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Abstract. In many real world applications, data are characterized
by a complex structure, that can be naturally encoded as a graph. In
the last years, the popularity of deep learning techniques has renewed
the interest in neural models able to process complex patterns. In
particular, inspired by the Graph Neural Network (GNN) model, dif-
ferent architectures have been proposed to extend the original GNN
scheme. GNNs exploit a set of state variables, each assigned to a
graph node, and a diffusion mechanism of the states among neigh-
bor nodes, to implement an iterative procedure to compute the fixed
point of the (learnable) state transition function. In this paper, we
propose a novel approach to the state computation and the learning
algorithm for GNNs, based on a constraint optimisation task solved
in the Lagrangian framework. The state convergence procedure is im-
plicitly expressed by the constraint satisfaction mechanism and does
not require a separate iterative phase for each epoch of the learning
procedure. In fact, the computational structure is based on the search
for saddle points of the Lagrangian in the adjoint space composed of
weights, neural outputs (node states), and Lagrange multipliers. The
proposed approach is compared experimentally with other popular
models for processing graphs.

1 Introduction

Due to their flexibility and approximation capabilities, the original
processing and learning schemata of Neural Networks have been ex-
tended in order to deal with structured inputs. Based on the original
feedforward model, able to process vectors of features as inputs, dif-
ferent architectures have been proposed to process sequences (Recur-
rent Neural Networks [23]), rasters of pixels (Convolutional Neural
Networks [15]), directed acyclic graphs (Recursive Neural Networks
[10, 9]), and general graph structures (Graph Neural Networks [20]).
All these models generally share the same learning mechanism based
on the error BackPropagation (BP) through the network architecture,
that allows the computation of the loss gradient with respect to the
connection weights. When processing structured data the original BP
schema is straightforwardly extended by the process of unfolding that
generates a network topology based on the current input structure by
replicating a base neural network module (e.g. BP Through Time, BP
Through Structure).

However, recently, some works [5] proposed a different approach
to learning neural networks, where neural computations are ex-
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pressed as constraints and the optimization is framed into the La-
grangian framework. These algorithms are naturally local and allow
the learning of any computational structure, both acyclical or cycli-
cal. The main drawback of these methods is that they are quite mem-
ory inefficient; in particular, they need to keep an extra-variable for
each hidden neuron and for each example. This makes them inappli-
cable to large problems where BP is still the only viable option.

Graph Neural Networks (GNNs) [20] exploit neural networks to
learn how to encode nodes of a graph for a given task taking into
account both the information local to each node and the whole graph
topology. The learning process requires, for each epoch, an iterative
diffusion mechanism up to convergence to a stable fixed point, that
is computationally heavy. A maximum number of iterations can be
defined but this limits the local encoding to a maximum depth of the
neighborhood of each node. In this paper, we propose a new learning
mechanism for GNNs based on a Lagrangian formulation that allows
the embedding of the fixed point computation into the problem con-
straints. In the proposed scheme the network state representations
and the weights are jointly optimized without the need of applying
the fixed point relaxation procedure at each weight update epoch.

The paper is organized as follows. The next section reviews the
main developments in both the Neural Network models for process-
ing graphs and learning methods based on the Lagrangian approach.
Section 3 introduces the basics of the GNN model, whereas in Sec-
tion 4 the Lagrangian formulation of GNNs is described. Section 5
reports the experimental evaluation of the proposed constraint–based
learning for GNNs. Finally, the conclusions are drawn in Section 6.

2 Related Works

In many applications data are characterized by an underlying struc-
ture that lays on a non-Euclidean domain, i.e. graphs and manifolds.
Whilst commonly addressed in relational learning, such domains
have been initially not taken into account by popular machine learn-
ing techniques, that have been mostly devised for grid–like and Eu-
clidean structured data [3]. Early machine learning approaches for
structured data were designed for directed acyclic graphs [21, 9],
while a more general framework was introduced in [20]. GNNs are
able to directly deal with directed, undirected and cyclic graphs. The
core idea is based on an iterative scheme of information diffusion
among neighboring nodes, involving a propagation process aimed at
reaching an equilibrium of the node states that represent a local en-
coding of the graph for a given task. The encoding is a computation-
ally expensive process being based on the computation of the fixed
point of the state transition function. Some proposals were aimed at
simplifying this step, such as the scheme proposed in [17] that ex-
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ploits gated recurrent units.
Recent approaches differ in the choice of neighborhood aggrega-

tion method and graph level pooling scheme, and can be categorized
in two main areas. Spectral approaches exploit particular embed-
dings of the graph and the convolution operation defined in the spec-
tral domain [4]. However, they are characterized by computational
drawbacks caused by the eigen–decomposition of the graph Lapla-
cian. Simplified approaches are based on smooth reparametrization
[12] or approximation of the spectral filters by a Chebyshev expan-
sion [7]. Finally, in Graph Convolutional Networks (GCNs) [14], fil-
ters are restricted to operate in a 1-hop neighborhood of each node.
Spatial methods, instead, exploit directly the graph topology, without
the need of an intermediate representation. These approaches differ
mainly in the definition of the aggregation operator used to com-
pute the node states, that must be able to maintain weight sharing
properties and to process nodes with different numbers of neighbors.
The PATCHY-SAN [18] model converts graph-structured data into a
grid-structured representation, extracting and normalizing neighbor-
hoods containing a fixed number of nodes. In [8] the model exploits
a weight matrix for each node degree, whereas DCNNs [1] com-
pute the hidden node representation convolving inputs channels with
power series of the transition probability matrix, learning weights
for each neighborhood degree. GraphSAGE [11] exploits different
aggregation functions to merge the node neighborhood information.
Deep GNNs [2] stack layers of GNNs to obtain a deep architecture.
In the context of graph classification tasks, SortPooling [26] uses a
framework based on DGCNNs with a pooling strategy, that performs
pooling by ordering vertices. Finally, the representational and dis-
criminative power of GNN models were explored in [24], also intro-
ducing the novel GIN model.

A Lagrangian formulation of learning can be found in the semi-
nal work of Yann LeCun [16], which studies a theoretical framework
for Backpropagation. More recently, Carreira and Wang [5] intro-
duced the idea of training networks, transformed into a constraints-
based representation, though an extension of the learnable param-
eters space. Their optimization scheme was based on quadratic
penalties, aiming at an approximate solution of the problem after-
wards refined by a post-processing phase. Differently, [22] exploits
closed-form solutions were most of the architectural constraints are
softly enforced, and further additional variables are introduced to
parametrize the neuron activations.

By framing the optimization of neural networks in the Lagrangian
framework, where neural computations are expressed as constraints,
their main goal is to obtain a local algorithm where computations
of different layers can be carried out in parallel. On the contrary in
the proposed approach, we use a novel mixed strategy. In particular,
the majority of the computations still rely on Backpropagation while
constraints are exploited only to express the diffusion mechanism.
This allows to carry out both the optimization of the neural functions
and the diffusion process at the same time, instead of alternating them
into two distinct phases (as in [20]), with a theoretical framework
supporting this approach (Lagrangian optimization).

It has already been shown that algorithms on graphs can be
effectively learned exploiting a constrained fixed-point formulation.
For example, SSE [6] exploits the Reinforcement Learning policy
iteration algorithm for the interleaved evaluation of the fixed point
equation and the improvement of the transition and output functions.
Our approach, starting from similar assumptions, exploits the
unifying Lagrangian framework for learning both the transition and
the output functions. Thus, by framing the optimization algorithm
into a standard gradient descent/ascent scheme, we are allowed to

use recent update rules (e.g. Adam) without the need to resort to
ad-hoc moving average updates.

3 Graph Neural Networks
The term Graph Neural Network (GNN) refers to a general compu-
tational model, that exploits the processing and learning schemes of
neural networks to process non Euclidean data, i.e. data organized as
graphs.

Given an input graphG = (V,E), where V is a finite set of nodes
and E ⊆ V × V collects the arcs, GNNs apply a two-phase compu-
tation on G. In the encoding (or aggregation) phase the model com-
putes a state vector for each node in V by (iteratively) combining the
states of neighboring nodes (i.e. nodes u, v ∈ V that are connected
by an arc (u, v) ∈ E). In the second phase, usually referred to as
output (or readout), the latent representations encoded by the states
stored in each node are exploited to compute the model output. The
GNN can implement either a node-focused function, where an out-
put is produced for each node of the input graph, or a graph-focused
function, where the representations of all the nodes are aggregated to
yield a single output for the whole input graph.

The GNN is defined by a pair of (learnable) functions, that re-
spectively implement the state transition function fa required in the
encoding phase and the output function fr exploited in the output
phase, as follows:

x(t)
v = fa(x

(t−1)

ne[v] , lne[v], l(v,ch[v]), l(pa[v],v), x
(t−1)
v , lv|θfa), (1)

yv = fr(x
(T )
v |θfr ), (2a)

yG = fr({x(T )
v , v ∈ V }|θfr ), (2b)

where x(t)
v ∈ Rs is the state of the node v at iteration t, pa[v] =

{u ∈ V : (u, v) ∈ E} is the set of the parents of node v in G,
ch[v] = {u ∈ V : (v, u) ∈ E} are the children of v in G, ne[v] =
pa[v] ∪ ch[v] are the neighbors of the node v in G, lu ∈ Rm is the
feature vector available for node u ∈ V , and l(u,w) ∈ Rd is the
feature vector available for the arc (u,w) ∈ E3. The vectors θfa and
θfr collect the model parameters (the neural network weights) to be
adapted during the learning procedure. Equations (2a) and (2b) are
the two variants of the output function for node-focused or graph-
focused tasks, respectively.

In Table 1, we show some possible choices of the function fa. It
should be noted that this function may depend on a variable number
of inputs, given that the nodes v ∈ V may have different degrees
de[v] = |ne[v]|. Moreover, in general, the proposed implementa-
tions are invariant with respect to permutations of the nodes in ne[v],
unless some predefined ordering is given for the neighbors of each
node.
T is the number of iterations of the state transition function applied

before computing the output. The recursive application of the state
transition function fa on the graph nodes yields a diffusion mech-
anism, whose range depends on T . In fact, by stacking t times the
aggregation of 1-hop neighborhoods by fa, information of one node
can be transferred to the nodes that are distant at most t-hops. The
number t may be seen as the depth of the GNN and thus each iter-
ation can be considered a different layer of the GNN. A sufficient

3 With abuse of notation, we denote the set {x(t−1)
u : u ∈ ne[v]} by x(t−1)

ne[v]
.

Similar definitions apply for lne[v], l(v,ch[v]), and l(pa[v],v).
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Method: Function Reference Implementation of fa

GNN: Sum Scarselli et al. [20]
∑
u∈ne[v] h(xu, lu, l(v,u), l(u,v), xv, lv|θh)

GIN: Sum Xu et al. [24] h(xv +
∑
u∈ne[v] xu)

GCN: Mean Kipf and Welling [14] h

Å
1

|ne[v]|+1
(xv +

∑
u∈ne[v] xu)

ã
GraphSAGE: Max Hamilton et al. [11] maxu∈ne[v] h(xu)

Table 1. Simplified implementations of the state transition function fa. The function h() is implemented by a feedforward neural network with s outputs,
whose input is the concatenation of its arguments (f.i. in the first case the input consists of a vector of 2s+ 2m+ 2d entries, with l(u,v) ∈ Rd and lu ∈ Rm).

For the sake of clarity, some of these formulas are reported in a simplified way w.r.t. the original proposal. For example, the ”mean” function in [14] is a
weighted mean, where the weights come from the normalized graph adjacency matrix, or the ”max” function in [11] is followed by a concatenation.

number of layers is key to achieve a useful encoding of the input
graph for the task at hand and, hence, the choice is problem–specific.

In the original GNN model [20], eq. (1) is executed until conver-
gence of the state representation, i.e. until x(t)

v ' x
(t−1)
v , v ∈ V .

This scheme corresponds to the computation of the fixed point of the
state transition function fa on the input graph. In order to guarantee
the convergence of this phase, the transition function is required to
be a contraction map.
Henceforth, for compactness, we denote the state transition function,
applied to a node v ∈ V , with:

fa,v = fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|θfa). (3)

Basically, the encoding phase, through the iteration of fa, finds a
solution to the fixed point problem defined by the constraint

∀v ∈ V, xv = fa,v (4)

In this case, the states encode the information contained in the whole
graph. This diffusion mechanism is more general than executing only
a fixed number of iterations (i.e. stacking a fixed number of layers).
However, it can be computationally heavy and, hence, many recent
GNN architectures apply only a fixed number of iterations for all
nodes.

4 A constraint-based formulation of Graph Neural
Networks

Neural network learning can be cast as a Lagrangian optimization
problem by a formulation that requires the minimization of the clas-
sical data fitting loss (and eventually a regularization term) and the
satisfaction of a set of architectural constraints that describe the com-
putation performed on the data. Given this formulation, the solution
can be computed by finding the saddle points of the associated La-
grangian in the space defined by the original network parameters and
the Lagrange multipliers. The constraints can be exploited to enforce
the computational structure that characterizes the GNN models.

The computation of Graph Neural Networks is driven by the input
graph topology that defines the constraints among the computed state
variables xv, v ∈ V . In particular, the fixed point computation aims
to solving eq. (4), that imposes a constraint between the node states
and the way they are computed by the state transition function.
In the original GNN learning algorithm, the computation of the fixed
point is required at each epoch of the learning procedure, as imple-
mented by the iterative application of the transition function. More-
over, also the gradient computation requires us to take into account
the relaxation procedure, by a backpropagation schema through the

replicas of the state transition network exploited during the iterations
for the fixed point computation. This procedure may be time con-
suming when the number of iterations T for convergence to the fixed
point is high (for instance in the case of large graphs).

We consider a Lagrangian formulation of the problem by adding
free variables corresponding to the node states xv , such that the fixed
point is directly defined by the constraints themselves, as

∀v ∈ V, G (xv − fa,v) = 0 (5)

where G(x) is a function characterized by G(0) = 0, such that the
satisfaction of the constraints implies the solution of eq. (4). Apart
from classical choices, like G(x) = x or G(x) = x2, we can design
different function shape (see Section 5.1), with desired properties.
For instance, a possible implementations is G(x) = max(||x||1 −
ε, 0), where ε ≥ 0 is a parameter that can be used to allow toler-
ance in the satisfaction of the constraint. The hard formulation of the
problem requires ε = 0, but by setting ε to a small positive value it
is possible to obtain a better generalization and tolerance to noise.

In the following, for simplicity, we will refer to a node-focused
task, such that for some (or all) nodes v ∈ S ⊆ V of the in-
put graph G, a target output yv is provided as a supervision4. If
L(fr(xv|θfrr ), yv) is the loss function used to measure the target
fitting approximation for node v ∈ S, the formulation of the learning
task is:

min
θfa ,θfr ,X

∑
v∈S

L(fr(xv|θfr ), yv)

subject to G (xv − fa,v) = 0, ∀ v ∈ V (6)

where θfa and θfr are the weights of the MLPs implementing the
state transition function and the output function, respectively, and
X = {xv : v ∈ V } is the set of the introduced free state variables.

This problem statement implicitly includes the definition of the
fixed point of the state transition function in the optimal solution,
since for any solution the constraints are satisfied and hence the com-
puted optimal xv are solutions of eq. (4). As shown in the previ-
ous subsection, the constrained optimization problem of eq. (6) can
be faced in the Lagrangian framework by introducing for each con-
straint a Lagrange multiplier λv , to define the Lagrangian function

4 For the sake of simplicity we consider only the case when a single graph
is provided for learning. The extension for more graphs is straightforward
for node-focused tasks, since they can be considered as a single graph com-
posed by the given graphs as disconnected components.
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L(θfa , θfr , X,Λ) as:

L(θfa , θfr , X,Λ) =
∑
v∈S

[L(fr(xv|θfr ), yv)+

+λvG (xv − fa,v)] , (7)

where Λ is the set of the |V | Lagrangian multipliers. Finally, we
can define the unconstrained optimization problem as the search for
saddle points in the adjoint space (θfa , θfr , X,Λ) as:

min
θfa ,θfr ,X

max
Λ
L(θfa , θfr , X,Λ) (8)

that can be solved by gradient descent with respect to the variables
θfa , θfr , X and gradient ascent with respect to the Lagrange multi-
pliers Λ, exploiting the Basic Differential Multiplier Method, intro-
duced in [19] in the context of neural networks. We are interested in
having a strong enforcement of the diffusion constraints, and com-
mon penalty-based methods are hard to tune and not always guaran-
teed to converge to the constraint satisfaction. BDMM could be seen
as a simplified procedure that implements the principles behind the
common Multiplier Methods, in order to enforce the hard fulfilment
of the given constraints.
The gradient can be computed locally to each node, given the local
variables and those of the neighboring nodes. In fact, the derivatives
of the Lagrangian 5 with respect to the considered parameters are:

∂L
∂xv

= L′f ′r,v + λvG′v(1− f ′a,v)−
∑

w:v∈ne[w]

λwG′wf ′a,w (9)

∂L
∂θfa

= −
∑
v∈S

λvG′vf ′a,v (10)

∂L
∂θfr

=
∑
v∈S

L′f ′r,v (11)

∂L
∂λv

= Gv (12)

where, fa,v = fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|θfa), f ′a,v
is its first derivative6, fr,v = fr(xv|θfr ), f ′r,v is its first derivative,
Gv = G (xv − fa,v) and G′v is its first derivative, and, finally, L′

is the first derivative of L. Being fa and fr implemented by feed-
forward neural networks, their derivatives are obtained easily by ap-
plying a classical backpropagation scheme, in order to optimize the
Lagrangian function in the descent-ascent scheme, aiming at the sad-
dle point, following [19].
We initialize the variables in X and Λ to zero, while the neural
weights θfa , θfr are randomly chosen. In particular, this differen-
tial optimization process consists of a gradient-descent step to up-
date θfa , θfr , X , and a gradient-ascent step to update Λ, until we
converge to the desired stationary point. Hence, the redefined differ-
ential equation system gradually fulfills the constraints, undergoing
oscillations along the constraint subspace. To ease this procedure,
we add the G() function, with the purpose of obtaining a more stable
learning process.

Even if the proposed formulation adds the free state variables xv
and the Lagrange multipliers λv , v ∈ V , there is no significant in-
crease in the memory requirements since the state variables are also

5 When parameters are vectors, the reported gradients should be considered
element-wise.

6 The derivative is computed with respect to the same argument as in the
partial derivative on the left side.

required in the original formulation and there is just a Lagrange mul-
tiplier for each node.

The diffusion mechanism of the state computation is enforced by
means of the constraints. The learning algorithm is based on a mixed
strategy where (i) Backpropagation is used to efficiently update the
weights of the neural networks that implement the state transition and
output functions, and, (ii) the diffusion mechanism evolves gradually
by enforcing the convergence of the state transition function to a fixed
point by virtue of the constraints. This last point is a novel approach
in training Graph Neural Networks. In fact, in classical approaches,
the encoding phase (see Section 3) is completely executed during the
forward pass to compute the node states and, only after this phase is
completed, the backward step is applied to update the weights of fa
and fr . In the proposed scheme, both the neural network weights and
the node state variables are simultaneously updated, forcing the state
representation function towards a fixed point of fa in order to sat-
isfy the constraints. In other words, the learning proceeds by jointly
updating the function weights and by diffusing information among
nodes, through their state, up to a stationary condition where both
the objective function is minimized and the state transition function
has reached a fixed point.
In our proposed algorithm, the diffusion process is turned itself into
an optimization process that must be carried out both when learning
and when making predictions. As a matter of fact, inference itself
requires the diffusion of information through the graph, that, in our
case, corresponds with satisfying the constraints of Eq. (5). For this
reason, the testing phase requires a (short) optimization routine to
be carried out, that simply looks for the satisfaction of Eq. (5) for
test nodes, and it is implemented using the same code that is used
to optimize Eq.(8), avoiding to update the previously learned state
transition and output functions.

4.1 Complexity analysis
Common graph models exploit synchronous updates among all
nodes and multiple iterations for the node state embedding, with a
computational complexity for each parameter update O(T (|V | +
|E|)), where T is the number of iterations, |V | the number of nodes
and |E| the number of edges. By simultaneously carrying on the op-
timization of neural models and the diffusion process, our scheme re-
lies only on 1-hop neighbors for each parameter update, hence show-
ing a computational cost of O(|V | + |E|). From the memory cost
viewpoint, the persistent state variable matrix requiresO(|V |) space.
However, it represents a much cheaper cost than most of GNN mod-
els, usually requiringO(T |V |) space. In fact, those methods need to
store all the intermediate state values of all the iterations, for a latter
use in back-propagation.

5 Experiments
The evaluation was carried out on two classes of tasks. Artificial tasks
(Subgraph matching and Clique detection) are commonly exploited
as benchmarks for GNNs, thus, allowing a direct comparison of the
proposed constraint based optimization algorithm with respect to the
original GNN learning scheme, on the same architecture. The second
class of tasks consists of graph classification in the domains of so-
cial networks and bioinformatics. The goal is to compare the perfor-
mances of the proposed approach, hereafter referred to as Lagrangian
Propagation GNN (LP-GNN), that is based on a simpler model, with
respect to deeper architectures such as Graph Convolutional Neural
Networks.
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With reference to Table 1, in our experiments we validated two
formulations of the state transition function fa,v , with two different
aggregation scheme. In particular:

f (SUM)
a,v =

∑
u∈ne[v]

h(xu, lu, l(v,u), l(u,v), xv, lv|θh) (13)

f (AVG)
a,v = 1

|ne[v]|

∑
u∈ne[v]

h(xu, lu, l(v,u), l(u,v), xv, lv|θh) (14)

5.1 Artificial Tasks
Subgraph Matching Given a graph G and a graph S such that
|S| ≤ |G|, the subgraph matching problem consists in finding the
nodes of a subgraph Ŝ ⊂ G which is isomorphic to S. The task is
that of learning a function τ , such that τS(G,n) = 1, n ∈ V , when
the node n belongs to the given subgraph S, otherwise τS(G,n) = 0.
It is designed to identify the nodes in the input graph that belong to a
single subgraph given a priori during learning. The problem of find-
ing a given subgraph is common in many practical problems and cor-
responds, for instance, to finding a particular small molecule inside
a greater compound. An example of a subgraph structure is shown
in Fig. 1. Our dataset is composed of 100 different graphs, each one
having 7 nodes. The number of nodes of the target subgraph S is
instead 3.

Target Subgraph

Figure 1. An example of a subgraph matching problem, where the graph
with the blue nodes is matched against the bigger graph.

Clique localization A clique is a complete graph, i.e. a graph
in which each node is connected with all the others. In a network,
overlapping cliques (i.e. cliques that share some nodes) are admitted.
Clique localization is a particular instance of the subgraph matching
problem, with S being complete. However, the several symmetries
contained in a clique makes the graph isomorphism test more diffi-
cult. Indeed, it is known that the graph isomorphism has polynomial
time solutions only in absence of symmetries. A clique example is
shown in Fig. 2. In the experiments, we consider a dataset composed
by graphs having 7 nodes each, where the dimension of the maximal
clique is 3 nodes.

We designed a batch of experiments on these two tasks aimed
at validating our simple local optimization approach to constraint-
based networks. In particular, we want to show that our optimiza-
tion scheme can learn better transition and output functions than
the corresponding GNN of [20]. Moreover, we want to investigate
the behaviour of the algorithm for different choices of the function

Figure 2. An example of a graph containing a clique. The blue nodes
represent a fully connected subgraph of dimension 4, whereas the red nodes

do not belong to the clique.

G(x), i.e. when changing how we enforce the state convergence con-
straints. In particular, we tested functions with different properties:
ε-insensitive functions, i.e G(x) = 0, ∀x : −ε ≤ x ≤ ε, unilateral
functions, i.e. G(x) ∈ R+, and bilateral functions, i.e. G(x) ∈ R (a
G function is either unilateral or bilateral). The considered functions
are shown in Table 2.

Following the experimental setting of [20], we exploited a train-
ing, validation and test set having the same size, i.e. 100 graphs
each. We tuned the hyperparameters on the validation data, by select-
ing the node state dimension from the set {5, 10, 35}, the dropout
drop-rate from the set {0., 0.7}, the state transition function from
{f (AVG)
a,v , f (SUM)

a,v } and their number of hidden units from {5, 20, 50}.
We used the Adam optimizer (TensorFlow). Learning rate for pa-
rameters θfa and θfr is selected from the set {10−5, 10−4, 10−3},
and the learning rate for the variables xv and λv from the set
{10−4, 10−3, 10−2}.

We compared our model with the equivalent GNN in [20], with the
same number of hidden neurons of the fa and fr functions. Results
are presented in Table 3.

Constraints characterized by unilateral functions usually offer bet-
ter performances than equivalent bilateral constraints. This might
be due to the fact that keeping constraints positive (as in unilat-
eral constraints) provides a more stable learning process. Moreover,
smoother constraints (i.e squared) or eps-insensitive constraints tend
to perform slightly better than the hard versions. This can be due to
the fact that as the constraints move closer to 0 they tend to give a
small or null contribution, for squared and abs-eps respectively, act-
ing as regularizers.

5.2 Graph Classification
We used 6 graph classification benchmarks: 4 bioinformatics datasets
(MUTAG, PTC, NCI1, PROTEINS) and 2 social network datasets
(IMDB-BINARY, IMDB-MULTI) [25], which are becoming popu-
lar for benchmarking GNN models. In the bioinformatic graphs, the
nodes have categorical input labels (e.g. atom symbol). In the social
networks, there are no input node labels. In this case, we followed
what has been recently proposed in [24], i.e. using one-hot encod-
ings of node degrees. Dataset statistics are summarized in Table 4.

We compared the proposed Lagrangian Propagation GNN (LP-
GNN) scheme with some of the state-of-the-art neural models for
graph classification, such as Graph Convolutional Neural Networks.
All the GNN-like models have a number of layers/iterations equal
to 5. An important difference with these models is that, by using
a different transition function at each iteration, at a cost of a much
larger number of parameters, they have a much higher representa-
tional power. Even though our model could, in principle, stack mul-
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lin lin-ε abs abs-ε squared

G(x) x max(x, ε)−max(−x, ε) |x| max(|x| − ε, 0) x2

Unilateral × × X X X
ε-insensitive × X × X ×

Table 2. The considered variants of the G function. By introducing ε-insensitive constraint satisfaction, we can inject into our hard-optimization scheme a
controlled amount (i.e. ε) of unsatisfaction tolerance.

Model
Subgraph Clique

G ε Acc(avg) Acc(std) Acc(avg) Acc(std)

LP-GNN

abs
0.00 96.25 0.96 88.80 4.82
0.01 96.30 0.87 88.75 5.03
0.10 95.80 0.85 85.88 4.13

lin
0.00 95.94 0.91 84.61 2.49
0.01 95.94 0.91 85.21 0.54
0.10 95.80 0.85 85.14 2.17

squared - 96.17 1.01 93.07 2.18

GNN [20] - - 95.86 0.64 91.86 1.12

Table 3. Accuracies on the artificial datasets, for the proposed model (Lagrangian Propagation GNN - LP-GNN) and the standard GNN model for different
settings.

Datasets IMDB-B IMDB-M MUTAG PROT. PTC NCI1
# graphs 1000 1500 188 1113 344 4110
# classes 2 3 2 2 2 2
Avg # nodes 19.8 13.0 17.9 39.1 25.5 29.8

DCNN 49.1 33.5 67.0 61.3 56.6 62.6
PATCHYSAN 71.0 ± 2.2 45.2 ± 2.8 92.6 ± 4.2 75.9 ± 2.8 60.0 ± 4.8 78.6 ± 1.9
DGCNN 70.0 47.8 85.8 75.5 58.6 74.4
AWL 74.5 ± 5.9 51.5 ± 3.6 87.9 ± 9.8 – – –
GIN 75.1 ± 5.1 52.3 ± 2.8 89.4 ± 5.6 76.2 ± 2.8 64.6 ± 7.0 82.7 ± 1.7
GNN 60.9 ± 5.7 41.1 ± 3.8 88.8 ± 11.5 76.4 ± 4.4 61.2 ± 8.5 51.5 ± 2.6
LP-GNN* 71.2 ± 4.7 46.6 ± 3.7 90.5 ± 7.0 77.1 ± 4.3 64.4 ± 5.9 68.4 ± 2.1

Table 4. We report the average accuracies and standard deviations for the graph classification benchmarks, evaluated on the test set, and we compare multiple
GNN models. The proposed model is denoted as LP-GNN and marked with a star. Even though it exploits only shallow representation of nodes, our model

performs, on average, on-par to other top models, setting a new state-of-the-art for the Proteins dataset.

tiple diffusion processes at different levels (i.e. different latent repre-
sentation of the nodes) and, then, have multiple transition functions,
we have not explored this direction in this paper. In particular, the
models used in the comparison are: Diffusion-Convolutional Neu-
ral Networks (DCNN) [1], PATCHY-SAN [18], Deep Graph CNN
(DGCNN) [26], AWL [13] , GIN-GNN [24], original GNN [20].
Apart from original GNN, we report the accuracy as reported in the
referred papers.

We followed the evaluation settings in [18]. In particular, we
performed 10-fold cross-validation and reported both the average
and standard deviation of validation accuracies across the 10 folds
within the cross-validation. The stopping epoch is selected as the
epoch with the best cross-validation accuracy averaged over the
10 folds. We tuned the hyperparameters by searching: (1) the
number of hidden units for both the fa and fr functions from
the set {5, 20, 50, 70, 150}; (2) the state transition function from

{f (AVG)
a,v , f (SUM)

a,v }; (3) the dropout ratio from {0, 0.7}; (4) the size of
the node state xv from {10, 35, 50, 70, 150}; (5) learning rates for
both the θfa , θfr , xv and λv from {0.1, 0.01, 0.001}. Results are
shown in Table 4.

As previously stated, differently from the baseline models, our ap-
proach does not rely on a deep stack of layers based on differently
learnable filters. Despite of this fact, the simple GNN model trained
by the proposed scheme offers performances that, on average, are
preferable or on-par to the ones obtained by more complex models
that exploit a larger amount of parameters.

Moreover, it is interesting to note that for current GNN models,
the role of the architecture depth is twofold. First, as it is common
in deep learning, depth is used to perform a multi-layer feature ex-
traction of node inputs. Secondly, it allows node information to flow
through the graph fostering the realisation of a diffusion mechanism.
Conversely, our model strictly splits these two processes. We believe
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this distinction to be a fundamental ingredient for a clearer under-
standing of which mechanism, between diffusion and node deep rep-
resentation, is concurring in achieving specific performances. Indeed,
in this paper, we show that the diffusion mechanism paired only with
a simple shallow representation of nodes is sufficient to match per-
formances of much deeper and complex networks.

6 Conclusions and Future Work
We showed that formulation of the GNN learning task as a con-
strained optimization problem allows us to avoid the explicit com-
putation of the fixed point needed to encode the graph. The proposed
framework defines how to jointly optimize the model weights and
the state representation without the need of separate phases. This ap-
proach simplifies the computational scheme of GNNs and allows us
to incorporate alternative strategies in the fixed point optimization
by the choice of the constraint function G(). As shown in the exper-
imental evaluation, the appropriate functions may affect generaliza-
tion and robustness to noise.

Future work will be devoted to explore systematically the prop-
erties of the proposed algorithm in terms of convergence and com-
plexity. Moreover, we plan to extend the experimental evaluation to
verify the algorithm behaviour with respect to either the characteris-
tics of the input graphs, such as the graph diameter, the variability in
the node degrees, the type of node and arc features or to the model
architecture (f.i. type of the state transition function, of the constraint
function, etc.). Furthermore, the proposed constraint-based scheme
can be extended to all the other methods proposed in the literature
that exploit more sophisticated architectures.

Finally, LP-GNN can be extended allowing the diffusion mecha-
nism to take place at multiple layers allowing a controlled integration
of diffusion and deep feature extraction mechanisms.
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