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Abstract. Semantic scene completion (SSC) is composed of scene
completion (SC) and semantic segmentation. Most of the existing
methods carry out SSC in a regular 3D grid space, where 3D CNNs
cause unnecessary computational cost on empty voxels. In this work,
a Semantic Point Completion Network (SPCNet) is proposed to
address SSC in the point cloud space. Specifically, SPCNet is an
Encoder-decoder architecture, in which an Observed Point Encoder
is applied to extract the features of observed points, and an Observed
to Occluded Point Decoder is responsible for mapping the features
to the occluded points. Based on the SPCNet, we further introduce
an Image-point Fused Semantic Point Completion Network (IPF-
SPCNet), which aims to boost the performance of SSC by combining
the texture with geometry information. Evaluations are conducted on
two public datasets. Experimental results show that our method can
address the SC problem in the point cloud space. Compared to state-
of-the-art approaches, our method can achieve satisfying results on
the SSC task.

1 INTRODUCTION
Everything in the real-world occupies part of the 3D space. Humans
are capable of understanding the observed 3D object and inferring
the object behind the occlusion. So it is also a basic and important
capability for agents to explore and interact with the circumstance. In
order to meet this demand, Semantic scene completion (SSC) [20] is
put forward, which predict the occupancy and semantic labels of a
volumetric 3D scene from a single depth image.

In previous works, scene completion [2,13] and scene understand-
ing [6, 17] are considered separately. Recently, [20] points out that
these two individual tasks are strongly coupled. Jointly learning se-
mantic and geometric knowledge in the network training process can
improve the performance of both tasks simultaneously. Motivated by
this key idea, quite a lot of excellent works [3, 5, 8, 11, 24, 25] have
been proposed in the following years and remarkable gains have been
achieved.

However, there are several problems faced SSC. the first problem
is brought by the 3D data representation. Conventional methods typi-
cally carry out SSC in a regular 3D grids space, where the input depth
map is encoded as a 3D voxel and TSDF (Truncated Signed Distance
Function). Most of the voxels are empty especially in the room scene,
which renders data unnecessarily voluminous (as shown in Figure 1).
Thus 3D CNN methods are not efficient in extracting the redundant
3D voxel representation, which limited the SSC performance.

The other problem is that most of the existing SSC methods only
use depth image as input, where only the geometry information is
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Figure 1: Intrinsic sparsity in 3D voxels. The top figure is the input for SSC
and the bottom is the output. Most of the existing methods carry out SSC
in the whole 3D grid space which wastes a lot of computations on the ig-
nored and occluded points. Our method only consumes the observed points
and predict a label for each observed and occluded point, which is memory
and computation saving.

considered. However, the depth image lacks of many object details,
which makes it difficult to recognize some geometrical similar ob-
jects, such as wall and window. The color image carries more texture
information, which can be served as assistant information to distin-
guish geometrical similar objects.

To overcome the first problem, we design an efficient network
called SPCNet which consumes the observed points and simultane-
ously generates shapes and their categories for both observed and
occluded points. The advantages of encoding the input depth images
into point cloud representation are obvious: it can avoid unnecessary
computations on empty voxels. To overcome the second problem, we
propose an IPF-SPCNet based on the SPCNet, which aims to utilize
texture information carried by color images.

However, to design a point consuming network for SSC task, we
are faced with the issue that must be addressed: how can we take the
observed points as inputs and generate new semantic points in the oc-
cluded regions. To address the issue, we design a SPCNet which con-
tains an Observed Point Encoder (OP-Encoder) and an Observed to
Occluded Point Decoder (O2OP-Decoder). The OP-Encoder extract
point features from the observed points. O2OP-Decoder mapped
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these features to the occluded point and integrates them to infer the
semantics and shape of the point cloud.

To sum up, our main contributions are as follows:

• We introduce a point cloud based network for SSC, which con-
tains a novel Observed Point Encoder and Observed to Occluded
Point Decoder.

• Based on the SPCNet, a practical IPF-SPCNet is introduced to
boost the semantic scene completion performance by combining
the texture with geometry information.

2 RELATED WORK
2.1 3D Deep Learning
CNNs have brought remarkable breakthroughs in processing 2D im-
ages, which are represented as pixels in 2D uniform grids. Different
from the 2D image dataset, there are various data representations for
3D data, which results in various 3D deep learning techniques.

Volume-CNNs: The most straightforward work in extending 2D
CNNs to higher dimensional 3D voxels is 3D CNNs [12, 15, 23].
However, it’s hard to bring the powerful feature extracting ability of
CNNs from 2D to 3D, since the amount of both computation and
memory inflates dramatically in higher dimensions. Though some
works, like FPNN [10] and Vote3D [22], try to develop special meth-
ods to work around with the computation problem. However, their
improvements are still limited, it’s challenging for them to handle
large-scale point clouds.

View-CNNs: [15,21] have tried to take advantage of the 2D CNNs
by projecting 3D data into 2D images. This kind of methods can ben-
efit from the well-engineered 2D CNNs and have achieved remark-
able performance on shape classification and retrieval tasks. How-
ever, It’s not suitable for other 3D tasks such as SSC.

Point-CNNs: The above methods learn features from regular do-
mains, where the data are represented in regular grids. While point
cloud is an unordered set of vectors. Recent works, such as Point-
Net [14, 16], PointCNN [9], PointSIFT [7], look into the unordered
point set feature learning problem and archived remarkable perfor-
mance. Point cloud feature learning methods show a super advantage
over other methods.

2.2 Semantic Scene Completion
Following the SSCNet [20], who point out that the shape completion
and semantic labeling are coupled tasks, a lot of work has been paid
attention to SSC. According to the 3D feature learning skills they are
used, these methods can be broadly divided into two categories.

Volume-SSC: One is the volumetric convolutional methods, such
as SSCNet [20], this kind of methods take the 3D voxel data as input
and apply 3D CNNs to process them. To relive the computation and
memory problem brought by 3D voxel data, [24] tries to build ef-
ficient 3D CNN blocks for SSC. But the computation reduce is still
limited, even with some loss of accuracy.

View-Volume-SSC: The other is View-Volume convolutional
methods [3, 5, 8, 11], which takes 2D images or depth images as in-
puts and projects the 2D features into the 3D space in the middle of
network, finally output the SSC results in the volume space. In this
way, they can make trade-offs between the computation cost and re-
sult accuracy. This kind of work has the superiority of making use of
powerful 2D CNNs and combining RGB color images to assist the
SSC task. However, they can not fully explore the 3D structure in the
2D space and have to come back to the redundant 3D grid space.

Point-SSC: Comparing to those semantic scene completion
method, our semantic point completion network falls into the point
convolutional methods. Comparing to the first kind of work, our
method provides a more natural way to exploit the intrinsic spar-
sity of 3D data. Comparing to the second kind of work, our method
breaks away from the restriction of the 3D grid, while still can cap-
ture the 3D structure information.

3 METHODOLOGY
In this section, we first introduce the point cloud representation for
SSC task and then introduce the SPCNet which contains an Observed
Point Encoder (OP-Encoder) and an Observed to Occluded Point De-
coder (O2OP-Decoder). Finally introduce the IPF-SPCNet for com-
bining texture and geometry information.

3.1 Input Encoding
Given a single depth image, SSC requires to predict the occupancy
and semantic labels of each voxel in a 3D grid space. Traditional
methods usually encode the depth image into the target 3D grid space
and all of the following procedures are carried out in this space. In
this paper, we take input the point’s coordinates instead of the 3D
grid.

As shown in Figure 1, in the input 3D grid space, there are three
kinds of points [20]. The first is observed points which are produced
from the given depth images. The second is occluded points which
are behind the observed points under the image view. The rest points
are ignored points including the seen empty points and the points
outside the view and room. In the output 3D grid space, both of the
observed points and occluded points are assigned a semantic label
(following [20], the empty point is treated as a kind of labels).

The 3D voxel data is memory expensive, especially for the room
scene. Obviously, comparing to the traditional methods who take in-
put the whole 3D grid, our method whihc only take input the ob-
served points will save a large amount of memory and computation.

However, this encoding method results in another problem: the
number of the observed and occluded points in each 3D grid sample
is uneven, which is harmful to the training of the network. We note
that in [24], they partition voxels uniformly into different groups,
then conduct 3D sparse convolution on each group. This skill can
also be applied to point cloud. We partition the point cloud into dif-
ferent groups. Each group point cloud contains the same number of
observed and occluded points and combines all group’s results to ob-
tain the final prediction.

3.2 Semantic Point Completion Network
By jointly learning the scene completion and semantic labeling tasks,
semantic and geometry information can be combined implicitly.
Thus the two individual tasks can benefit from each other. Our SPC-
Net designing shares the same concept above, but addresses SSC in
a more effective point cloud space.

Inspired by the recently developed point set deep learning tech-
niques, we design the SPCNet which takes the observed points as
input and output a label for each occluded and observed point. Note
that previous point consuming networks cannot be directly applied
to SSC task. Because the output structure of SSC is different from
the input. So we introduce a semantic point completion network ar-
chitecture for SSC which contains two main modules, namely OP-
Encoder and O2OP-Decoder.
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Figure 2: Illustration of the SPCNet. SPCNet contains two main modules, namely Observed Point Encoder (OP-Encoder) and Observed to Occluded Point
Decoder (O2OP-Decoder). The OP-Encoder takes the observed points as input and projects the features of the points into less and less representative points
(shown in red points). The O2OP-Decoder then projects the features to the occluded representation points (shown in green points) and finally predicts semantic
label for each point.

In this work, we take the advantage of XConv operation [9] to de-
sign our network layers. The network architecture are build following
the design of U-Net [18]. Before we describe the OP-Encoder and
O2OP-Decoder, we briefly go through the X -Conv operation which
serves as the basic building block for SPCNet.

The input to XConv is a set of points P , each associated with a
feature F . Before applying XConv on the input, we select a set of
representation points P

′
for carrying the output features. Via apply-

ing XConv on [P,F ], we can get a higher level feature F
′

associ-
ated to the representation points P

′
. Thus, XConv can be concisely

be summarized as follows:

F
′
= XConv(P,F ,P

′
). (1)

For more detail about XConv, please refer to [9].

3.2.1 Observed Point Encoder

As illustrated in Figure 2, OP-Encoder takes the observed points as
input and projects the points with features into less and less repre-
sentative points (low point resolution). With OP-Encoder, we can
capture the observed point structure features. Note that the occluded
points do not participate in this feature encode process, because the
occluded points include both empty and nonempty points. While the
object structure is only decided by the nonempty points, so the empty
points mixed in the nonempty points will hide the object structure.
However, before we get the prediction of the semantic labels as-
signed to the occluded points, there is no way to separate the empty
point from the nonempty points. So only observed points with known
structure are feed into the OP-Encoder.

Formally, for encoder layer i, (i = 1, 2....L), where L is the total

number of encoder layers:

Pb[i] = Represent(Pb[i− 1])

Pc[i] = Represent(Pc[i− 1])

Fb[i] = Xconv(Pb[i− 1],Fb[i− 1],Pb[i]).

(2)

The inputs for encoder layer i are observed points Pb[i − 1] and
the corresponding features Fb[i − 1] from the previous layer i − 1.
The outputs are Pb[i] and Fb[i], where Pb[i] is representation points
sampled from Pb[i − 1] via point sample operation Represent(.),
Fb[i] is the output features assigned to Pb[i − 1]. Note that each
representation point is assigned with a point feature.

Specially, for i = 0, Pb[0] and Fb[0] is the input observed points
and features respectively.Pc[0] is the input occluded points. But note
that the selected occluded representative points Pc in each encoder
layer are ready to be used in the O2OP-Decoder 3.2.2 and do not
participate in the encoder feature extraction process.

3.2.2 Observed to Occluded Point Decoder

The decoder is responsible for propagating low-resolution informa-
tion into high-resolution predictions. And there are two kinds of rep-
resentative points in the decoder layers: one is the observed represen-
tative points and the other is sampled from occluded points. Both of
them are from the corresponding encoder layers, namely Pb and Pc.
The decoder layers propagate the encoder features into the decoder
representative points [Pb,Pc], the previous decoder features are also
propagated into the decoder representative points [Pb,Pc], then this
two kinds of features are added up.

Formally, for decoder layer j, (j = 1, 2...L), the corresponding
encoder layer is (i = L−j+1). The decoder layer j is formalization
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Figure 3: Illustration of the IPF-SPCNet. IPF-SPCNet mainly contains three modules: Image segmentation network (ImgSegNet) which is applied to extract the
semantic features from the RGB images. 2D image to 3D point reprojection layer (Img2Pt) projects the semantic features to the corresponding points. Finally
the SPCNet take the points associated with semantic features to infer the SSC results.

as following:

Pbc[j] = [Pb[i],Pc[i])]

Fe[j] = Xconv(Pb[i],Fb[i],Pbc[j])

Fd[j] = Xconv(Pbc[j − 1],Fbc[j − 1],Pbc[j])

Fbc[j] = Fe[j] + Fd[j].

(3)

There are two input sources for decoder layer j, 1 < j <= L. The
first one is the observed points Pb[i] and the observed features Fb[i]
from the encoder layer i. The second one is the output representation
points Pbc[j − 1] and features Fbc[j − 1] from the previous decoder
layer j − 1. These inputs are operated by the XConv functions and
then added together to form the output feature Fbc[j] for decoder
layer j.

Specially, Pbc[0] = Pb[L] and Fbc[0] = Fb[L] is the input points
and features for the first layer of O2OP-Decoder, they are also the
output of the last layer of OP-Encoder.

The final output feature of O2OP-Decoder layer are fed into sev-
eral FC layers to produce a label for each observed and occluded
points.

3.3 Image-point Fused SPCNet
In order to combine the texture with geometry, we design an IPF-
SPCNet which mainly contains three modules: image segmentation
network (ImgSegNet) serving as texture extractor, 2D-3D feature
projection layer and the SPCNet fusing texture and geometry.

3.3.1 2D Texture Feature Extraction

Instead of concatenating the RGB vector to the point coordinate vec-
tor directly, we first apply an image segmentation network (denoted
as ImgSegNet for convenience) on RGB images to extract the se-
mantic feature S. Then project the hight level semantic features to
the corresponding points. There are three reasons for adopting this
scheme. Firstly, the input point cloud is much sparser than the corre-
sponding images (because we divide the whole point cloud into sev-
eral groups by random sampling as mentioned in Section 3.1). So,
projecting the low-level RGB features to the point cloud will lose the
detailed texture information of the color images. Secondly, low-level
RGB features may add some noise to the input point cloud. Because

some objects with different semantics may have similar colors, such
as wall and ceiling are both in white color. But the high-level seman-
tic features can distinguish them easily. Thirdly, this scheme can take
full advantage of the existing state-of-the-art 2D semantic segmenta-
tion techniques.

3.3.2 2D-3D Feature Projection and Fusion

The second module is Img2Pt layer, which is designed for the pur-
pose of projecting the semantic feature S to the corresponding point
Pb. According to the camera projection equation, we can build a
mapping function between 2D pixels and 3D points given the in-
trinsic camera matrix and the depth image. So we can assign the se-
mantic feature vector S for each pixel to its corresponding 3D point
Pb via this mapping function.

The Img2Pt layer plays a vital role in joining the powerful 2D se-
mantic segmentation networks and 3D point cloud network together.
Via Img2Pt layer, texture and geometry information can be fused
effectively. Img2Pt layer seems simple yet demonstrated to be ex-
tremely useful in our experiments.

The third module is SPCNet introduce in Section 3.2. What is dif-
ferent is that the input of SPCNet is just points coordinate without
other features, while the input here are points associated with the se-
mantic feature S. That is, F [0] in Equation 2 is none for SPCNet
while is the semantic feature S here. Thus, the texture and geometry
can be fused together inside the SPCNet.

4 EXPERIMENTS

4.1 Implementation Details

Datasets. In the following experiments, NYU [19] and NYU-
CAD [4] datasets are used to train and evaluate our network.
NYU [19] is a real indoor RGB-D dataset which contains 1449 RGB-
D images (795 for training, 654 for test) captured via Kinect sensor.
The corresponding volumetric ground truth is generated by voxeliz-
ing the CAD mesh annotations from Guo et.al. [4], object categories
are mapped following [20]. Because the NYU RGB-D and their cor-
responding volumetric ground truth are not well aligned, so we also
use the rendered RGB-D images from the CAD mesh annotations,
which is denoted as NYUCAD dataset.
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scene completion semantic scene completion
Method prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

trained on SUNCG + NYU dataset
SSCNet [20] (CVPR17) 55.6 91.9 53.2 5.8 81.8 19.6 5.4 12.9 34.4 26.0 13.6 6.1 9.4 7.4 20.2
SSCNet [20] (CVPR17) 59.3 92.9 56.6 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5
VVNetR120∗ [5] (IJCAI18) 69.8 83.1 61.1 19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9
VVNetR60∗ [5] (IJCAI18) 68.3 85.1 60.9 21.6 94.5 28.6 12.9 19.7 56.3 51.0 17.2 10.4 35.2 15.6 33.0
SNet∗ [11] (NIPS18) 67.6 85.9 60.7 22.2 91.0 28.6 18.2 19.2 56.2 51.2 16.2 12.2 37.0 17.4 33.6
TNet∗ [11] (NIPS18) 67.3 85.8 60.6 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 34.4

trained on NYU dataset
SSCNet [20] (CVPR17) 57.0 94.5 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7
SGC [24] (ECCV18) 71.9 71.9 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0.0 33.4 11.8 26.7
TS3D∗ [3] (18) 65.7 87.9 60.4 8.9 94.0 26.4 16.1 14.2 53.5 45.8 16.4 13.0 32.9 12.7 30.4
DDR∗ [8] (CVPR19) 71.5 80.8 61.0 21.1 92.2 33.5 6.8 14.8 48.3 42.3 13.2 13.9 35.3 13.2 30.4
SPCNet (Ours) 72.1 42.2 36.3 33.8 64.4 38.3 7.5 30.7 53.4 42.6 19.7 5.5 34.2 13.9 31.3
IPF-SPCNet∗ (Ours) 70.5 46.7 39.0 32.7 66.0 41.2 17.2 34.7 55.3 47.0 21.7 12.5 38.4 19.2 35.1

Table 1: SSC results on the NYU test set. Methods with .∗ use the RGB images as additional information. SPCNet∗∗ are trained on both NYU and NYUCAD
depth training set. Bold numbers represent the best scores.

scene completion semantic scene completion
Method prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

trained on SUNCG + NYUCAD dataset
SSCNet [20] (CVPR17) 75.4 96.3 73.2 32.5 92.6 40.2 8.9 33.9 57.0 59.5 28.3 8.1 44.8 25.1 40.0

trained on NYUCAD dataset
TS3D∗ [3] (18) 80.2 91.0 74.2 33.8 92.9 46.8 27.0 27.9 61.6 51.6 27.6 26.9 44.5 22.0 42.1
DDR∗ [8] (CVPR19) 88.7 88.5 79.4 54.1 91.5 56.4 14.9 37.0 55.7 51.0 28.8 9.2 44.1 27.8 42.8
SPCNet (Ours) 81.4 70.9 61.0 58.1 91.6 53.7 13.0 52.1 68.9 57.7 31.9 6.4 50.5 28.1 46.6
IPF-SPCNet∗ (Ours) 83.3 72.7 63.5 58.8 91.9 60.5 25.2 53.6 72.9 62.4 33.8 12.4 53.6 32.5 50.7

Table 2: SSC results on the NYUCAD test set. Methods with .∗ use the color images as additional information. Bold numbers represent the best scores.

SUNCG is a manually created large-scale 3D Indoor scene dataset
introduced by [20]. Nearly 150k pairs of depth map and complete
ground truth volume for training, and totally 470 pairs for testing.

For the sake of fair comparison, we downsample the input and out-
put volume into a size of 60×36×60 followed the other SSC meth-
ods. While only the observed and occluded points are used as inputs.
Each observed and occluded point is assigned a label as ground truth
for training and evaluation.

Evaluation metric. Following the evaluation protocol of [20], we
measure the IoU of each category and the mean IoU across all cate-
gories in SSC task. For scene completion task, IoU, as well as pre-
cision and recall, is computed. The IoU is point-level intersection
over the union of predicted point labels compared to ground truth
labels. For scene completion task, the IoU is computed on occluded
points. For semantic scene completion task, the IoU is computed on
both the observed and occluded points. Note that the computation of
point-level IoU in this paper is equivalent to the voxel-level IoU used
in other SSC works. Because the points and voxels are one to one
corresponding.

Learning Policy. During training stages, we random sample 2048
observed points and 2048 occluded points as input to feed into the
proposed model. Our model is trained using the Adam optimizer with
a weight decay of 1e-8 and batch size is 4, the initial learning rate is
0.001 and decay by a factor of 0.8 every 5000 step. We use the point-
wise softmax as the loss function as in [20] for network training. We
do not apply the data balancing scheme in [20] in our training pro-
cess. During testing stage, we split each point cloud samples into sev-
eral groups by random sampling. Each group contains 2048 observed

points and 2048 occluded points. We combine the predict results of
each group to get the final prediction for the whole point cloud sam-
ple. The ImgSegNet used in IPF-SPCNet is based on DeeplabV2 [1]
trained on NYU color images as in [11]. The IPF-SPCNet are initial-
ized by the pre-trained SPCNet.

4.2 Compare SPCNet to State-of-the-art

NYU Dataset Table 1 shows the SPCNet results on NYU testing set
with a comparison to state-of-the-art methods. These methods are
trained on NYU or both NYU and SUNCG. Methods with .∗ also use
NYU RGB images as additional information for training and testing.
We compare SPCNet with methods trained on NYU for fairness.

Compares to the latest method (DDR), we achieve the best perfor-
mance for semantic scene completion, even without using the color
images as assistant information. Compares to the SGC [24] which
aims to improve the computing efficiency of 3D CNN network, our
methods with more efficient point cloud deep learning technique
shows the best performance in overall performance. Our methods
outperform the previous SSCNet by a notable margin, that are 6.6%
gains in semantic scene completion. Note that the proposed SPCNet
shows superior performance in some categories such as ceil., wall,
win., chair, sofa, table, objs.. We believe this improvement is due
to the powerful 3D structure capture ability of SPCNet, which can
extract effective 3D features for semantic labeling.

The recall and IoU of the SC task are low for NYU dataset. This
is mainly because there is some misalignment between the input
and output in NYU dataset. The ”misalignment problem” has also
been mentioned in the first work SSCNet on semantic scene comple-
tion [20]. The NYU dataset uses the depth from real-world as input,
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Figure 4: SPCNet results on NYUCAD. From left to right: Input Depth image (RGB images is just for better visualization), predicted result for both observed
and occluded points, predicted result for observed point, predicted result for occluded points, ground truth for both observed and occluded points, ground truth
for observed point, ground truth for occluded points. From top to bottom are different examples.

but uses the CAD model as output, which causes the misalignment
between input and output. For the voxel-based approaches, the label
of the input voxel will be shifted to another voxel when misalignment
happens. But for our point-based approach, we will completely lose
the label of the input point when misalignment happens. The point-
based approach is much sensitive to the misalignment problem, so
this dataset is very unfriendly to our point-based approach in scene
completion (SC) task.

Fortunately, the NYUCAD dataset uses the depth from the CAD
model as input, and use the CAD model as output. So we do not
suffer the misalignment problem as in the NYU dataset.

NYUCAD Dataset Table 2 presents the SPCNet results on NYU-
CAD testing set with a comparison to other approaches. Note that
SSCNet and SPCNet only use the depth images as input, while
TS3D [3] and DDR use color images as additional information. We
also achieve the best performance for semantic scene completion and
comparable performance scene completion. The proposed SPCNet
shows superior performance in some categories such as ceil., chair,
bed, table, furn. objs., which validate the robustness and general-
ization of the SPCNet.

Qualitative results Figure 4 shows visualized results of the scene
segmentation generated by the SPCNet (b,c,d), ground truth (e,f,g)
are also provided as a reference. All the results are acquired on the
NYUCAD test set. (b) is the predicted results for both observed and
occluded points. We take the observed result (c) and occluded result
(d) apart for better visualization. As can be seen, the predicted result
for the observed points is mostly correct compared to the correspond-
ing ground truth (f). SPCNet can also complete the satisfactory oc-
cluded scene shapes (d) compared to the corresponding ground truth
(g).

4.3 Compare IPF-SPCNet to State-of-the-art

NYU Dataset Table 1 shows the IPF-SPCNet results on NYU test-
ing dataset with a comparison to state-of-the-art methods. Compar-
ing to the latest methods (DDR) and (SNet, TNet), we achieve the
best performance in terms of IoU for semantic scene completion,
even without pre-training on big dataset (SUNCG). Note that the pro-
posed IPF-SPCNet shows superior performance in some categories
such as wall, chair, table, furn., objs.. And compared to the SPC-
Net, IPF-SPCNet gains a great improvement in almost all categories.
We believe this improvement is due to the combining of powerful
2D semantic segmentation network and powerful 3D SPCNet, which
take both texture and geometry information into considering.

NYUCAD Dataset Table 2 presents the IPF-SPCNet results on
NYUCAD testing dataset with a comparison to state-of-the-art ap-
proaches. We also achieve the best performance in terms of IoU for
semantic scene completion and comparable performance scene com-
pletion. The proposed IPF-SPCNet shows superior performance in
some categories such as ceil., wall, chair, bed, sofa, table, furn.
objs., which validates the robustness and generalization of the IPF-
SPCNet.

Qualitative results Figure 5 shows the visualized results of the
scene segmentation generated by the SPCNet, IPF-SPCNet and
ground truth. Comparing to the SPCNet, we can observe obvious
improvements in IPF-SPCNet, mainly due to the addition of texture
information. The additional texture information can help the SPCNet
correct some wrongly predicted semantic labels.

5 CONCLUSION

In this paper, we introduce the SPCNet, a point ConvNet for SSC,
which address this task in a more efficient point cloud space. We
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RGB-D SPCNet IPF-SPCNet GT

floor wall win. chair bed sofa table furn. obj.ceil.

Figure 5: Compare SPCNet and IPF-SPCNet results on NYUCAD. From left to right: Input RGB-D images, SPCNet results, IPF-SPCNet results and ground
truth. From top to bottom are different examples. There are obvious improvements from SPCNet to IPF-SPCNet.

also introduce an IPF-SPCNet to combine the texture with geome-
try information. Experimental results demonstrate that both SPCNet
and IPF-SPCNet can can address the SC problem in the point cloud
space, and achieve great SSC performance compared to the state-of-
the-art methods.
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