level input vectors
may allow us to extract more versatile features to further improve
the performance, particularly in Chinese. Finally we look forward to
incorporate recently released cross-lingual pre-trained models [24].
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