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Abstract. Deep neural networks have achieved great success on a
wide spectrum of applications. However, neural network (NN) mod-
els often include a massive number of weights and consume much
memory. To reduce the NN model size, we observe that the struc-
ture of the weight matrix can be further re-organized for a better
compression, i.e., converting the weight matrix to the block diag-
onal structure. Therefore, in this paper, we formulate a new re-
search problem to consider the structural factor of the weight ma-
trix, named Compression with Difference-Minimized Block Diagonal
Structure (COMIS), and propose a new algorithm, Memory-Efficient
and Structure-Aware Compression (MESA), which effectively prunes
the weights into a block diagonal structure to significantly boost the
compression rate. Extensive experiments on different models show
that MESA achieves 135× to 392× compression rates for different
models, which are 1.8 to 3.03 times the compression rates of the
state-of-the-art approaches. In addition, our approach provides an in-
ference speed-up from 2.6× to 5.1×, a speed-up up to 44% to the
state-of-the-art approaches.

1 Introduction
With the acceleration of matrix processing brought by the graphic
processing unit (GPU), deep neural networks have achieved great
success and enabled a wide spectrum of applications. However, deep
learning models usually include a massive number of weights (e.g.,
240 MB for ResNet-152, 248 MB for AlexNet, and 552 MB for
VGG16 on ImageNet dataset) and consume much memory and trans-
mission bandwidth, especially for mobile devices or embedded plat-
forms [13]. Therefore, reducing the model size has been an active
research topic in recent years. To reduce the model size, different
approaches have been proposed, such as [1], [18], [25], [23], [24],
which compress the model with limited degradation in inference ac-
curacy.

However, we observe that the weight matrices can be reorganized
for a better compression. Specifically, conventional approaches only
consider to preserve the important weights3, which then prune the
unimportant ones and re-train the model [6], [25], [24]. However,
the remaining non-zero weights are randomly scattered in the weight
matrices, and the irregular sparse matrices lead to inefficient compu-
tation and ineffective compression.

In contrast to the prune-and-retrain approaches above, a recent
work [3] proposes that dense feed-forward networks contain sub-
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Figure 1. Motivating example. (a) Irregular structure. (b) Block diagonal
structure. (c) Preferred structure. (d) Distribution of Fig. 1(c).

networks (lottery ticket hypothesis) that are able to reach compara-
ble test accuracy to the original network when trained from scratch
with a similar number of iterations, i.e., removing certain weights
before training. On top of that, Supic et al. [22] show that pruning
the weights arbitrarily before training without considering their im-
portance (arbitrary pruning for short) retains nearly the same perfor-
mance of the model (detailed in Sec. 3). Inspired by these works, in
this paper, we explore the new idea to arbitrarily prune the weights in
fully-connected layers into the block diagonal structure before train-
ing, i.e., organizing the non-zero weights as blocks on the diagonal
in the matrix, in order to significantly improve the compression rate
and reduce the model inference time.

Consider Fig. 1 as an example. Fig. 1(a) is an n× n sparse matrix
(storing the weights of the NN). While compressed sparse row (CSR)
and compressed sparse column (CSC) formats can be employed to
reduce the storage overhead, organizing the weights in a block diag-
onal structure is more promising in terms of compression rate and
inference efficiency. That is, if Fig. 1(a) is stored in CSR format,
an overhead of 13 indices and 6 pointers are required on top of the
weight values. In contrast, when the non-zero weights are organized
in same-sized blocks in the diagonal as in Fig. 1(b), dense blocks
can be stored by appending each dense block together sequentially,
requiring no extra indices and pointers. In adition, for inference effi-
ciency, each block can be computed in parallel on a GPU device to its
own corresponding column, which significantly boosts the efficiency
of model inference. For example, the block diagonal structure in Fig.
1(b) reduces the computation complexity from O(n2) to O(n

2

3
) for

real-time processing. We also show in the experiments section that
pruning into block diagonal structure shows a speed-up up to 44%
compared to the unstructured pruning method [21] for model infer-
ence.

Further, we observe that organizing the original sparse matrix to
block diagonal structure still leaves a large room for improvement.
We argue that the entropy of the weight distribution in blocks should
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also be well addressed to further compress the model. Consider a
given weight matrix that the weights are quantized to 3 bits, with
representing index in [0, 7], as shown in Fig. 1(c). Fig. 1(c) is well
arranged with correlated small entropy (the entropy value is 0) with
all the differences as 1 on all the 2 × 2 blocks, whereas the entropy
value of Fig. 1(b) is 2.46 along the diagonal. By doing so, encod-
ing by the blocks’ pair-wise index differences in Fig. 1(c) leads to a
concentrated distribution as shown in Fig. 1(d). By applying lossless
compression, such as Huffman coding, we only need 8 bits to encode
the remaining matrix, while those in Figs. 1(a) and 1(b) require 82
(with CSR and Huffman) and 30 bits, respectively.

With the observations above, in this paper, we aim to reduce the
model size by considering the block diagonal structure and the min-
imum data entropy of sequential block differences (minimum block-
wise differences for short). Unlike most existing approaches, such as
pruning and quantization [1], [23], [16], [19], [6], [25], [24], that fo-
cus only on removing redundant weights or reducing the allocated
bits for weights, we make the first attempt to consider the structural
properties of the matrix to effectively reduce the memory consump-
tion, which is particularly useful for embedded systems and mobile
devices. To our best knowledge, this is the first work that considers
the block diagonal structure with minimum block-wise differences
to compress the model. It is worth noting that, although we present
our results for fully-connected layers in this paper, our ideas can be
easily extended to compress convolutional layers.

Specifically, we formulate a new research problem, named
COmpression with Difference-MInimized Block Diagonal Structure
(COMIS) that takes as input an NN model and transforms it to a
memory-efficient representation (i.e., compressed model) with a lim-
ited accuracy drop. We design a new algorithm, named Memory-
Efficient and Structure-Aware Compression (MESA), which employs
the ideas of lottery ticket hypothesis and arbitrary pruning with a new
penalty function to minimize the block-wise differences in the block
diagonal structure to significantly improve the compression rate. We
conduct extensive experiments to validate our ideas and evaluate our
algorithm. Our algorithm is able to achieve compression rates of
135× to 392× on various models, tripling the compression rates of
the state-of-the-art approaches [21], [22]. For the inference time, the
models compressed by MESA achieve 2.6× to 5.1× speed-up com-
pared to the full precision model and up to 44% speed-up compared
to the state-of-the-art NN compression approaches [21], [22]. The
contributions of this paper are summarized below.

• We observe that the block diagonal structure with the minimized
block differences is able to boost the compression rate and the
inference speed for NN model compression, and we validate our
observations with analysis on multiple models.

• We propose a new research problem, named Compression with
Difference-Minimized Block Diagonal Structure (COMIS) prob-
lem with a new algorithm, Memory-Efficient and Structure-Aware
Compression (MESA), to significantly improve the compression
rate. This is the first work that compresses the NN model with a
difference-minimized block diagonal structure, which is comple-
mentary with most existing compression methods.

• Extensive experiments on multiple models are conducted. The re-
sults show that MESA achieves 135× to 392× compression rates,
tripling those of the state-of-the-art approaches. Additionally, the
models compressed by MESA achieve 2.6× to 5.1× speed-up (in-
ference time) compared to the full precision model, and up to 44%
of speed-up compared to the state-of-the-art approaches.

This paper is organized as follows. Sec. 2 discusses the relevant

works. Sec. 3 formulates the problem and discusses our observa-
tions. Sec. 4 details the algorithm design, and Sec. 5 presents the
experimental results. Finally, Sec. 6 concludes this paper.

2 Related Works
Compressing NN models has been actively studied in the past few
years. The main objective is to minimize the memory consumption
in the inference phase with a very limited accuracy drop, where the
works can be basically categorized into quantization, pruning, and
low-rank approaches.

The quantization-based approaches, such as binarization quanti-
zation [1], [23] and fixed-point quantization [16], [5], use fewer bits
to represent the original weights for reducing the memory consump-
tion. In addition, approaches that employ sharing index such as [21],
[19] are also proposed to enable an efficient lookup mechanism for
performance improvements.

For pruning-based approaches [6], [24], [25], [26], the less impor-
tant weights in the model are pruned to reduce the complexity. By
putting pruning and quantization together, DeepCompression [21]
proposed a three-stage pipeline with pruning, quantization, and Huff-
man coding for the quantized index. Further, MPDCompress [22]
proposes to store the sparse weights as diagonal blocks to facilitate
parallel computation on GPU devices. However, since none of the
above works considers the structural factor to minimize the block-
wise differences in the weight matrix, our ideas and algorithms are
complementary to these works for improving the compression rate.

In addition, low-rank matrix factorization and tensor decomposi-
tion are also employed for compression [15], [11]. Also, a recent line
of studies aims at reducing the vast convolutional layers by reformu-
lating its standard structure, such as SqueezeNet [9], MobileNet [7],
and EffNet [4].

To summarize, although the above works achieve good perfor-
mance, however, they do not consider the block diagonal structure
with the minimum block-wise differences, which are critical to fur-
ther reduce the model size. In this paper, we make the first attempt to
optimize the model compression by incorporating these ideas.

3 Problem Formulation and Analysis
Problem Formulation. The COMIS problem is formulated as fol-
lows. We are given a neural network with n fully-connected layers4,
a set of target pruning rates P = {p1, · · · , pn} and a set of quantiza-
tion bits Q = {q1, · · · , qn} for each fully-connected layer, where pi
of weights should be kept (i.e., (1−pi) of weights should be pruned)
in each layer 1 ≤ i ≤ n, and all the weights in layer i are quantized
from 32-bit floating point numbers to qi bits of weight index5. The
goal of COMIS is to minimize the model size with a limited accuracy
drop, such that the non-zero weights for each fully-connected layer
are organized as non-overlapping blocks in the diagonal of the weight
matrix (diagonal requirement), and the block-wise differences of the
adjacent blocks should be small (min-difference requirement).

Here, the parameters P = {p1, · · · , pn} and Q = {q1, · · · , qn}
can be assigned to consider different scenarios. A smaller pi or qi
may lead to a smaller model size. However, when pi or qi is set too
small, it becomes more difficult (or infeasible) to compress the model

4 Even if the model contains both fully-connected and convolutional lay-
ers, the proposed COMIS problem and algorithm can still be applied to
compress the fully-connected layers. Moreover, our approach can be eas-
ily extended to compress the convolutional layers by slightly changing the
penalty function.

5 P and Q can be set according to [21] and will be discussed in the experi-
ments section.
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with a limited accuracy drop. Since previous work has shown that the
performance remains the same if the neural networks are compressed
with the same P and Q, the settings of P and Q are based on the
previous compression results by other approaches in practice, such
as DeepCompression [21], MPDCompress [22]. Please note that as
shown in the experimental results, our proposed approach signifi-
cantly outperforms DeepCompression and MPDCompress under the
same pi and qi settings.

In this paper, our proposed algorithm is able to prune the net-
work more effectively to enhance the compression rate by satisfy-
ing the two requirements above, i.e., diagonal requirement and min-
difference requirement, which are added to allow run-length coding
to significantly reduce the model size, as illustrated in Fig. 1. These
requirements are designed to follow our observations below. Please
note that, although our observations and ideas are presented with
fully-connected layers, the proposed ideas can be easily extended to
compress the convolutional layers.

Observations and Analysis. As mentioned earlier, arranging the
sparse matrix (representing the weights of a fully-connected layer)
to a block diagonal structure is critical for effectively reducing
the model size. However, reducing the model size while satisfying
the diagonal requirement is very challenging because conventional
pruning-based approaches, such as [25], [24], [26], usually fail to
generate a pruned weight matrix where non-zero weights are grouped
into blocks on the diagonal. This is because they aim to prune out the
less important weights defined in their work, but such less important
weights often scatter irregularly in the weight matrix.

Recently, Frankle et al. and Liu et al. [17], [3] both point out
that given the assigned pruned model structure from the conven-
tional pruning-based approaches, the pruned network structure can
be trained from scratch and provide a similar or even better model
accuracy. On top of that, Supic et al. [22] demonstrate the effective-
ness of arbitrary pruning strategy on fully-connected layers. In their
experiments, they show that given the percentage of weights to be
pruned from each layer, one can arbitrarily prune off that number
of weights (i.e., the arbitrary pruning strategy) and train the pruned
network from scratch to provide a model accuracy comparable with
the original full-precision model. This observation motivates us to
explore a new direction to effectively prune the weight matrix in or-
der to extract the winning ticket subnetwork [3] (i.e., the subnetwork
that matches the test accuracy of the original network when trained
in isolation from scratch) from the original network while satisfying
the diagonal requirement of the COMIS problem.

To validate and gain more insights for the arbitrary pruning strat-
egy, we conduct a preliminary experiment on 4 models, i.e., LeNet-5
[14], VGG16 on CIFAR-10 [20], VGG16 on CIFAR-100 [20], and
AlexNet [12]6. For each model, we apply one of the state-of-the-
art compression approaches, DeepCompression [21], and record its
pruning rate for each individual fully-connected layer without any
accuracy drop. The second column of Table 1 reports the pruning
rates of DeepCompression, which are then used as the hyperparame-
ters for testing other approaches. For example, the pruning rates for
LeNet-5 are 10% and 20%, indicating that DeepCompression keeps
10% and 20% of weights in the first and second fully-connected lay-
ers, respectively. Moreover, in this pilot experiment, all the weights
for the compared approaches are quantized to 5 bits. For each model,
we compare the performance of three approaches: i) DeepCompres-
sion (DeepC) [21]; ii) The arbitrary pruning strategy to prune the
fully-connected layers randomly with the same pruning rate as in
6 We also present the experimental results on non-computer vision models

later in the experiments section.

DeepCompression for each individual layer (Arb). iii) Moreover, we
prune the weights not residing in the blocks on the diagonal with the
same pruning rate as in DeepCompression, which is a special case of
the arbitrary pruning strategy (referred to as Diag).

Table 1. Preliminary results for different pruning strategies
Pruning rates DeepC Arb Diag

LeNet-5 10%, 20% 99.35 99.03 99.11
VGG16 CIFAR-10 12.5%, 12.5%, 10% 91.38 91.1 91.44
VGG16 CIFAR-100 12.5%, 12.5%, 10% 72.33 72.35 72.12
AlexNet 10%, 10%, 25% 53.23 54.16 53.37

The results are reported in Table 1, where the third, fourth, and
fifth columns in Table 1 respectively present the accuracy of the
model compressed by DeepC, Arb, and Diag, all with the same
number of weights. Diag is very close to DeepC and Arb in all
models, which manifests that arbitrary pruning the same ratio of
weights to generate block diagonal structure produces similar or bet-
ter accuracy in these models. This observation validates the feasibil-
ity and effectiveness of transforming the weight matrix into a block
diagonal structure for better model compression. Based on this im-
portant observation, we propose the algorithm for COMIS in the next
section.

4 Algorithm Design
To solve the proposed COMIS problem, in this paper, we pro-
pose algorithm Memory-Efficient and Structure-Aware Compression
(MESA), which includes four steps as detailed below.

Step 1. Pruning with Block Diagonal Mask (PM). Given the
pruning rate pi of the i-th weight matrix, the conventional pruning
approaches [25], [24], [26], [6] identify the importance of the weights
and then prune the less important ones until the desired number of
weights are pruned. Although these approaches may be able to re-
tain the accuracy eventually, there is no guaranteed structure for the
weight matrix after the pruning. Consider a running example in Fig.
2, given the weight matrix of size 4096× 4096 and a pruning rate of
12.5%, a trivial pruning approach that keeps 12.5% of weights with-
out considering the block diagonal structure may obtain the irregular
sparse matrix as shown in Fig. 2(a). However, as mentioned earlier,
the block diagonal structure is critical to model efficiency. There-
fore, in the first step, after the pruning rate of each layer is identi-
fied by the threshold pruning method (e.g., [6]), we directly train the
block diagonal sparse matrix with a mask. In this way, the redun-
dant weights can be structurally pruned and compressed. Compared
with unstructured pruning methods, block diagonal sparse matrix re-
quires no extra pointer to record the location of weights in the pruned
sparse matrix, which can further enhance the compression rate under
the same pruning rate of each layer. Furthermore, each block can be
independently computed to improve the parallelism of the model in-
ference.

Specifically, for the i-th weight matrixWi, we denote xi and yi the
row and column sizes of Wi, respectively. Given pruning rate pi, we
first generate a binary mask MB

i that has the same size as Wi. The
mask MB

i has b 1
pi
c dense blocks assigned as 1 (binary True) along

the diagonal. Each of the b 1
pi
c dense blocks along the diagonal axis

in MB
i has the size of (bxi · pic) × (byi · pic), and the remaining

values outside the diagonal blocks are assigned as 0 (binary False).
Under the same pruning rate pi, each block is set to the same size
instead of using blocks with irregular sizes because of the following
reasons: 1) When the blocks come with different sizes, extra infor-
mation is required for recording the size of each block, while same-
sized blocks only need to record the size of the first block. 2) The
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(a) Irregular sparse matrix
(by trivial approach)

(b) Diagonal blocks (step 1) (c) Minimized block-wise
differences (step 2)

(d) Distribution of weight indices
without delta-coding

(e) Distribution of weight indices with
delta-coding (step 3)

Figure 2. Running example on fc2 (second fully-connected layer) in VGG16 on CIFAR-10 (pruning rate: 12.5%)

memory needed for model inference is related to the largest dense
block since the matrix multiplication can be processed by loading
the weights block-by-block. Therefore, the size of the blocks in each
fully-connected layer is set to bxi · pic × byi · pic.

Next, we apply this mask and train the model from scratch. Each
mask MB

i covers the weight matrix Wi, with an AND operation
masking out the weights not residing on the diagonal block structure.
Let WM

i be the weight matrix between layers i and i + 1 after the
mask is applied, WM

i =Wi AND MB
i . By applying the mask MB

i ,
we force the weights to propagate forward only if the corresponding
position on the mask is assigned as 1 (binary True). This ensures that
in the back-propagation stage, only the corresponding position with
binary True is updated, while other weights remain zero. The idea of
applying this binary mask can be regarded as a special case of the
arbitrary pruning strategy, which implements the operation similar to
Diag in Table 1. Therefore, the model accuracy is not likely to incur
a sharp drop after applying this mask.

Example 1 Fig. 2 presents an example of pruning with the pro-
posed block diagonal mask. After applying the generated mask on
the weight matrix of size 4096 × 4096, the new matrix is shown in
Fig. 2(b), which contains 8 non-overlapping blocks from top left to
bottom right. We also label the block-wise differences between adja-
cent blocks in this figure.

Algorithm 1 Pruning with Block Diagonal Mask (PM)
Input: Fully-connected weight matrix: W with size (x× y), pruning rate p
Output: Pruned fully-connected layer: WM

1: Generate MB by the size of W , with b 1
p
c dense blocks assigned as

binary True along the diagonal axis having the same size bx ·pc×by ·pc
2: WM ←W AND MB

3: block-number: bn← b 1
p
c

4: return WM , bn

After training each weight matrix with the mask MB
i , the original

matrix is transformed into a new matrix such that only independent
blocks (with non-zero weights) exist on its diagonal. Given the prun-
ing rate of the i-th weight matrix pi, let bni = b 1

pi
c denote the block

number of the i-th weight matrix, and let {Bi
1, B

i
2, · · · , Bi

bni
} de-

note the blocks on the diagonal of the matrix in each fully-connected
layer i, where Bi

1 is the top left block. Instead of storing the whole
weight matrix, considerable memory space can be saved by storing
only the blocks {Bi

1, B
i
2, · · · , Bi

bni
} of each masked weight ma-

trix WM
i . This is because the locations of the non-zero weights are

pre-defined, i.e., they are arranged into same-sized blocks on the di-
agonal, and thus we can easily reconstruct the original weights by

aligning {Bi
1, B

i
2, · · · , Bi

bni
} sequentially along the diagonal axis.

Actually, since each Bi
j , ∀1 ≤ j ≤ bni, can be computed indepen-

dently, there is no need to reconstruct the original weight matrix. The
pseudocode of our first step (PM) is presented in Algorithm 1.

Step 2. Difference Minimization for Neighboring Blocks (DM).
In step 1, for each WM

i , ∀1 ≤ i ≤ n, only the blocks
{Bi

1, B
i
2, · · · , Bi

bni
} are stored. Although this approach achieves

good compression rate, it still leaves a large room for further
improvement. After the weights in each Bi

j are quantized, we
can further minimize the block-wise differences between Bi

j and
Bi

j+1, ∀j ∈ [1, bni − 1]. By doing so, we control the entropy of the
pair-wise distances between the blocks by concentrating the distance
close to zero, and then in step 3, we can employ the delta-coding
techniques [8] to encode the differences to further reduce the model
size.

Example 2 Fig. 2(b) shows the masked weight matrix and the to-
tal difference of adjacent blocks without considering to minimize the
differences between adjacent blocks. In contrast, the same masked
weight matrix after minimizing the differences is shown in Fig. 2(c).
The differences between adjacent blocks are reduced by approxi-
mately 600 times in Fig. 2(c), as compared to Fig. 2(b). After quan-
tization, the minimized differences between the blocks shrink the en-
tropy from 4.44 to 0.05.

Therefore, to minimize the block-wise differences between the ad-
jacent blocks, we propose a new penalty function, namely, Loss of
Distance Penalty LDP , as follows.

LDP =
1

n

n∑
i=1

bni−1∑
j=1

||Bi
j+1 −Bi

j ||2

(bni − 1)
,

where n is the number of fully-connected layers, bni = b 1
pi
c is the

number of diagonal blocks in the i-th masked weight matrix WM
i

generated by step 1 (recall pi is the pruning rate of layer i), and Bi
j

is the j-th block inWM
i . When the difference betweenBi

j andBi
j+1

or Bi
j−1 is large, the loss increases. Based on LDP , we design the

loss function Ltotal for training as follows.

Ltotal = Lacc + αLDP ,

where Lacc is the accuracy loss7, and α is a hyper-parameter de-
signed to control the trade-off penalty between the compression rate
and the model accuracy. A larger α value allows the normalization

7 Loss can be cross-entropy or MSE according to the learning task.
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factor to become more dominant which makes the blocks more sim-
ilar and more likely to be quantized with the same code. Thus, the
compression rate becomes higher with delta-coding since the en-
tropy of the delta weight distribution is smaller, enabling Huffman
coding to be more memory-efficient. In contrast, a smaller α allows
the weights to be more likely to fit the original error loss and thus
the model accuracy can be higher, since minimizing the error loss
becomes a more important factor in the loss function.

In practice, when the goal is to achieve the best compression rate
without accuracy loss, α is set as large as possible until the accuracy
drops. On the other hand, in the case that the memory or bandwidth
is extremely limited and slight accuracy loss can be tolerated, α can
be set as a large value to strike a good balance between the accu-
racy requirement and the size of the model. As Ltotal considers the
similarity between blocks as a chain and therefore after the model
converges, reorganizing the sequence of delta-coded blocks is not
necessary for the subsequent steps. The pseudocode of our second
step (DM) is listed in Algorithm 2.

Algorithm 2 Difference Minimization for Neighboring Blocks (DM)
Input: Masked weights for each layer: W = {WM

1 , · · · ,WM
n }, block

number for each layer: BN = {bn1, · · · , bnn}
Output: Loss of Distance Penalty: (LDP )

1: i← 1, j← 1, LDP ← 0
2: for i ≤ n do
3: for j < bni do

4: LDP ←LDP +
||Bi

j+1−Bi
j ||

2

bni
−1

5: j← j + 1

6: return LDP

Steps 3 and 4. Post-Quantization Cyclic-distance Assignment
(PQA) and Huffman Encoding with Organized Distribution
(HE). At step 3, after the model converges, we quantize the weight
matrix of each fully-connected layer i according to the given param-
eter qi with the k-means clustering algorithm and train the model
until it recovers the accuracy. Next, for the bni sequence of blocks
Bi

j in the i-th fully-connected layer, we delta-code Bi
2 to Bi

bni
by

the cyclic-distance of the quantized index from its previous block on
the diagonal. For example, given two (1× 2) 3-bit quantized blocks,
µ1 and µ2, where µ1 = [0, 1] and µ2 = [7, 1]. µ2 in this case is
delta-coded as [−1, 0] to ensure that the bit range remains the same
as encoded by the original quantized bits.

Putting penalty, quantization, and cyclic-distance delta-coding to-
gether, we can adjust carefully the differences between adjacent
blocks to make each block more similar to its nearby blocks and
can also encode cyclic-distance between blocks after quantization,
where cyclic-distance is concentrated in a small range as shown in
Fig. 2(e). The concentrated distribution can be further compressed
by run-length coding, e.g., Huffman coding in the next step.

Example 3 Continue our running example in Fig. 2, where Fig. 2(c)
shows the blocks (and the total of their difference values) after step
2. After the quantization mentioned above, the distributions of the
weight indices and the cyclic-distance weights indices are shown in
Figs. 2(d) and 2(e), respectively.

At step 4, the last step, we generate two codebooks using Huff-
man coding for each fully-connected layer. The first codebook en-
codes the absolute indices of the first block in each masked fully-
connected layer, i.e., Bi

1 in WB
i , and the second codebook encodes

the differences of block-wise indices along the diagonal block se-
quence, i.e., ||Bi

2 − Bi
1||, · · · , ||Bi

bni
− Bi

bni−1||, where bni is the

number of blocks in WB
i . Our algorithm then outputs the encoded

Bi
1 block along with the (bni − 1) delta-coded sequence for each

fully-connected layer i as the final compressed model.

Example 4 For VGG16 on CIFAR-10 in Fig. 2, if each weight is
quantized to 5 bits, the weights of the fully-connected layers consume
10 MB of memory. After steps 1-3, the model is compressed to 1.25
MB. If encoded with cyclic-distance in step 3, the compressed model
(after Huffman coding) takes 394 KB, while the model size (after
Huffman coding) is 901 KB without cyclic-distance delta-coding.

In our experiments, by employing Huffman coding on the cyclic-
distance delta-coding, our approach outperforms the direct encoding
with quantized indices by reducing up to 60% of the model size.
The pseudocode of step 3 is presented in Algorithm 3. Finally, com-
bining the 4 steps altogether, the pseudocode of algorithm MESA is
presented in Algorithm 4.

Algorithm 3 Post-Quantization Cyclic-distance Assignment (PQA)
Input: Quantized diagonal blocks: B∗, B, maximum weight index range: r
Output: Delta-encoded form of B∗: BR

1: BR= size(B∗)
2: for i, j in size of B∗ do
3: BR

i,j ←min{|B∗
i,j − Bi,j |, r − |B∗

i,j − Bi,j |}
4: return BR

Algorithm 4 Memory-Efficient and Structure-Aware Compression
(MESA)
Input: n, W = {W1, · · · ,Wn}, P = {p1, · · · , pn}, Q = {q1, · · · , qn}
Output: Compressed NN weights after MESA is applied: WC

1: for each NN layer Wi do
2: WM

i , bni← PM(Wi, pi), initialize pruned weights WM
i

3: For each layer, BN ← all bni; WM ← all WM
i

4: for each training epoch do
5: Input batch data and calculate the MSE

6: Loss←MSE; Loss← Loss + DM(WM ,BN )
7: Compute gradient, back propagation
8: for each Converged weight: WM

i do
9: WM

i ← Quantized WM
i from 32 bits to qi bits

10: for each Quantized weight matrix: WM
i do

11: range← 2qi
12: for j from 1 to (bni − 1) do
13: Bi

j+1← PQA(Bi
j+1, Bi

j , range)
14: Compressed weight WC

i ← Huffman code Bi
1 and {Bi

1, · · · , B
i
m} re-

spectively from WM
i

15: return Compressed NN weights WC

5 Experimental Results
Models and Datasets. We compare our algorithm with other base-
lines on multiple NN models. Similar to most model compression
works, well-known computer vision models and datasets are used,
including LeNet-5 on MNIST (LeNet-5 for short) [14], VGG16 on
CIFAR-10 and CIFAR-100 (VGG16 (C10) and VGG16 (C100) for
short, respectively) [20], AlexNet on CIFAR-100 (AlexNet for short)
[12], and AlexNet on ImageNet (AlexNet (ImageNet) for short) [10].

In addition, to demonstrate that the proposed approach can be ap-
plied to the NN models for other tasks, we conduct experiments on
predicting the category of the input text content with Char-ConvNet
[28] on AG’s News and DBPedia, abbreviated as C-CNN (AG) and
C-CNN (DB), respectively. Char-ConvNet comprises 6 convolutional
layers and 3 FC layers. AG’s News dataset from web8 contains news
8 http://www.di.unipi.it/˜gulli/AG_corpus_of_news_
articles.html.
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articles in 4 categories, where each category contains 30000 training
samples and 1900 testing samples. Moreover, DBPedia dataset con-
tains 14 non-overlapping ontology classes from DBPedia 2014 with
each class having 40000 random training samples and 5000 testing
samples.
Baselines. We compare the proposed MESAwith five other baselines:
i) DeepCompression (DeepC) [21], one of the state-of-the-art al-
gorithms that effectively compresses the deep neural networks; ii)
MPDCompress (MPDC) [22], which is able to achieve high compres-
sion rates by considering the block diagonal structure of the weights,
but does not consider to minimize the block-wise differences be-
tween adjacent blocks; iii) MPDCompress with quantization and
Huffman coding (M+Q+H), which quantizes the weight matrix com-
pressed by MPDC to 5 bits, then encodes the quantized weights with
the absolute quantization indices, and applies Huffman coding on the
quantized indices; iv) Original fully-connected layer (FC), which is
the comparison basis with no operation performed on the weights; v)
Original fully-connected layer with quantization and Huffman cod-
ing (FC+Q+H), which quantizes the original weights to 5 bits and
then applies Huffman coding on them without pruning any weights.
For fair comparisons, we set all quantization bits qi of MESA to 5
bits according to the suggestions from DeepCompression [21], which
strikes a good balance between the compression rate and accuracy9.
Moreover, MESA and all the baseline approaches are trained to allow
only a tiny accuracy drop as compared to FC, i.e., within 1%, in the
experiments.
Measures. For fair comparisons, the pruning rates (p) for each
model, i.e., the ratio of the number of the remaining weights to that of
the original weights, are set the same as those for threshold pruning
methods. More specifically, For LeNet-5 and AlexNet (ImageNet),
we set the pruning rates according to those reported in DeepCom-
pression [21]. For VGG16 (C10), VGG16 (C100), C-CNN (AG), C-
CNN(DB), and AlexNet, we set the pruning rates such that Deep-
Compression [21] has its accuracy loss within 1% compared to the
original uncompressed models (our proposed approach also has ac-
curacy loss within 1%). Moreover, Average bits (avg. bits) denotes
the model size (in bits) divided by the total number of unpruned
weights, which shows how many bits are needed for the informa-
tion of each unpruned weight (including the pointers to locate the
weights if any). Compression Rate (CP Rate) measures the overall
performance of the compression algorithms. Similar to most works
in neural network compression [27, 2], our algorithm and the com-
pared baselines only compress the weights in the fully-connected lay-
ers. Therefore, the compression rate is calculated as the memory size
of the original weights in the fully-connected layers, divided by the
memory size of the compressed fully-connected layers generated by
the compression algorithm (including the codebook size if any). A
larger compression rate indicates a better performance for the algo-
rithm.

The experiments are conducted with Pytorch 0.4.1 framework.
The models are trained on a server equipped with a 3.60 GHz In-
tel Core i7-7700 CPU, a GeForce RTX 2080Ti, and 64 GB RAM.
The default α (hyper-parameter for penalty) is 0.1.

5.1 Compression Rates
Fig. 3 compares the compression rates of the proposed MESA with
other baselines, while the corresponding accuracy of each approach

9 It is possible to set different quantization bits for different fully-connected
layers, which can be viewed as a hyper-parameter optimization problem.
We leave the discussion of this topic in the future work.

Figure 3. Compression rates of different approaches

is listed in Table 2. The compression rates are calculated based on the
weights of the original fully-connected layer (FC) without any com-
pression. MESA significantly outperforms the other baselines on all
the models. Its compression rates range from 135× to 392× due to
the different pruning rates of the models, which vary significantly ac-
cording to the redundancy of each model. For example, VGG16 and
AlexNet do not have any accuracy drop when keeping only 12.5%
(8× compression) and 10% (10× compression) of weights, respec-
tively. For C-CNN on both datasets, the fully-connected layers can
be pruned to keep only 6.5% (16× compression) of weights while
retaining the same accuracy.

We further analyze the compression rates of MESA contributed
by different steps. First, after performing steps 2-4 of MESA, the
delta-coding on the difference-minimized blocks along with the sub-
sequent Huffman coding introduces the extra 2.1×, 2.3×, 3.1×,
3.65×, 3.06×, 3.8×, and 3.7× compression rates on AlexNet,
AlexNet (ImageNet), LeNet-5, VGG16 (C10), VGG16 (C100), C-
CNN (AG), and C-CNN (DB), respectively. Please note that Huff-
man coding achieves only about 1.5× compression rate in other
baselines, which indicates that our idea of delta-coding on the blocks
with minimized block-wise differences indeed facilitates the perfor-
mance of Huffman coding.

On the other hand, MPDC, which constructs block diagonal struc-
ture by permutation, shows low (8× to 16×) compression rates be-
cause the block diagonal structure of MPDC is mainly used to improve
the efficiency of matrix multiplication instead of generating blocks
with minimized block-wise differences. To understand how quanti-
zation and Huffman coding can enhance MPDC, we also present the
results of M+Q+H, which show a significant improvement on the com-
pression rates (75× to 132×) compared to MPDC. However, without
minimizing block-wise differences on the block diagonal structure,
the compression rates are still much inferior to those of MESA.
FC+Q+H is compared to show the performance of quantization

and Huffman coding, which has only 7× to 9× compression rates,
where 6.4× of compression rate is contributed by quantization. Since
the weight matrices are neither pruned nor rearranged to optimize the
performance of Huffman coding, Huffman coding contributes a very
limited compression rate, from 1.09× to 1.4×. Finally, DeepC, one
of the state-of-the-art compression algorithm, achieves 36× to 64×
compression rates. The pruning and its CSR (or CSC) format effec-
tively reduce the model sizes. However, since i) CSR (or CSC) for-
mats require additional information to locate the non-zero weights,
and ii) DeepC does not jointly consider the pruning and quantiza-
tion for optimizing the compression rate of Huffman coding, there is
a large gap between DeepC and MESA on the compression rates.
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Table 2. Accuracy of different approaches

FC FC+Q+H DeepC MPDC M+Q+H MESA
LeNet-5 99.34 99.28 99.29 99.08 99.03 99.04

VGG16 (C10) 91.32 91.40 91.44 91.14 90.53 91.14
VGG16 (C100) 71.40 72.33 72.57 71.84 71.91 71.46

AlexNet 52.68 52.77 54.04 53.69 53.83 53.47
AlexNet (ImageNet) 77.12 76.51 77.58 76.38 76.27 76.55

C-CNN (AG) 86.61 86.68 86.76 86.51 87.22 87.21
C-CNN (DB) 97.84 97.90 97.94 97.92 98.05 97.92

5.2 Layer-wise Statistics of Different Models

Table 3. Layer-wise average bits in LeNet-5

Size p DeepC M+Q+H MESA MESA
Avg.
bits

Avg. bits Avg.
bits

CP
Rate

fc1 1.52MB 10% 7.6 4.2 2.3 138×
fc2 19.53KB 10% 14.2 6 6.7 47×
total 1.54MB 10% 7.7 3.1 2.3 135×

LeNet-5 on MNIST. In the following, Size represents the orig-
inal size of the 32-bit float representation of the weights in fully-
connected layers. For LeNet-5, as shown in Table 2, MESA achieves
the accuracy of 99.04% with a slight accuracy drop compared to the
original FC with 99.34% accuracy. Table 3 presents the average bits
for each approach. MESA outperforms the other baselines in average
bits. In fc1 (the first fully-connected layer), DeepC requires 7.6 av-
erage bits because additional bits are required to locate the non-zero
weights in the sparse matrix. While M+Q+H lowers the average bits
to 4.2 bits, it still consumes nearly twice memory compared to MESA
(2.3 bits).

One may observe that the average bits for fc2 (the second fully-
connected layer) are high for all the algorithms. This is a special case
where the fully-connected layer after pruning becomes too small, and
the codebook overhead dominates the representation. For example, in
fc2, the codebook consumes 103 Bytes, but only 29 Bytes are needed
to represent the weights by MESA. Even so, MESA still achieves a
47× compression rate in fc2.

Table 4. Layer-wise average bits in C-CNN (AG)

Size p DeepC M+Q+H MESA MESA
Avg.
bits

Avg. bits Avg.
bits

CP
Rate

fc1 34MB 6.25% 7.9 3.9 1.3 401×
fc2 4MB 6.25% 8.9 4.1 1.5 341×
fc3 16KB 25% 9.8 5.3 4.2 31×
total 38.01MB 6.28% 8 3.95 1.3 392×

C-CNN on AG’s news. Table 4 compares the results of MESA and
other baselines for text classification tasks. We observe that the layer-
wise pruning rates for the first two fully-connected layers, i.e., p1, p2,
for C-CNN can be set to 6.25% without an accuracy drop. This indi-
cates that the weights for fc1 and fc2 in C-CNN have a much higher
redundancy on AG’s News compared to other models. One major
advantage of MESA is that even the baseline compression methods

Figure 4. Inference speed-up of different approaches

reach their pruning and quantization limits, weight distribution ad-
justment (in step 2 of the algorithm) by MESA still provides extra
compression. The block-wise delta coding between adjacent blocks
provides over 3× memory size reduction compared to M+Q+H. All
together, C-CNN compressed by MESA requires only around 1.3 bits
for each non-zero weight, and the compression rate can be as high as
392× for AG’s news.

Table 5. Layer-wise average bits in C-CNN (DB)

Size p DeepC M+Q+H MESA MESA
Avg.
bits

Avg. bits Avg.
bits

CP
Rate

fc1 34MB 6.25% 8.0 3.9 1.3 396×
fc2 4MB 6.25% 9.2 4.0 1.4 361×
fc3 56KB 50% 4.7 1.8 2.3 28×
total 38.05MB 6.38% 8.1 3.8 1.3 386×

C-CNN on DBPedia. For C-CNN on DBPedia, the average bits
for non-zero weights in fc3 of MESA is slightly larger than M+Q+H.
This is because when our Loss of Distance Penalty (LDP ) minimizes
the distances, it may sometimes sacrifice the compression rate of the
much-smaller fully-connected layers in order to reduce the accuracy
loss. However, this does not affect the performance of the overall
compression rate for MESA. The overall average bits for model com-
pressed by MESA is still around 3× smaller than M+Q+H and 6.2×
smaller than DeepC. For the layer-wise average bits of VGG16 and
AlexNet, they show similar trends to the models described above
where MESA outperforms all other baselines significantly. We omit
the results due to their similarity trends.

In summary, the results on NLP datasets (C-CNN on AG’s News
and DBPedia) are better than those on image datasets (CIFAR-10 and
CIFAR-100) since visual features are more complicated than sen-
tence embeddings, and it is thus more effective to diagonalize the
weight matrix of the NN for extracting features from NLP datasets.

5.3 Inference Speed-up on GPU
As mentioned earlier, the block diagonal structure can also improve
the efficiency of model inference. To validate this claim, we present
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(a) LeNet-5 (b) VGG16 (C10)

Figure 5. Penalty evaluation

the inference time of the models compressed by MESA and other
baseline approaches. Here, speed-up represents the ratio of the in-
ference time of the original uncompressed model (FC) to the infer-
ence time of the model compressed by a certain approach. A larger
speed-up value indicates a smaller inference time compared to the
uncompressed model, i.e., FC. The inference time of each model is
calculated on a single GeForce RTX 2080Ti with CUDA 10.0. We
employ cuBLAS GEMV kernel on the dense layers in FC and each
dense blocks in MPDC and MESA. For DeepC, each sparse layer is
stored in CSR format and cuSPARSE CSRMV kernel is used for
general unstructured matrix operations in CSR format10.

Fig. 4 shows that the speed-up of MESA outperforms the other
baselines, i.e., the average speed-up of MESA, DeepC, and MPDC
are 4.08×, 2.97×, and 3.28×, respectively. The speed-up of MESA
is around 26% higher than MPDC because the pruned fully-connected
layers of MESA are originally trained with block diagonal structure
and do not require inverse matrix permutations to reconstruct the out-
put, which allows a better scheduling and memory organization. Yet,
MPDC still shows 10% better speed-up results compared to DeepC
because the latency of inverse permutations is minor compared to the
reduced time of model inference with block diagonal structure.

5.4 Penalty Evaluation

To understand the impact of α, i.e., the hyper-parameter controlling
the trade-off between the accuracy and compression rate, we present
the compression rates of MESA with different α values on LeNet-5
and VGG16 (C10). Fig. 5 shows that the compression rates increase
significantly without obvious accuracy drops as α increases. With a
larger α, the weights in adjacent blocks are easily to be quantized
into the same index, and the weight distribution after delta-coding
can thus become more skew with a lower entropy. Table 6 shows
the entropy of the delta-coded weight distribution for LeNet-5 and
VGG16 (C10). For LeNet-5, when α equals to 1, the entropy values
of fc1 and fc2 decrease from 4.86 and 4.97 to 2 and 3.42, respec-
tively (LeNet-5 has only two fc layers). Please note that α controls
the trade-off and cannot be set too large. For example, setting α = 10
for LeNet-5 and VGG16 (C10) results in an accuracy drop of more
than 1%. Fig. 5(b) shows that in VGG16 on CIFAR-10, MESA works
well with a small penalty, i.e., α = 0.001, while the model accu-
racy retains (original model accuracy: 91.32%). When α becomes
larger, the compression rate of MESA, although outperforming other
baselines as shown in Fig. 3, does not improve significantly. After
a careful examination, we find that 98% of the delta-coded weight

10 Please note that CUDA libraries do not support the indirect lookup for
the quantized models. Therefore, we present the comparison results on the
compressed model without quantization.

indices are 0 when α = 0.001, resulting in a very low entropy value
for its distribution, as shown in Table 6. Therefore, a larger α value
does not significantly improve the compression rate.

Table 6. Layer-wise data entropy on LeNet-5 and VGG16

LeNete-5 VGG16 (C10)
Orig.
index

Delta-coded index Orig.
index

Delta-coded index
α=0.01 α=0.1 α=1.0 α=0.001 α=0.01 α=1.0

fc1 4.86 4.58 3.39 2.00 2.94 0.2 0.07 0.1
fc2 4.97 4.91 4.85 3.42 2.81 0.08 0.03 0.08
fc3 N/A N/A N/A N/A 3.35 2.22 0.95 0.21

6 Conclusion and Future Work
In this paper, we propose the COMIS problem to consider the block-
wise differences in block diagonal structure for NN model com-
pression. We devise algorithm MESA, which effectively prunes the
weights into a block diagonal structure and minimizes the block-
wise differences to boost the compression rate. Experiments show
that MESA achieves up to 392× compression rates, tripling those
of the state-of-the-art approaches, while significantly improving the
inference efficiency. In the future, we plan to explore the ideas of
i) fully leveraging the block-diagonal structure to reduce the mem-
ory access on ASIC, ii) learning to adaptively adjust the prun-
ing rates/quantization bits for each layer of different models, and
iii) proposing/experimenting different penalty functions for different
models/datasets.
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