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Abstract. We propose a new paradigm for reasoning over abstract
argumentation frameworks where the trustworthiness of the agents is
taken into account. In particular, we study the problems of comput-
ing the minimum trust degree τ∗ such that, if we discard the argu-
ments said only by agents whose trust degree is not greater than τ∗,
a given set of arguments S (resp., argument a), that is not necessar-
ily an extension (resp., (credulously) accepted) over the original ar-
gumentation framework, becomes an extension (resp., (credulously)
accepted). Solving these problems helps reason on how the robust-
ness of sets of arguments and single arguments depends on what is
considered trustworthy or not. We thoroughly characterize the com-
putational complexity of the considered problems, along with some
variants where a different aggregation mechanism is used to decide
the arguments to discard.

1 INTRODUCTION
Since their introduction [16], Abstract Argumentation Frameworks
(AAFs) have been a popular paradigm for reasoning on disputes be-
tween agents. An AAF models a dispute in terms of a directed graph,
whose nodes are the arguments proposed by the agents participating
the dispute, and whose edges represent attack relationships: an at-
tack from an argument a to an argument b represents the fact that a
undercuts/rebuts/undermines b. AAFs are used to reason on sets of
arguments and/or single arguments to decide whether they are “ro-
bust”. In particular, over a given AAF F , two fundamental problems
have been studied in the literature:

– VER(F, S): Is the set of arguments S an “extension” of F (i.e., a
set of arguments that can be considered “robust”)?

– ACC(F, a): Is a a “(credulously) accepted” argument of F (i.e.,
does a belong to some extension of F )?

Herein, in order to decide on the “robustness” of a set of argu-
ments, different semantics have been introduced, such as admissible,
preferred, etc. For instance, a set S is an admissible extension if it is
“conflict-free” (i.e., there is no attack between arguments in S), and
every argument attacking arguments in S is counterattacked by an
argument in S.

In order to make AAFs suitable for modeling disputes in scenarios
with different characteristics, several variants have been proposed. In
particular, Weighted AAFs are a variant of AAFs where the arguments
and/or the attacks can be associated with weights. In this paper, we
introduce Trust-aware AAFs (T-AAFs), a form of weighted AAFs
where the weights are assigned to arguments and are representative
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of the trustworthiness of the agents who propose the arguments. The
following example is inspired by the scenario of an e-commerce site
whose customers share their reviews, where T-AAFs find a natural
application.

Example 1 Ann, Mary, Carl and John are reviewing a notebook.
Their reviews contain the following six arguments:
a=‘Since it contains up-to-date components, it is expensive’
b=‘Nowadays, it is easy to find cheap up-to-date components. There-
fore, that aspect does not imply the price.’
c=‘Since its brand is not high quality, it does not contain up-to-date
components’
d=‘Since its battery is lightweight, it is lightweight overall’
e=‘It is heavy’
f=‘The battery is very heavy’.
Figure 1 shows the corresponding argumentation graph, properly
augmented to highlight who-claims-what (for instance, a and d are
claimed by Mary, and e is claimed by both Ann and Carl). The num-
bers in brackets represent the trustworthiness scores, on a scale of 1
to 10, assigned to the agents on the basis of their past reviews.

As a matter of fact, reasoning on reviews (as in the scenario of the
above example) is a hot topic attracting the interest of the research
community [28, 35], owing to the popularity of commercial sites.
Herein, the customers who publish their comments/reviews are often
associated with reputation scores measuring their trustworthiness. In
this context, reasoning on extensions is useful, since the fact that a
set of arguments is an extension means that it provides a reasonable
summary of the main features and critical aspects of the reviewed ob-
ject. Analogously, reasoning on the acceptance of an argument helps
understand if it can be reasonably considered representative of the
object. Now, in the T-AAF F of Example 1, argument a does not
belong to any extension. However, a is proposed by Mary, who has a
high trust degree. Thus, the analyst can benefit from knowing that, al-
though a is not accepted, it becomes accepted in the AAF F τ (with
τ = 2) obtained from F by discarding what said only by agents
whose trust degree is ≤ τ . This means that the analyst can choose
now to consider a a robust argument, given that F τ does not contain
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Figure 1: A T-AAF F , where the agents are assigned a trust degree
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what said by agents with “low” trust degrees (we recall that we are
in a scale from 1 to 10). Analogously, even if S = {a, f} is not an
(admissible) extension in F , it can be somehow considered a reason-
able summary of the reviews, since it is an extension over the same
F τ . In general, denoting as “τ -extension” (resp., “τ -accepted”) a set
(resp., an argument) that is an extension (resp., accepted) over F τ ,
the following two problems over a T-AAF F are of interest to the
analyst:

– MIN-TVERσ(F, S): What is the minimum trust degree τ such that
the set S is a τ -extension over F ?

– MIN-TACCσ(F, a): What is the minimum trust degree τ such that
the argument a is τ -accepted over F ?

The rationale of searching for the minimum trust degree τ such that
S is an extension (or a accepted) in F τ is twofold. On the one hand,
we aim at preserving as many as possible agents participating the
dispute; on the other hand, we aim at understanding if discarding
what said by some agents makes S an extension (or a accepted).
In particular, the removal of agents is done by discarding them
in ascending order of trust degree (so that less trustworthy agents
are “sacrified” before), and in a “fair” manner: when an agent u is
discarded, all the agents whose trustworthiness is equal to or less
than u are discarded too.

Contribution. These points summarize our contribution:

– We characterize the complexity of MIN-TVERσ(F, S) and MIN-
TACCσ(F, a) in terms of both upper and lower bounds. Since they
are functional problems, we describe the complexity in terms of
classes suitable for functional problems (such as FP and FPC),
that are briefly reviewed in the last paragraph of Section 2. We
also address the decisional counterparts TVERσ(F, S, τ∗) and
TACCσ(F, a, τ∗), and discuss their practical relevance. A synop-
sis of the results is reported in Table 1;

– We consider two variants of MIN-TVERσ(F, S) and MIN-
TACCσ(F, a) where the threshold-based reasoning is replaced by
a different mechanism for discarding agents/arguments from the
dispute (based on the sum of the trust degrees of the discarded
agents). We discuss the impact of these changes on the complex-
ity and their relationship with the literature of weighted AAFs.

σ
VERσ ACCσ

MIN-TVERσ MIN-TACCσand and
TVERσ TACCσ

ad,st,co P NP-c FP FPNP [logn]-c
gr P P FP FP
pr coNP-c NP-c FPNP [logn]-c FPNP [logn]-c

Table 1: Summary of the computational complexities

2 PRELIMINARIES
Abstract Argumentation Framework [16]. An Abstract Argumen-
tation Framework (AAF) F is a pair 〈A,D〉, where A is a fi-
nite and non-empty set, whose elements are called arguments, and
D ⊆ A × A is a binary relation over A, whose elements are called
attacks. The graph having A and D as set of nodes and edges, re-
spectively, is called argumentation graph of F . Given a, b ∈ A, we
say that a attacks b iff (a, b) ∈ D. A set S ⊆ A attacks an argument
b ∈ A iff there is a ∈ S that attacks b. An argument a attacks S iff
∃b ∈ S attacked by a.

A set S ⊆ A of arguments is said to be conflict-free if there
are no a, b ∈ S such that a attacks b. An argument a is said to be
acceptable w.r.t. S ⊆ A iff ∀b ∈ A such that b attacks a, there is
c ∈ S such that c attacks b.

Extension. An extension is a set of arguments that is considered “rea-
sonable” according to some semantics. In particular, we consider the
following semantics from the literature:

– admissible (ad): S is an admissible extension iff S is conflict-free
and its arguments are acceptable w.r.t. S;

– stable (st): S is a stable extension iff S is conflict-free and S at-
tacks each argument in A \ S;

– complete (co): S is a complete extension iff S is admissible and
every argument acceptable w.r.t. S is in S;

– grounded (gr): S is a grounded extension iff S is a minimal (w.r.t.
⊆) complete set of arguments;

– preferred (pr): S is a preferred extension iff S is a maximal (w.r.t.
⊆) complete set of arguments.

Accepted arguments. An argument a is (credulously) accepted
under a semantics σ iff a belongs to some σ extension of F . In
some sense, checking the acceptability of an argument is a way
of deciding whether a represents a robust point of view in the
discussion modeled by F .

Classical problems: VER and ACC. Given an AAF F , a semantics
σ, a set of arguments S and an argument a, the fundamental
problems of verifying whether S is a σ extension and whether a is
(credulously) accepted (under σ) will be denoted as VERσ(F, S)
and ACCσ(F, a), respectively. These problems have been widely
studied in the literature, and their complexity is reported in Ta-
ble 1 [19, 14, 17, 10].

Functional complexity classes. Most of the results stated in the pa-
per refer to functional complexity classes, that are more suitable
for characterizing the complexity of MIN-TVERσ(F, S) and MIN-
TACCσ(F, a), since they are intrinsically functional problems.
FP is the class of the functional problems that can be solved by

a deterministic Turing machine in polynomial time (w.r.t. the size
of the input of the problem). Basically, while the Turing machines
behind the problems in P return a binary result, those behind FP re-
turn string of bits. In this paper, we in particular deal with the classes
FP ||C and FP C[logn], where C is a decisional complexity class (such
as NP or Σ2

p). Specifically, FP ||C is the class of functions com-
putable by a polynomial-time Turing machine with calls to an oracle
for the class C, where the calls are “non-adaptive” (this is equiva-
lent to saying that the oracle invocations can take place in parallel).
The meaning of “call to an oracle for C” is that the computation
performed by the oracle is considered as it requires constant time
(thus, calling the oracle produces no computational overhead w.r.t.
the complexity of the machine that performs the call). Analogously,
FP C[logn] is the class of the function problems that can be solved by
a deterministic Turing machine in polynomial time, where at most
logn adaptive queries can be posed to an oracle for the class C.

3 TRUST-AWARE AAFs

We here introduce an extension of AAFs that takes into account the
trustworthiness of the agents who propose the arguments. This exten-
sion is a form of weighted AAF: specifically, we associate the weights
to the arguments and the semantics of weights is that they represent
trust degrees.
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Let F = 〈A,D〉 be an AAF and U the set of agents proposing
the arguments in A. The association between agents and arguments
is modeled by the function ω : U → 2A, returning, for each agent u,
the set of arguments proposed by u. We assume that every argument
is proposed by at least one agent, and the same argument can be
proposed by several agents. The set of agents proposing an argument
a is denoted as ω−1(a).

We assume the presence of an agent trust function τU assigning
to each agent u ∈ U a trust degree τU (u), i.e., a positive integer
providing a measure of how trustworthy u is considered. τU can
be used to derive an assignment of trust values to the arguments. In
fact, since a measure of the trustworthiness of an argument a should
take into account how much trust can be put on the premises of a
and the consequentiality of its claim from these premises, it is rea-
sonable to derive a trust degree of a from the trust degrees of the
agents who propose a. In this regard, we model the trustworthiness
of arguments with the argument trust function TU,ω,τ

U

(or, more
simply, T ) assigning to each argument a the positive integer equal
to the maximum trust degree of the agents that propose a 3, i.e.,
T (a)= maxu∈ω−1(a) τ

U (u).
For the sake of simplicity, and without loss of generality, from now

on we will only implicitly consider the set of users U and the func-
tions ω and τU , and we will explicitly consider only the argument
trust function T implied by them.

Given an abstract argumentation framework 〈A,D〉 and an argu-
ment trust function T over A, we call the triple F = 〈A,D, T 〉 a
Trust-aware Abstract Argumentation Framework (T-AAF). We de-
note as T (F ) the set of distinct trust degrees of F ’s arguments aug-
mented with 0.

Example 2 (Continuing Example 1 - Fig. 1) From the users’ trust
degrees, we have T (e) = max(τU (Ann), τU (Carl)) = 2, T (a) =
T (d) = 8, T (c) = 2, T (b) = 1, T (f) = 9. Moreover, we have:
T (F ) = {0, 1, 2, 8, 9}.

τ -restrictions, τ -extensions and τ -accepted arguments. Let F =
〈A,D, T 〉 be a T-AAF, τ a trust value, and σ a semantics. We de-
fine the τ -restriction of F the T-AAF F τ = 〈A′, D′, T ′〉 where
A′ = {a| a ∈ A ∧ T (a) > τ}, D′ = D ∩ (A′ × A′), and T ′ is the
restriction of T over A′. That is, F τ is the T-AAF consisting of all
and only the arguments of F with trust greater than τ and of all and
only the attacks in F between these arguments. Basically, consider-
ing the τ -restriction of F means considering τ as a threshold, and
then taking into account only what said by the agents whose trust
degree is greater than τ , while discarding what said only by agents
whose trust degree is ≤ τ . Observe that F τ =F when τ = 0, since
the trust function assigns only positive values.

We now introduce the natural generalization of the classical no-
tions of extension and accepted argument (reviewed in Section 2) to
the case of T-AAFs. Given a T-AAF F and a trust degree τ , we define
“τ -extension of F ” (shorthand for “trusted extension with trust level
τ”) under the semantics σ any set of arguments that is an extension
of F τ under σ. Basically, a τ -extension for F is a set of arguments
that meets the conditions of the semantics σ when discarding the ar-
guments proposed by agents whose trust degree is ≤ τ . In turn, an
argument a of F is said to be “τ -accepted” (shorthand for “trust-
ingly accepted with trust level τ”) under σ if a belongs to at least

3 The framework is orthogonal to the aggregation trust function. Switching
to another aggregate operator (such as sum, avg) would merely change the
trust degrees of the arguments in the T-AAF. Hence, the complexity results
presented in the paper remain valid.

one τ -extension under σ. The rationale of τ -acceptance is analogous
to τ -extension: An argument a may not be accepted in the classi-
cal sense, but it can still be τ -accepted for some τ , meaning that a
turns out to be a “robust” argument when discarding what said by
users not sufficiently trustworthy (w.r.t. the threshold τ ). The reason
is that the removal of arguments (and the consequent removal of the
attacks involving the removed arguments) can change the number of
extensions and their composition.

Example 3 (Continuing examples 1, 2) Under σ = ad, {c, f} is
a τ -extension even with τ = 0, while {a, f} is a τ -extension for
τ = 2 but not for lower degrees in T (F ). Under all the considered
semantics, there is no τ ∈ T (F ) such that d is τ -accepted, while a
is τ -accepted for τ = 2, but not for any lower τ ∈ T (F ).

4 PROBLEM STATEMENT
We consider the following problems over a given T-AAF F and un-
der a semantics σ:

– MIN-TVERσ(F, S): Given a set S of arguments of F , what is the
minimum trust degree τ in T (F ) (if exists) such that S is a τ -
extension of F under σ?

– MIN-TACCσ(F, a): Given an argument a of F , what is the minimum
trust degree τ in T (F ) (if exists) such that a is τ -accepted under
σ?

The rationale behind these problems is this. Minimizing the value of
τ required to make S a τ -extension and a τ -accepted aims at discard-
ing as few agents as possible from the dispute. This way, we try to
preserve as much as possible what the agents said, and whenever we
discard some agent, we do this consistently with the trust degrees (as
users are discarded in ascending order of their trust degree). Given
this, the output τ∗ of MIN-TVER and MIN-TACC can help reason on
the dispute in the following sense. If τ∗ is “low”, it means that only
users with low trust degree must be discarded to certify the robust-
ness of S and a: hence, even if S is not an extension and a is not
accepted in the traditional sense, they can be reasonably considered
as robust, since, in some sense, the culprit of them being not robust is
what said by agents with low trust degree. Vice versa, if the returned
τ∗ is “high”, it means that things said by trustworthy agents must be
discarded in order to make S an extension and a accepted, thus it
may be risky to consider them “robust”.

Example 4 From the discussion in Example 3 regarding the set
{c, f} and the argument a, it follows that MIN-TVERad(F, {c, f}) =
0 and MIN-TACCad(F, a) = 2.

MIN-TVER and MIN-TACC are the natural optimization counter-
parts of the following decision problems over a given T-AAF F and
under a semantics σ:

– TVERσ(F, S, τ∗): Is S a τ -extension of F under σ for some τ ≤
τ∗?

– TACCσ(F, a, τ∗): Is a τ -accepted for F under σ for some τ ≤ τ∗?
We will address these problems in the preliminary phase of the

study of the complexity of MIN-TVER and MIN-TACC, since the
complexity characterization of the optimization counterparts is
simplified by the knowledge of the complexity of the decisional
counterparts. However, TVER and TACC are of independent interest,
and an example of their practical relevance is the scenario where an
analyst wants to reason on the dispute by examining what happens
when a fixed trust degree is used as threshold. This happens when
the analyst has in mind some trust degree τ∗ above which s/he has a
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strong motivation for considering the agents trustworthy, while s/he
has no strong motivation for considering the agents ranked below
τ∗ trustworthy or not. For instance, τ∗ can be the trust degree of an
agent that the analyst considers trustworthy for personal knowledge.

Remark: on the non-monotone behavior w.r.t. the trust degrees
used as thresholds for cutting arguments. It is worth noting that,
by definition, the result τ∗ of an instance of MIN-TVERσ(F, S) has
the property that S is an extension over F τ

∗
but not over any F τ

with τ ∈ [0..τ∗). However, this does not imply that any trust de-
gree τ higher than τ∗ still warrants that S is an extension over F τ .
The analogous behavior can be observed when reasoning on MIN-
TACCσ(F, a). This derives from the fact that increasing the trust
threshold not only discards attacks, but also defenses, thus it is rea-
sonable that an argument may move from “accepted” to “not ac-
cepted” (and vice versa) after increasing the trust threshold. In this
setting, the reason for specifically searching for the minimum trust
threshold is that the goal of making S an extension or a accepted
is pursued under the requirement of taking into account as much as
possible what was claimed by the agents (coherently with their trust
degrees). However, if the analyst is not satisfied with this kind of
analysis, as s/he wants to get a more precise and complete picture of
the trust intervals wherein S is or is not an extension (or a is or is
not accepted), the problems studied in the paper are still of practical
relevance. In fact, the characterization of these trust intervals can be
obtained by iteratively invoking a solver for MIN-TVERσ(F, S) (or
MIN-TACCσ(F, a)) according to this scheme:
1) The first invocation of the solver is over the T-AAF F 0 = F ;
2) Then, at each of the following iterations, the solver is invoked
over the T-AAF F τ , where τ is the next value in T (F ) not already
considered and greater than the threshold τi returned by the previous
invocation.
The sequence of the solutions of these invocations can be straightfor-
wardly used to re-construct the intervals containing the trust degrees
for which S is (or is not) a τ -extension.

5 COMPLEXITY CHARACTERIZATION
We start by addressing the decisional variants TVERσ(F, S, τ∗) and
TACCσ(F, a, τ∗). Due to space limitations, the proof of Theorem 4
is sketched. The practical relevance of the results of our complexity
analysis is discussed in Section 8.

Theorem 1 TVERσ(F, S, τ∗) is in P for σ ∈ {ad, co, st, gr} and is
coNP -complete for σ = pr.

Proof. Let {τ1, . . . , τx} = {τ ∈ T (F ) | τ ≤ τ∗}. The case σ 6= pr
is trivial: TVERσ(F, S, τ∗) can be decided by iteratively invoking an
algorithm solving VERσ(F τi , S) (that is inP , as reported in Table 1),
where τi ranges over {τ1, . . . , τx}.

The statement TVERpr(F, S, τ∗)∈ coNP follows from the fact that
a polynomial size witness for the answer “false” consists of x super-
sets S1, . . . , Sx of S witnessing that S is not maximally admissible
in F τ1 , . . . , F τx , respectively. The hardness for TVERpr(F, S, τ∗)
is implied by the reducibility from VERpr (that is coNP-complete). 2

With similar arguments exploiting the fact that the counterpart
ACCσ(F, a) is NP -complete (under all the considered semantics),
the following theorem regarding TACCσ(F, a, τ∗) can be easily
proved.

Theorem 2 TACCσ(F, a, τ∗) is NP -complete for every σ ∈
{ad, co, st, pr} and is in FP for σ = gr.

Proof. The membership to P for σ = gr straightforwardly follows
from the fact that ACCσ(F, a) is in P for σ = gr. For σ ∈ {ad, st},
the membership to NP derives from the correctness of the guess-
and-check strategy consisting of the following steps:
i) guess a value τ ′ ≤ τ∗;
ii) compute F τ

′
;

iii) guess a subset S of the arguments in F τ
′

containing a;
iv) check whether S is an admissible extension for F τ

′
(if σ = ad)

or S is a stable extension (if σ = st).
Obviously, the computational steps can be done in polynomial time.
In particular, for step iv, this derives from the fact that VERad(F, S)
and VERst(F, S) are in P . Finally, for σ ∈ {co, pr}, the NP -
membership follows from the fact that the acceptability problem un-
der these semantics is equivalent to the case σ = ad.

The hardness trivially follows from the reducibility from
ACCσ(F, a). 2

We now focus on MIN-TVERσ(F, S) and MIN-TACCσ(F, a). We
first present a construction that encodes any 3-CNF φ into an AAF
Fφ and that will be used in the proofs of the main results.

Definition 1 (Fφ) Let φ = C1 ∧ C2 ∧ . . . Ck be a 3-CNF formula
over the set X = {x1, . . . , xn} of propositional variables. Let every
clause Ci be of the form Ci = l1i ∨ l2i ∨ l3i , where each lui is a literal
of the form xj or ¬xj . We define Fφ as the AAF 〈A,D〉 where:
• A consists of: (i) two arguments xj and ¬xj for each proposi-

tional variable xj ∈ X; (ii) an argument ci for each clause Ci in
φ; (iii) the two arguments φ and ψ;

• D contains, for each clause Ci, (i) an attack δφi = (ci, φ); (ii)
an attack δψi = (ψ, ci); (iii) for each literal lui in Ci, either the
attack δui = (xj , ci) or δui = (¬xj , ci), depending on whether
lui = xj or lui = ¬xj , respectively. Moreover, D contains, for
each xj in X , the four attacks δ1j = (ψ, xj), δ2j = (ψ,¬xj),
δ3j = (xj ,¬xj), δ4j = (¬xj , xj). Finally, D contains the attack
δφ = (φ, ψ).

Example 5 Consider the 3−CNF formula φ = (x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨x2 ∨¬x3)∧ (¬x1 ∨¬x2)∧ (¬x2 ∨x3)∧ (¬x2 ∨¬x3). The
corresponding Fφ is depicted in Figure 2.

Lemma 1 states the relationship between the satisfiability of φ and
the non-emptiness of the preferred extensions of Fφ.

Lemma 1 ∅ is a preferred extension in Fφ iff there is no truth as-
signment for x1, . . . , xn satisfying φ.

c3c1

x1 x1 x2 x2

c2

�

�

x3 x3

c4 c5

Figure 2: The AAF Fφ corresponding to φ = (x1∨x2∨x3)∧(¬x1∨
x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3).
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Proof. (⇒) We reason by contradiction. Assume that there is a truth
assignment t making φ evaluate to true. We build the set L of n
arguments, one for each variable in X , such that xm ∈ L iff t(xm)=
true, otherwise ¬xm ∈ L, for each xm ∈ X . The conflict-freeness
of L follows from the fact that, for each variable, we put in L either
xm or ¬xm. Since t makes φ evaluate to true, for each clause ci
we can find at least one variable xj ∈ X for which the truth value
assigned to xj by t makes ci evaluate to true. This, in turn, means
that L defends φ from every attack from c1, . . . , ck. Since φ attacks
ψ, the set L is defended from the attacks from ψ, thus the set L ∪
{φ} is an admissible extension, and it is also a preferred extension,
since no other argument is acceptable in it. Thus, ∅ is not a preferred
extension.
(⇐) We now show that, if there is no truth assignment t for
x1, . . . , xn making φ evaluate to true, no admissible extension differ-
ent from ∅ exists in Fφ. Since no satisfying truth assignment exists,
there is no conflict-free set of arguments (composed by arguments of
the form xm or ¬xm) defending φ from the attacks from c1, . . . , ck.
Then, since φ is in conflict also withψ, is not acceptable in any exten-
sion. The arguments of the form xm and ¬xm are not defended from
the attacks from ψ, thus they are not acceptable. Every ci is involved
in attacks from/towards all the other arguments in A \ {c1, . . . , ck},
thus it cannot be acceptable in any extension involving arguments
in A \ {c1, . . . , ck}. Furthermore, {c1, . . . , ck} is not an admissible
extension as the attacks from ψ and from the arguments of the form
xm and ¬xm are not counterattacked. The argument ψ is in conflict
with all the other arguments in A. Thus, in this case, ∅ is the unique
admissible extension, implying that it is also a preferred extension.
2

Example 6 Continuing Example 5, it is easy to see that the
set {x1,¬x2,¬x3, φ} (resp., {¬x1,¬x2, x3, φ}) is an admissi-
ble extension, and it corresponds to the truth assignment t =
x1/true, x2/false, x3/false (resp., t = x1/false, x2/false, x3/true)
that makes φ evaluate to true. In this case, thus, ∅ is not a preferred
extension. Consider now φ′ = φ ∧ (x2). It is easy to see that φ′ is
not satisfiable (since in all the satisfying truth assignments for φ the
variable x2 was false). Hence, ∅ is a preferred extension for Fφ′ .

Before stating the theorems characterizing MIN-TVERσ(F, S) and
MIN-TACCσ(F, a) we characterize the complexity of the problem
COUNT-ORD-INSTANCES, that is used in their proofs. Indeed, in their
proofs, we exploit the FPNP [logn]-completeness of COUNT-ORD-
INSTANCES: “Given a problem P complete for NP or coNP and n
instances I1, . . . , In of P that are ordered so that ∀i ∈ [1..n − 1]
Ii is false⇒ Ii+1 is false, compute how many instances evaluate to
true”. We start by considering its variant COUNT-INSTANCES, that is
the following functional problem: “Given a problem P that is com-
plete forNP or coNP and n instances I1, . . . , In ofP , compute the
number nT of instances that evaluate to true”. The difference from
COUNT-ORD-INSTANCES is that, in the latter, also an ordering crite-
rion on the input instances I1, . . . , In is imposed: ∀i ∈ [1..n − 1]
Ii is false⇒ Ii+1 is false (COUNT-ORD-INSTANCES). We character-
ize the two problems in the case where P is NP-complete (the case
where P is coNP-complete follows straightforwardly). It is easy to
see that COUNT-INSTANCES in FPNP [logn]: the value nT can be ob-
tained by performing a binary search over the interval [1..n], where,
at the generic iteration of the search, we consider an x ∈ [1..n] and
test whether at least x instances evaluate to true. This test can be
done by invoking an NP oracle. In fact, since P is in NP, there is
a polynomial size witness W i for any true instance Ii of P , thus
there is also a polynomial size witness X for testing whether at least

x instances are true: X consists of a set I of x distinct indices in
[1..n] and of the set W containing, for each i ∈ I, the witness
W i. It is straightforward to see that this also shows the member-
ship of COUNT-ORD-INSTANCES to FPNP [logn]. As for the hard-
ness of COUNT-ORD-INSTANCES (which also implies the hardness
of COUNT-INSTANCES), it can be easily proved by showing a re-
duction from MAX-CLIQUE, the FPNP [logn]-complete problem of
computing the maximum size of a clique in a given graph G. In
fact, MAX-CLIQUE can be reduced to the instance COI of COUNT-
ORD-INSTANCES, where the underlying NP problem is CLIQUE (i.e.,
“Given a graph G and an integer K, is there a clique of G with
at least K nodes?”), and the n instances I1, . . . , In are defined as:
∀i ∈ [1..n] Ii is the instance of CLIQUE over the same graph as
MAX-CLIQUE where K = i. It is straightforward to see that this
sequence of instances conforms to the ordering criterion of COUNT-
ORD-INSTANCES (in fact, if G admits no clique with size i, it cannot
contain any clique of size i+1) and that the output ofCOI is exactly
what requested by MAX-CLIQUE.

We now introduce the theorems characterizing MIN-TVERσ(F, S)
and MIN-TACCσ(F, a).

Theorem 3 MIN-TVERσ(F, S) is inFP for σ ∈ {ad, co, st, gr} and
is FPNP [logn]-complete for σ = pr

Proof. For σ = gr we can reason as done in Theorem 1, by try-
ing the trust degrees in T (F ) in ascending order. The same strategy
is correct also for σ ∈ {ad, co, st}, but we here provide, for these
three semantics, more specific polynomial-time strategies, that work
after checking that S is conflict-free (otherwise, MIN-TVERσ(F, S)
has no solution, since there is no way of making S conflict-free by
removing arguments outside S):

– σ = ad: a necessary and sufficient condition for making admissible
a (conflict-free) set S by means of argument removals is removing
from F the set A′ of arguments attacking S without being counter-
attacked by S. The answer of MIN-TVERσ(F, S) can be computed
by evaluating A′ and then computing the maximum trust degree τ ′

of the arguments in A′. If τ ′ is lower than the trust degrees of the
arguments in S, then τ ′ is the answer of MIN-TVERσ(F, S). Other-
wise, it means that removing A′ implies the removal of arguments
in S, thus MIN-TVERσ(F, S) has no solution.

– σ = co: we can reason analogously to the case σ = ad, but now the
set of arguments to be removed is A′ ∪ A′′, where A′ is as above
and A′′ contains the arguments outside S that are acceptable w.r.t.
S. Observe that A′′ must be computed progressively, as removing
acceptable arguments can make other arguments acceptable.

– σ = st: in this case, the arguments to be removed are all those
outside S that are not attacked by S.
Under σ = pr, MIN-TVERpr(F, S) is in FPNP [logn] since it can

be solved by performing a binary search over T (F ), where at each
step a coNP oracle solving an instance of TVERpr is called. As for
the hardness, we show a reduction from COUNT-ORD-INSTANCES.
Let ICOI be an instance of COUNT-ORD-INSTANCES over the in-
stances φ1, . . . , φh of UNSAT over 3-CNFs. We recall that the or-
dering imposed on the UNSAT instances means that ∀i ∈ [1..h − 1]
if φi is false (i.e., the formula in φi is satisfiable) then φi+1 is
false too. For each φi we construct an AAF Fφi = 〈Ai, Di〉 as
in Definition 1. We assume that a suitable renaming is performed
to distinguish the arguments in each Fφi from the others. We define
the T-AAF F = 〈A,D, T 〉 where: A = {s} ∪ A1 ∪ . . . ∪ Ah,
D = D1 ∪ . . .∪Dh, and T assigns h+ 1 to s and h+ 1− i to each
argument belonging to Ai, for every i ∈ [1..h].
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Let Imin be the instance of MIN-TVERpr(F, S) with S = {s}.
We show that Imin returns h−i iff ICOI returns i.

(⇒) Given that ICOI returns i, we take τ = h− i and consider
F τ . It is easy to see that F τ is the restriction of F whose set of
arguments consists of s along with the arguments of each Fφj with
j ∈ [1..i]. Lemma 1 states that, for any j, if φj is unsatisfiable
then ∅ is the unique preferred extension in Fφj . Hence, since
Fφ1 , . . . , Fφi have no arguments/attacks in common, and since s
in involved in no attack, it is easy to see that the fact that every
φj is unsatisfiable (for j ∈ [1..i]) implies that {s} is the unique
preferred extension in F τ . Furthermore, since ICOI returns i, for
every l ∈ [i+1..h] φl is satisfiable and thus Fφl admits a non-empty
preferred extension (owing to Lemma 1). This means that {s} is not
a preferred extension in F τ

′
for any τ ′ ≤ h− i−1. Thus, τ = h− i

is the minimum trust degree making {s} a τ -extension under σ = pr.

(⇐) Since Imin returns τ = h− i, the set {s} is a preferred ex-
tension for F τ , and this, along with the fact that s is involved in
no attack, implies that there is no other admissible extension in F τ .
This means that ∅ is the unique admissible extension in every Fφj ,
with j ∈ [1..i]. Then, Lemma 1 implies that the formulas φ1, . . . , φi
are unsatisfiable. Furthermore, since Imin returns h− i, {s} is not a
preferred extension in Fh−i−1. This means that ∅ is not the unique
admissible extension in Fφi+1 . Hence, Lemma 1 implies that φi+1 is
satisfiable, thus ICOI returns i. 2

Theorem 4 MIN-TACCσ(F, a) is in FP for σ = gr and
FPNP [logn]-complete for σ ∈ {ad, co, st, pr}.

Proof. The case σ = gr can be solved with the same strategy as MIN-
TVERσ(F, S) (see the proof of Theorem 3), but invoking a solver for
ACCgr(F, a) (that is in P ) instead of VERgr(F, S). As for the other
semantics, the problem is in FPNP [logn] since it can be solved via
a binary search over T (F ), where each step submits an instance of
TACCσ(F, a, τ∗) to an NP oracle. The hardness can be proved with a
reduction from COUNT-ORD-INSTANCES, whose rationale is similar
to the reduction in Theorem 3. 2

6 VARIANTS OF THE FRAMEWORK

We discuss two variants of MINTVER and MINTACC that can support
the reasoning over T-AAFs, especially when the arguments’ trust de-
grees are not levels but additive measures. For instance, consider the
case where the trust degrees result from a voting session, where each
argument is associated with the number of people agreeing with it.
Hence, when reasoning on alternative ways of making S an extension
or a an accepted argument, removing a set of arguments X can be
reasonably viewed as a weaker modification than removing a set of
arguments Y if the sum of the weights inX is less than Y (since this
corresponds to disregard fewer “votes” of the agents). This means
that it makes sense to consider the problems MIN-SUMVERσ(F, S)
and MIN-SUMACCσ(F, a), that search for the minimum sum of trust
degrees (i.e., the minimum number of votes) that must be discarded
to make S an extension and a accepted, respectively.

More formally, for a set of arguments X , we denote as T (X) =∑
a∈X T (a) the overall trust degree of the arguments in X , and as

F−X the T-AAF obtained from F by removing the arguments in X
and the attacks involving them. Hence, MIN-SUMVERσ(F, S) and
MIN-SUMACCσ(F, a) are:

– MIN-SUMVERσ(F, S): what is the minimum T (X) such that S is
an extension for F−X under σ?

– MIN-SUMACCσ(F, a): what is the minimum T (X) such that a is
accepted in F−X under σ?
Compared with MINTVER and MINTACC, this means that, if we

discard an argument with trust degree τ , in MINSUMVER and MIN-
SUMACC we are allowed to not discard arguments with trust degree
lower than τ . Thus, the arguments are now considered independent
when deciding on their removal, and the objective is to preserve as
much as possible the overall trust of the arguments by minimizing
the sum of the trust degrees of what is discarded.

It is worth noting that MIN-SUMACCσ(F, a) under σ = gr is
analogous to the problem MIN-BUDGET of [18]: the difference is that
in MIN-BUDGET the weights are on the attacks and their semantics
is different (a weight of an attack represents a measure of the incon-
sistency that we introduce if we discard the attack). When discussing
the following two theorems, we will come back on this analogy, and
explain both how the results in [18] help the characterization of our
problems, and how our new results complete those in [18].

Theorem 5 MIN-SUMACCσ(F, a) is FPNP -complete for any σ ∈
{ad, co, st, pr, gr}.

Theorem 5 is a straightforward consequence of the analogous
result for the above-mentioned problem MIN-BUDGET (it can be
proved, for all the semantics, with minor changes to the proof
of FPNP -completeness of MIN-BUDGET in [18]). As for MIN-
SUMVERσ(F, S), its dual version over weighted attacks was men-
tioned (in the decisional version) but not characterized in [18]. Thus,
the following theorem also completes the picture provided in [18],
as it can be shown to hold also if the weights are associated with the
attacks (as happens in the framework of [18]).

Theorem 6 MIN-SUMVERσ(F, S) is: 1) in FP for σ ∈
{ad, co, st}, 2) in FPΣ2

p and FP ||NP -hard for σ = pr, 3) in FPNP

for σ = gr.

The fact that MIN-SUMVERσ(F, S) is in FP under σ ∈
{ad, co, st} can be proved with the same reasoning used for proving
that MIN-TVERσ(F, S) is in FP under the same semantics (The-
orem 3). On the contrary, the strategy used in the proof of Theo-
rem 3 for proving that MIN-TVERσ(F, S) is in FP under σ = gr
cannot be used to prove that MIN-SUMVERgr(F, S) is in FP . The
reason is that the mechanism of MIN-SUMVER based on the sums
of trust degrees introduces a form of complexity that is not present
in MINTVER. In fact, once a value k for the sum of trust degrees
is taken, several T-AAFs can be obtained from F by discarding a
set of argument whose “overall” trust is k (while, in the thresh-
old mechanism of MIN-TVERσ(F, S), a given threshold yields ex-
actly one T-AAF). Given this, the precise characterization of MIN-
SUMVERgr(F, S) remains an open problem. However, the follow-
ing theorem states that MIN-SUMVERgr(F, S) is in FP at least
when the argumentation graph is acyclic.

Proposition 1 Over T-AAFs whose argumentation graph is acyclic,
MIN-SUMVERgr(F, S) is in FP while MIN-SUMACCgr(F, a) is
FPNP -complete.

Proof. The FPNP -completeness of MIN-SUMACCgr(F, a) over
acyclic T-AAFs can be proved with minor changes to the proof of
FPNP -completeness of MIN-BUDGET over acyclic AAFs in [18].
The fact that MIN-SUMVERgr(F, S)∈ P can be shown by consider-
ing the classical algorithm A that computes the grounded extension
S over an AAF by initializing S as the set of unattacked arguments
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and then by iteratively incorporating in S the arguments defended
by the version of S computed at the previous iteration, until a fix-
point is reached. It can be seen that, since F is acyclic, A can be
made return S by removing from F , at each iteration of A, all the
arguments that are incorporated in the grounded extension but are
not in S, along with the arguments not in S that recursively become
unattacked after these removals. Denoting as X the set of arguments
removed according to this strategy, it is easy to see the acyclicity of
F makes removing X from F the minimal condition for S to be the
grounded extension of F−X . 2

Proposition 1 highlights an asymmetry: if the argumentation graph
is acyclic, MIN-SUMACCgr(F, a) remains FPNP -complete, while
MIN-SUMVERgr(F, S) is polynomial. In some sense, this means
that checking if an argument becomes accepted after removing an
amount of trust degrees Σ requires looking into all the restrictions
F−X with T (X) = Σ, independently from the cyclicity of the
argumentation graph. On the contrary, if the argumentation graph
is acyclic, computing the answer of MIN-SUMVERgr(F, S) can be
done by looking only into the input extension and the argumentation
graph.

7 RELATED WORK
There are a lot of works extending AAFs with the aim of representing
the “strength” of arguments and/or attacks. These proposals differ in
how this aspect is encoded, for instance via preferences [3], degrees
of beliefs [32], importance of the values the arguments pertain to [8,
4] and probabilities [20, 21, 22, 26].

The reasonability of associating weights with arguments or at-
tacks has been widely discussed in the literature, and, as observed
in [18], depending on the scenarios and the semantics of the weights,
there are cases where assigning weights to arguments is more rea-
sonable than to attacks, and vice versa. An example of weighted
AAF where weights represent trust degrees and are associated with
the arguments is [15], where a fuzzy reasoning mechanism is em-
bedded in SMACk, a system for analyzing arguments taken from
disputes available in online commercial websites. The latter work,
along with [5, 23, 25, 13, 31], belongs to the family of approaches
where the reasoning yields acceptability degrees for the arguments,
obtained by suitably revising the “initial” arguments’ strengths. A
second family of approaches [2, 8, 30, 26, 33, 24], instead, eventu-
ally produces a binary result for each argument, stating whether it
is acceptable or not. In this regard, our framework can be viewed
in between these two families: on the one hand, the mechanisms in-
voked to decide if S is an extension and a accepted produce a binary
result; on the other hand, the results of MIN-TVERσ(F, S), MIN-
TACCσ(F, a) and their variants could be also viewed as “strengths”
of S and a. However, these strengths are not revisions of the initial
weights. For instance, consider an argument a with the highest trust
degree in T (A). If the answer of MIN-TACCσ(F, a) is 0, it means
that even discarding no argument, a is accepted, that is a positive
characteristics, and not a downgrading of T (a). Thus, several prop-
erties listed in [1] regarding the output strength of arguments (such
as Weakening and Maximality) make no sense on our semantics, as
they are better tailored at reasoning paradigms belonging to the first
family.

It is worth noting that our results still hold if the weights are as-
sociated to attacks: the difference in semantics does not correspond
to a difference in computational complexity and solution strategies.
Thus, in particular, as observed in Section 6, our work completes

the framework in [18] (where the problem MIN-BUDGET, dual to
MIN-TACCgr(F, a), was addressed). In fact, on the one hand, our re-
sults on MIN-SUMVERσ(F, S) can be used to solve the verification
problem analogous to MIN-BUDGET (which deals only with the ac-
ceptance). On the other hand, our results on MIN-TVERσ(F, S) and
MIN-TACCσ(F, a) can be used over the framework of [18] to use a
different threshold-based mechanism tailored at the case where the
weights denote levels instead of additive measures.

In this regard, the interest of the research community to extend-
ing the framework in [18] in the direction of our work is witnessed
by [12], where the use of aggregate operators other than sum (in-
cluding min and max) for reasoning on attacks to be discarded was
formalized. However, no result on the computational complexity and
no computational method has been proposed in [12] for these exten-
sions.

Other variants of AAFs related to our T-AAFs are those based on
a qualitative modeling of the uncertainty regarding the presence of
arguments/attacks. These include incomplete AAFs [7], as well as
the frameworks dealing with extension enforcement [6, 11, 34] and
strategic argumentation [29]. When comparing our framework with
these approaches, the trust degrees associated with the agents in our
work can be abstractly viewed as values guiding the exploration of
the alternative scenarios yielded by the uncertainty. For instance, our
notion of τ -restriction corresponds to the notion of completion of in-
complete AAFs (in the case where the incompleteness involves only
the arguments), but while the reasoning over iAAFs considers all the
possible completions (i.e., all the possible combinations of uncertain
arguments), in our approach we consider only the scenarios filtered
by the threshold mechanism. We also observe that, differently from
our setting, the problems investigated in the literature of the various
settings discussed so far are mainly decisional, with very few excep-
tions (for instance the Optimal Extension Enforcement problem).

8 CONCLUSIONS

We have studied some natural extensions of the verification and ac-
ceptance problems for reasoning over AAFs where the trustworthi-
ness of the agents is encoded as a weight function over the arguments.
The obtained results not only provide a framework for embedding the
trust of agents in the traditional reasoning over AAFs, but also com-
plete some results in the literature regarding similar problems over
weighted AAFs.

It is worth noting that our results are relevant also from a practi-
cal standpoint. In fact, the proofs of the tractable cases contain the
description of ad-hoc strategies for efficiently solving the addressed
problems. As for the hard cases, the lower and upper bounds shown
in the paper give a hint on suitable solving approaches. For instance,
the problems that have been shown to be inside the class FPNP

can be solved by translating them into ILP instances and invoking
a well-established ILP solver, as proposed in [18] for MIN-BUDGET

(MIN-SUMVERpr(F, S) may not be solvable this way, as long as its
membership to FPNP is not proved). Generally speaking, resorting
to ILP solvers (such as CPLEX) is a reasonable choice (if allowed by
the expressiveness of ILP, that is bounded by FPNP ), as this exploits
a number of heuristics implemented in the commercial solvers that in
many cases enhance the efficiency of evaluating even hard instances.
Future work will be devoted to implement ILP-based strategies and
compare them with the usage of SAT-solvers, that are commonly
used as tools for verifying/generating the extensions and deciding
the acceptance of arguments in “classical” abstract argumentation.

Ongoing work is focused on characterizing the acceptance prob-
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lem under the skeptical semantics, and embedding the implementa-
tion of the proposed computational models in a system supporting
the analysis of the reviews published by the customers of commer-
cial websites. In this regard, the combination of our framework with
argumentation mining techniques [9, 27] will be investigated.
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