
An ideal team is more than a team of ideal agents
Can Kurtan and Pınar Yolum and Mehdi Dastani1

Abstract. The problem of building a team to perform a complex
task is often more than an optimal assignment of subtasks to agents
based on individual performances. Subtasks may have subtle de-
pendencies and relations that affect the overall performance of the
formed team. This paper investigates the dependencies between sub-
tasks and introduces some desired qualities of teams, such as pre-
serving privacy or fairness. It proposes algorithms to analyze and
build teams by taking into account the dependencies of assigned sub-
tasks and agent performances. The performance of the algorithms
are evaluated experimentally based on a multiagent system that is
developed to answer complex queries. We show that by improving
an initial team iteratively, the algorithm obtains teams with higher
performance.

1 INTRODUCTION
The problem of forming teams has been a central question in many
disciplines [3]. Put simply, the problem is to form a set of agents (hu-
man or software) with required capabilities so that they can perform a
task together. In the domain of service composition, this would corre-
spond to a set of service providers, each performing a single service,
which overall yields a composition of the desired service [9]. In the
domain of query answering, this would correspond to data sources
that can each answer part of a given question [8]. In the domain of
rescue operations, this would correspond to a set of human and robot
agents that work to help civilians [11].

While traditionally, the term team was used to refer to a set of
agents [2, 15, 19], the newer definitions refer the specific subtask that
will be performed by each agent [4, 10]. Following this, here we refer
to teams as the set of agents and their assigned subtasks. Assigning
subtasks to individual agents is typically modeled as an optimiza-
tion problem, where coverage of the subtasks is maximized, or the
number of agents involved is minimized. Many formalizations of the
problem exist in the literature [13, 15, 19]. Earlier approaches model
team formation with three important assumptions: (i) the overall task
can be divided into independent subtasks (ii) agents’ capabilities as
to what subtask they can do is known or computed easily and (iii) the
agents’ capabilities of performing a subtask is binary (e.g., no vari-
ation in the quality of the subtask performance). Even under these
assumptions, the problem of assigning subtasks to individual agents
is known to be NP-hard [2, 10, 15].

In many domains, these assumptions do not hold. Consider the fol-
lowing simple example from a query answering domain, where the
question is to find the title, author and the summary of books. Three
agents separately provide book names, book authors, and book sum-
maries but do not provide the information for the same books. An
answer for the question cannot be found by using the information

1 Utrecht University, The Netherlands, email: {a.c.kurtan, p.yolum,
m.m.dastani}@uu.nl

of these agents because the books do not match. Many agents pro-
vide the information of book titles, authors, or summaries at vary-
ing degrees; e.g., one agent knows three book titles and a thousand
book summaries, while another agent knows a thousand book titles
and three book summaries. The individual performance of an agent
depends on which subquery the agent is assigned. The number of
books returned in the answer depends on which agents are assigned
to which subqueries. Hence, building a team based on finding best
performing individuals does not always yield the best performing
team. We tackle this problem as an iterative process where a given
team can be improved by aiming desired qualities, such as better per-
formance or fairness.

Performance is generally deemed the most important criteria for
evaluating a team. However, in addition to performance, there are
other qualities of team building that are necessary to operate suc-
cessfully. For example, a team that carries out a critical task might be
required to keep the task details private. Is it possible to quantify the
teams in terms of privacy risks they pose? Or, a team building process
might require to be fair in giving chances to the possible candidates
in forming teams. How would the fairness of a team building algo-
rithm be measured? Depending on the content of a task, diversity
of the team might be required [14]. Is it possible to identify diverse
agents from their working with other agents automatically?

This paper proposes algorithms for addressing the above chal-
lenges: building teams for tasks whose subtasks are dependent to
each other and the performance of agents is affected by the depen-
dencies. We represent our knowledge of the agents in an environment
using expertise graph, which keeps information on how well agents
perform tasks individually and how well they can support each other
on common or different subtasks. Our algorithms make use of this
expertise graph to approximate how likely the agents are to perform
well in dependent subtasks. We provide metrics to measure various
properties of team building including fairness, privacy, and diversity.
We demonstrate the workings of our algorithms in a query answer-
ing multiagent system, where agents are data providers and tasks
are queries. We evaluate the proposed algorithms in an experimen-
tal setup and show that by improving existing teams incrementally,
we can build better performing teams.

The rest of this paper is organized as follows: Section 2 demon-
strates the team formation problem for question-answering multi-
agent teams. Section 3 describes the representation of the expertise
graph and metrics to analyze the graph. Section 4 provides both one
shot and iterative algorithms for building teams. Section 5 evaluates
our algorithms and shows that they can form well-performing teams.
Finally, Section 6 discusses our work in relation to other multiagent
team formation approaches in the literature.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

2 QUERY ANSWERING AS A TEAM
We assume a set of agents A = {a1, a2, . . . an} and a set of capabil-
ities C = {c1, c2, . . . cm} exist. We use aC ∈ 2C to denote the set
of capabilities of agent a ∈ A. We define a task T as a set of capabil-
ities, i.e., T ∈ 2C , and a team K as a set of agents to each of which
a task is assigned, i.e., K = {〈a, T 〉 | a ∈ A & T ∈ 2C}. We use K
to denote the set of all possible teams. A team is defined correctly if
and only if ∀〈a, T 〉 ∈ K : T ⊆ aC . For notation convenience, we
introduce three auxiliary functions Pcap, Pagent, and Pteam. The func-
tion Pcap : A×C → N is assumed to measure the performance of an
agent for an assigned capability, the function Pagent : A×2C → N is
assumed to measure the performance of an agent for an assigned task,
and the function Pteam : K → N is assumed to measure the perfor-
mance of a team. The performance of a team is of course measured
with respect to the tasks assigned to the agents that are participating
in a team.

An important domain for finding teams is that of information seek-
ing. Information seeking is a challenging process for users, especially
when searching answers for a complex query. Finding a source that
can provide all the information required to answer every constraint in
the query is generally not possible [18]. Therefore, answering queries
requires dividing the query into subqueries, finding the right agents
to ask each subquery, and collecting data from each agent.

We specifically target query answering in Semantic Web domain,
where the structure and interlinks enable the use of distributed data
sources through semantic queries [6]. Data sources are intercon-
nected to each other by either using the Uniform Resource Identi-
fiers (URIs) or linking to different URIs of the same entities. Thus,
searching through various sources for the same entity to find more in-
formation becomes possible. We map the problem of semantic query
answering as follows:

• Agents A is the set of data source agents that can answer queries.
• Capabilities C is the set of predicates corresponding to properties

of entities, i.e., predicates used in the ontology.
• Task T ∈ 2C is the set of predicates used in a conjunctive

SPARQL query. We assume that a conjunctive query can be con-
structed based on the predicates from T using one query variable.

• Team K = {〈a, T 〉 | a ∈ A & T ∈ 2C} is the set of agents with
their assigned sub-queries.

• Performance of a query answering team (Pteam) is defined as
the number of entities (URIs) returned as the answer of a query,
i.e., Pteam(K) = n where n is the number of returned entities.

• Performance of a data source agent (Pagent) is defined as the
number of entities (URIs) returned as the answer of a query as-
signed to an agent, i.e., Pagent(a, T) = n where n is the number
of entities returned by agent a ∈ A for task T .

• Performance of a property (Pcap) is defined as the number of
entities (URIs) returned as the answer of a query consisting of one
single property assigned to an agent, i.e., Pcap(a, c) = n where
n is the number of entities returned by agent a ∈ A for property
c ∈ C.

We would like to observe that performance of a query answer-
ing team decreases as the size of the task increases. This is due
to the nature of tasks defined as conjunctive queries. Consequently,
the performance of a query answering team is always less or equal
to the performance of the worst performing agent in the team, i.e.,
Pteam(K) ≤ min{Pagent(a, T) | 〈a, T 〉 ∈ K}.

We assume there is a dedicated agent that takes a query, assign
sub-queries to source agents, and combines resulting data to answer

the given query. To be able to build a team, this agent stores the re-
quired information, such as the capabilities of agents.

Example 2.1. Three agents A = {a, b, c} are data providers of en-
tities (books) for properties “name”, “author”, “summary” and “pub-
lisher”. Capabilities and corresponding performance values are given
below:

Agent name author summary publisher
a 10 5 7 -
b 11 - 7 8
c - 6 10 1

Agent a, which has capabilities aC = {name, author, summary},
can return ten books with name and five books with author, i.e.,
Pcap(a, name) = 10 and Pcap(a, author) = 5. For a conjunc-
tive query asking the books having both name and author informa-
tion, we know that the answer would be at most five books because
min(Pcap(a, name),Pcap(a, author)) = 5.

For a conjunctive query that questions books whose name, au-
thor, summary, and publisher information present together, how
can source agents be assigned to subqueries in order to maxi-
mize the number of results that will be produced by the team?
A naive approach that considers only capability performances
would assign agents to subtasks that has the highest performance
for the capability, such as K1 = {〈b, {name, publisher}〉,
〈c, {author, summary}〉}.

When we evaluate the performance of the team on the real
data, we see that the team cannot return any result for the given
query, i.e., Pteam(K1) = 0. On the other hand, team K2 =
{〈a, {summary, name}〉, 〈b, {publisher}〉}, 〈c, {author}〉}
performs much better, Pteam(K2) = 5, because agent a can provide
“name” and “summary” information for every book whose “pub-
lisher” information is provided by agent b and “author” information
is provided by agent c.

3 EXPERTISE GRAPH
As seen above, the assignments of subtasks to agents in a team will
be affected by the relations among subtasks, resulting in variance
in the performance of the team. As is customary, we assume that
we know the individual capabilities of agents. Further, we assume
that we have an indication of how well two agents can carry out two
subtasks together.

Inspired by social networks, we propose to represent the inter-
play between possible assignment as a graph model, called expertise
graph, which stores the capability and cooperation performances of
agents. Contrary to social networks where each node is an agent, here
each node is a possible assignment, which denotes an agent exhibit-
ing a particular capability; e.g., (a, name) and the edge between two
nodes denotes how well the two assignments would work together.

Definition 3.1 (Expertise Graph). G = 〈V,E〉 is an undirected
graph that represents agent-capability pairs (assigned capability) as
nodes V and pair-wise co-performances as edges E. An edge e be-
tween two nodes v1 = node(ai, ck) and v2 = node(aj , cl) can be
one of the three types: c-edge, s-edge, or j-edge.

A relation between two nodes can be one of the three types: (i)
The assignments in the two nodes could be carried out by the same
agent, meaning that the agent is competent in carrying out a subtask
that requires two capabilities. That is, ai = aj and ck 6= cl, then the
edge e is type c-edge, which corresponds to competency of agent ai

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

to be responsible for capabilities ck, cl together. (ii) The assignments
in the two nodes are done by different agents but the subtasks are the
same, such that when carried out together one agent is supporting
the other agent in the same subtask. That is, if ai 6= aj and ck = cl,
then the edge e is an s-edge. (iii) The nodes have different agents
and subtasks, then the edge e is a j-edge, which represents joint work
of two agents, where each is responsible for a different capability.
Thus, the performance value on each edge is given a meaning based
on the edge type, where the performance for the c-edge denotes how
well the agent can carry out two subtasks, whereas for the j-edge
the value denotes two agents working on two different tasks, and
for the s-edges how well one agent supports the other on the same
subtask. Formally, let node : A× C → V be a function that returns
the node of an agent-capability pair. pf : V ∪ E → N determines
the performance corresponding to a vertex or an edge such that for
a node v = node(a, c), pf(v) = Pcap(a, c) and for an edge e that
connects two nodes v1 = node(ai, ck) and v2 = node(aj , cl),

pf(e) =


Pagent(ai, {ck, cl}), if e is c-edge
Pteam({〈ai, {ck}〉, 〈aj , {ck}〉}), if e is s-edge
Pteam({〈ai, {ck}〉, 〈aj , {cl}〉}), if e is j-edge

Agent c
author

pf(v7)=6

Agent a
author

pf(v2)=5

Agent b
summary
pf(v5)=7

Agent a
name

pf(v1)=10

Agent b
name

pf(v4)=11

pf(e5)=16

p(e11)=3

pf(e16)=3

Agent c
summary
pf(v8)=10

Agent a
summary
pf(v3)=7

Agent b
publisher
pf(v6)=8

Agent c
publisher
pf(v9)=1

pf(e10)=4

pf(e1)=7

pf(e9)=7

pf(e2)=5

pf(e8)=5

pf(e6)=3 pf(e7)=14

pf(e21)=17

p(e12)=7

p(e13)=4

p(e4)=6

pf(e3)=8 pf(e19)=10
p(e15)=3

pf(e17)=6

pf(e22)=6

pf(e14)=4

pf(e18)=9

pf(e20)=1

Figure 1. The expertise graph of the agents in Example 2.1

The expertise graph of the agents in Example 2.1 is constructed
and presented in Figure 1, where the dotted lines denote c-edges,
the dashed lines denote s-edges, and line edges denote j-edges. For
instance, node v1 corresponds to “name” capability of agent a and
node v6 corresponds to “publisher” capability of agent b. The edge
between these two nodes represents their cooperation of agent a and
b when they are assigned to capabilities specified as their nodes.
The performance of this cooperation can be extracted from the edge,
which is a j-edge, as pf(e3) = 8. Notice that some of the nodes
do not have edges in between because those agents cannot work to-
gether when they are assigned to the corresponding capabilities. For
instance, v1 and v9 do not have an edge in between because the agent
a cannot work together with agent c when they perform capabilities
“name” and “publisher”, respectively.

The performance values that are stored in the graph as well as
the graph properties can be combined to give meaning to different
dynamics of working together. By defining appropriate metrics, it is

possible to measure the cooperativeness, versatility, and so on and
use these metrics as heuristics to build teams.

We define the following metrics on the expertise graph:

• Cooperativeness of a node measures how an agent a would per-
form c in relation to other capabilities performed by other agents.
Note that the cooperativeness is not a metric of an agent but is
specific to a particular capability. It is calculated based on j-edges
of the node as follows:

cpt(a, c) =
(∑

e∈Ej

pf(e)
)
/|Ej | (1)

where Ej is the set of j-edges connected to node(a, c).
• Versatility of a node measures how well an agent a can carry out

other capabilities when it performs capability c. That is, it is an
estimation of how an agent would perform in case of being re-
sponsible for multiple capabilities simultaneously. Again, versa-
tility is not a metric of an agent as a whole but it is calculated for
performing a particular capability. It is calculated as follows:

vst(a, c) =
(∑

e∈Ec

pf(e)
)
/|Ec| (2)

where Ec is the set of c-edges connected to node(a, c).
• Centrality of a node in a graph denotes how well a node is linked

to others in the graph. Contrary to above two metrics, here we
are not concerned with the centrality of an assignment but the
centrality of an agent. Hence, when calculating the centrality,
we consider all the nodes that belong to the agent. Thus, the
centrality becomes an estimation of how much an agent can be
involved in teams with different agents.

dct(a) =
(∑

v∈V

|edgesOf(v)|
)
/|V | (3)

where V = nodesOf(a) and nodesOf : A → 2V is a graph
function that returns all nodes of a given agent. This measure cor-
responds to the average of degree centrality values [16] of all the
nodes that belong to the agent.

Table 1. Graph metric values of the agents in Example 2.1

Agent capability cpt vst dct
a name 2.80 6.00 5.67
a author 1.40 4.5 5.67
a summary 3.75 5.50 5.67
b name 3.00 4.00 5.33
b summary 0.00 2.00 5.33
b publisher 5.00 2.00 5.33
c author 4.00 0.00 6.33
c summary 1.50 0.50 6.33
c publisher 0.00 0.50 6.33

4 ALGORITHMS FOR BUILDING TEAMS
Team formation approaches usually focus on building a team from
scratch in a way that one specific property of a team, such as com-
munication [10], is maximized. Another interesting dimension is to
start with an existing team for a task, which might be generated with
a tool in hand and improve the team to yield a better team in an it-
erative manner. This requires a metric for a performance estimation

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

of the generated team so that the algorithm can decide to continue to
iterate to find a better team or to stop. Below, we first show how a
simple algorithm for one shot team building can be used with the ex-
pertise graph. Next, we develop an iterative algorithm that improves
an existing team.

4.1 One-Shot Team Building
Team building can be done in various ways using the expertise graph,
such as selecting the agent that has the highest cooperativeness value
for a required capability. Note that the fact that the agent has a high
cooperativeness value does not guarantee that the agents will per-
form well in a team but increases the likelihood. This approach is
generalized to make agents part of the team based on a given metric
(Algorithm 1). capables : C → 2A is a function on the expertise
graph, which returns all agents that can perform a given capability,
such that capables(c) = {a | a ∈ A and c ∈ aC} (line 3). After
finding agents that can perform, it uses function max, which returns
the agent having the highest metric value for the capability, to find
which agent to assign (line 4). Finally, it adds the agent to the team
by assigning to that capability (line 5).

Algorithm 1: buildTeam(T,G,m)

Input: Task T , Expert Graph G, Metric m
Output: Team K in which metric m is maximized

1 K ← ∅
2 foreach c ∈ T do
3 U ← capables(c) // get all capables

4 a← max(c,G, U,m) // find the highest

5 K.add(a, {c})
6 end
7 return K

The algorithm selects the best agents in terms of a given perfor-
mance metric. By the means of the expertise graph, we can compare
agents based on capability performance, cooperativeness value, and
versatility. We introduce the corresponding teams as follows:

• HIP: Each capability is assigned to the agent that has the highest
individual performance for the capability. The team is composed
of the best agents based on their individual performance.

• HCPT: Each capability is assigned to the agent that has the highest
cooperativeness value for the capability. The team is composed of
agents that suit best to the cooperation with other agents for the
assigned capability.

• HVST: Each capability is assigned to the agent that has the high-
est versatility value for the capability. The team is composed of
agents that perform the best in case of being assigned to multiple
capabilities.

4.2 Iterative Team Building
The team formation process can start with an initial team that has
been already formed. However, the team may need further alterations
for many reasons, such as improving the expected performance or
exploring those that have not been used before.

4.2.1 Expected Team Performance

Since the individual capability performances and the pair-wise coop-
eration performances are known from the expertise graph, estimation

of a team performance can be exactly calculated for teams of size two
as each is assigned to a subtask of only one capability. However, it is
still not possible to calculate the exact performance of bigger teams
by only knowing the pair-wise performances. For bigger teams where
only one agent is assigned to each capability, expected ranges of a
team performance can be calculated to compare their performances.
For query answering domain, an expected maximum performance for
a conjunctive query is the maximum number of results that would be
obtained, while the minimum performance is the minimum number
of those results guaranteed to be returned.

The maximum performance of a team is bound by the cooperation
performances that appear as the edge values. The edge with the low-
est value is the bottleneck for the team such that the maximum perfor-
mance of the team can at best be as much as the lowest of the edges.
Thus, we estimate the maximum performance of the team by deter-
mining the minimum pair-wise cooperation performances value. Let
edges : K → 2E be a function that returns all edges covered by
a team K. Then, Pmax : K → N returns the maximum number of
results and is calculated as follows:

Pmax(K) = min{pf(e) | e ∈ edges(K)} (4)

Estimating the minimum performance of a team requires calcu-
lating the overlap between individual node performances and its as-
sociated edge performances through set intersection. We know the
performance of each node v (e.g., the number of URIs it will return)
of team K, though not the individual URIs. We represent this as a
set s where the size matches the performance of the node. Similarly,
we represent each edge e between the node v and the other nodes of
the team as a set of edges E, where the set size matches the pair-wise
performances for the assignment represented by the node v. Thus, we
have |E| sets, whose intersection yields the minimum number of re-
sults guaranteed to be returned, when compared with s. Note that the
same intersection can be computed for each node in the team and the
maximum of the estimations guarantees the minimum performance.
Below, we show both computations.

Let I : K × V → N be function that finds the minimum expected
performance for a team K by taking an agent-capability pair repre-
sented by a node. That corresponds to the intersection of v with its
edges and is calculated as follows:

I(K, v) =
∑
e∈E

pf(e)− (|E| − 1)pf(v) (5)

where E = edges(K) ∩ edgesOf(v). Let nodes : K → 2V be a
function that returns all nodes covered by a team K. Then, minimum
expected performance Pmin : K → N can be calculated by using
function I as follows:

Pmin(K) = max{I(K, v) | v ∈ nodes(K)} (6)

Example 4.1. The nodes of the best performing team in Example 2.1
are nodes(K2) = {v1, v3, v6, v7} and the edges of the team are
edges(K2) = {e1, e3, e4, e8, e9, e22}. The maximum expected per-
formance Pmax(K2) = 5 because the minimum of edge values is
equal to 5 for e8. The result of Equation 5 is equal to 1 if we use v1
as the input and it is equal to 5 if we use the other nodes, v3, v6, and
v7, as input. Equation 6 returns the maximum of those values as the
minimum expected performance, which is Pmin(K2) = 5. The ex-
pected performance boundaries of team K2 are equal to each other
and therefore, equal to the exact performance as well.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

4.2.2 Performance-Based Team Building

The expected performance of the team may not be at satisfying levels
because either the min performance is too poor or the max one is not
promising enough. Rather than building a completely new team in
these cases, the team can be altered in such a way that performance
expectation changes in the intended direction. Algorithm 2 shows a
procedure of altering a team to increase cooperativeness in the team.
We know that performance is correlated with the pair-wise coopera-
tive performances. Therefore, we can replace an assigned agent with
an agent or set of agents that have better local cooperativeness in that
specific team.

The algorithm finds first the average cooperativeness in a team
(line 4) by using the Equation 1, where the set of edges E =
edges(K) instead of all the edges in the graph. Then, it checks every
subtask assignment by starting from the agent that has the minimum
cooperativeness in the team. If it finds an alternative assignment for
an agent-capability pair having cooperativeness value lower than the
average, then it looks for alternative agents to replace the assignment.
For an alternative agent, it is important to check if the agent has been
a part of the team already. If that is the case, versatility of the pos-
sible new assignment has to be considered (line 15) rather than co-
operativeness (line 13) to compare with others. Cooperativeness and
versatility values are normalized by the node performance to com-
pare alternatives based on their expected minimum performance in
the team (see Equation 6). The agent with the highest normalized
value is selected as an replacement (line 19). A team is repeatedly al-
tered with the alternative agents as long as the expected performance
improves, i.e., at least Pmin or Pmax increases.

Algorithm 2: alterTeam(K,G)

Input: Team K, Expert Graph G
Result: Team K is improved

1 while true do
2 Ko ← K.copy() // take a copy of team

3 M ← teamCpt(K,G) // cpt values in team

4 avg ← avg(M) // average cpt of team

5 foreach v ∈M do
6 y ←M.getValue(v) // cpt of v in team

7 ao ← agent(v), c← cap(v)
8 if y < avg then
9 U ← capables(c) \ {ao}

10 M ← initOrderedMap // descending

11 foreach a ∈ U do
12 if not K.has(a) and cpt(a, c) > avg then
13 M.add(a, cpt(a, c)/pf(getNode(a, c)))
14 else if K.has(a) and vst(a, c) > avg then
15 M.add(a, vst(a, c)/pf(getNode(a, c))
16 end
17 end
18 if M 6= ∅ then
19 K.replace(c, ao,M.first())
20 end
21 end
22 end
23 if Pmin(K) ≤ Pmin(Ko) and Pmax(K) ≤ Pmax(Ko) then
24 K ← Ko // no improvement, last version

25 break
26 end
27 end

4.2.3 Exploration-Based Team Building

The above procedure does not take into account how often certain
agents are used in teams as well as which agents have not been ex-
plored. This is an important concern when building teams as reusing
the same set of agents might disrupt the flow of certain types of in-
formation. Furthermore, the agents that have not been used might
provide information that is scarce and difficult to obtain otherwise.
Hence, we provide a variation on Algorithm 2 that encourages explo-
ration over performance. Notice that the exploration is not random
and that still qualified agents are chosen for the team.

In Algorithm 2, agents are evaluated based on their performance
(line 13 and 15). The algorithm always selects the agent with the
highest performance (line 19). For most of the agents in a team, the
individual performance exceeds the team performance (see Equa-
tion 4). This results in an extra performance that a team cannot
get benefit from. In order to increase the exploration, the num-
ber of times the agents are consulted before is stored. This time,
agents are added to the ordered map with their consultancy count
(M.add(a, getConsult(a, c))). Then, from the map of candidate
agents, which are expected to increase the team performance, the
least consulted agent is selected (M.last()).

4.3 Qualities for Team Building

The performance of a team is the only required criteria for evaluating
the team. However, in many settings, measuring other qualities of
teams or the process of team building could be essential. We define
three qualities and provide metrics to measure them.

Fairness: Fairness refers to the process of building teams, rather
than the team itself. If certain agents are always chosen for the
formed teams, some agents might never perform subtasks and thus
“starve”. A fair team building process would give chance to agents
that can provide services to a team to take part. While fairness helps
with unpopular agents to take part in teams, it also enables the teams
to find these agents, enabling them to be reused more often in the
future. Fairness can only be measured over the course of successive
team buildings and based on individual subtasks. The algorithm is
most fair, when each subtask for every team generated, is assigned
uniformly to agents that can carry out the task. Standard deviation
of the number of times that agents are assigned to perform their ca-
pabilities reflects to how uniform the assignment is. We measure the
fairness of assignments for graph F (G) as inverse of standard devi-
ation.

Privacy: The subtasks that are carried out might reveal private in-
formation about the task owner. For example, the fact that certain
pieces of data are being sought gives away the fact that the query
owner is investigating the topic. It would be best if the task can be
performed in a privacy-preserving manner, such that none of the sub-
task performers can leak information about the task to third parties.
Intuitively, the more well-connected an agent is to others, the more
likely it is to leak the information to others, yielding a high privacy
risk [1, 5]. Given a team K, the agent that has the highest centrality
poses the largest risk for privacy. We measure the privacy risk of a
team R(K) as follows:

R(K,G) = 1− max{dct(a) | a ∈ K}
max{dct(ag)|ag ∈ G} (7)

To mitigate this privacy risk, agents with lower connectivity values
can be preferred over others. However, a simple swapping of two

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

agents is not adequate as the relations of the new agent with the rest
of the team are not accounted for.

Diversity: Another important quality of a team is diversity. Diversity
of a team usually corresponds to the difference of individuals. Since
in our case, each agent performs a different subtask in a team, the
variation in subtasks is already in place. However, another important
aspect of diversity is the different groups or communities from which
assignments in a team come from. Note that this diversity does not
refer to the diversity of individuals, but to the assignment of agents
for subtasks. Current community detection algorithms [7] when ap-
plied on the expertise graph can identify the existing communities.
We measure the diversity of a team as the number of assignments
that come from different communities, e.g., a diversity of 1 denot-
ing the minimum diversity where all assignments are from the same
community.

5 EVALUATION
In order to evaluate the proposed algorithms, we have created an ex-
perimental setup, which is inspired by the case study. The requested
task is a query, which describes books. However, this time there
are ten different properties of books, corresponding to agents’ ca-
pabilities. Agents provide varying number of books as an answer to
tasks that require those capabilities. The capabilities are distributed
to agents to mimic the fact that few agents are experts in a lot of
capabilities, whereas many agents are experts in a few capabilities.
More precisely, three agents have ten capabilities, four agents have
nine capabilities, and so on, yielding a total of 52 agents.

The extent of the agents’ capabilities correspond to the number of
different books that agents return as answer for a query correspond-
ing to the capability. For each capability, an expert is assigned to
know between 10 to 100 different books from a pool of 200 books.
When the number is larger than 50, the books are assigned randomly
from the 200 books. For agents that know less than 50 books, books
are assigned from one of two subsets each containing 50 of the 200
books. This ensures to have variations between the agents in such a
way that the agents that know a lot are generalists, whereas the agent
that know little are specialists. That means the agents that know less
are more likely to have complete knowledge about a special area.

We have assigned the agents in the above setup to primitive tasks
(tasks of single capabilities) to observe their individual and pair-wise
cooperation performances. The resulting performances yield an ex-
pertise graph with 296 nodes and 43622 edges. The average value of
nodes is 52.68, whereas the average value of edges is 24.27, more
specifically 16.57 for j-edges, 16.41 for c-edges, and 89.18 for s-
edges. Comparing the values of nodes to the values of edges, espe-
cially j-edges, shows that performance of agents would significantly
decrease if they work together with arbitrarily assigned others. The
expertise graph even lacks edges between some of the nodes because
these agents cannot work together for the corresponding capability
assignments.

Using the above setup, we evaluate how teams can be built. In or-
der to evaluate team performances, we create tasks having vary from
size three to seven. For each size, we have created ten different tasks
that each require different set of capabilities to be performed. Each
task is first evaluated with three one-shot teams formed by Algo-
rithm 1, namely HIP, HCPT, and HVST. Next, the same set of tasks
are evaluated with the two iterative algorithms, namely Performance-
Based and Exploration-Based. When doing so, we first create 100
teams for each task by assigning one of the capable agents to each
required capability randomly. This process results in 1000 different

teams for each task size. Those teams are used by Algorithm 2 as
input.

Table 2 shows the resulting performances for each task size and
algorithm. Notice that as the task size increases, the performance of
each algorithm decreases. This is expected as the performance cor-
responds to the average number of results returned and as the task
includes more subtasks, the possible results are fewer. These tasks
correspond to conjunctive queries and therefore, it is an expected
outcome that the more constraints are introduced, the fewer number
of books satisfy all the constraints. When comparing the individual
performance of the algorithms, we see that for the smallest task size
(3), the best results are obtained by HIP, while HCPT’s performance
is comparable. The proposed iterative approaches do not perform as
well. However, starting from task size 4, performance-based iterative
algorithm outperforms all the rest consistently. The main reason for
this is that when the task size is large building a team by just adding
“ideal” agents in do not capture the relations among them. It is nec-
essary to consider how the team will perform as a whole and update
the team when an agent does not fit the team.

Table 2. Performance of teams for different task sizes

One-Shot Iterative
Size HIP HCPT HVST Pf-based Exp-based
3 21.44 20 12.4 16.78 12.88
4 9.6 10.5 5.7 14.54 6.82
5 5 5.6 2.6 10.83 3.79
6 2.3 3.4 1.3 7.71 2.21
7 1.3 2 0.9 5.98 1.41

We explore the performance evolution of performance-based iter-
ative algorithm more in Table 3. The columns under initial are the
average performance of the randomly constructed teams at the be-
ginning of the iteration process while the columns under final are
the average performance of the improved teams at the end of the it-
erative process. It is important to note that the exact performance
of initial teams are calculated only to compare the results and those
values have not been used in the algorithm. The algorithm has been
called repeatedly to improve a team only based on the expected per-
formance, which always guarantees that the actual performance will
be in the boundaries. We see that performance expectation of the
resulting teams is given with a wider window. This is an expected
outcome as there are more relations to account for in bigger teams.

Table 3. Performance evolution of teams

Initial Final
Size Pmin Pmax exact Pmin Pmax exact
3 2.54 10.37 6.14 12.64 22.24 16.78
4 0.5 8.29 2.80 10.55 22.75 14.54
5 0.06 6.35 1.21 6.54 20.43 10.83
6 0 5.45 0.57 2.88 18.73 7.71
7 0 4.60 0.27 1.53 17.79 5.98

Lastly, we compare the two iterative algorithms in terms of fair-
ness. We have calculated the fairness over number assigned tasks
and presented the results in Figure 2. Exploration-based algorithm
is expected to increase the fairness since it prefers least consulted
agents in alternatives. Performance-based algorithm assigns better
performing agents more than the others. Thus, intuitively, we ex-
pect some agents to be left at a disadvantage. This is reflected in the

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

results where exploration-based algorithm achieves higher fairness
than performance-based algorithm. Moreover, with performance-
based algorithm the decrease in fairness is sharper whereas with
the exploration-based algorithm the decrease is slow. Overall, even
though the exploration-based approach does not attain as high per-
formance as the performance-based approach, it can still form teams
that perform relatively good while being more fair.

Figure 2. Fairness of iterative algorithms over tasks

6 DISCUSSION
The problem of team formation has been traditionally considered as
an optimization problem, where subtasks are assigned to ideal can-
didates to carry out the task [2, 13]. Variations on this include ad-
dition of a budget for communication or agent costs. For example,
Kargar et al. [10] tackle the problem of finding a team of experts
from a social network to complete a task under a budget. Commu-
nication cost is considered to be pair-wise, such as physical distance
between experts. They assume those values are independent and thus
the communication cost of a team is calculated as the sum of dis-
tances. They consider both personnel and communication costs to-
gether and represent the problem as a bicriteria optimization prob-
lem, which is NP-hard. Two approaches are proposed: finding a team
with bounded budget, which is an approximation algorithm, and find-
ing Pareto optimal teams, which returns a set of teams in which each
team is guaranteed to be not dominated by any other team in terms
of personnel and communication costs. They evaluate the proposed
algorithms on IMDB dataset and show that those are effective and
efficient algorithms.

Rangapuram et al. [19] model the problem as a weight matching
problem in a weighted bipartite graph where the weight between each
pair of agents reflects their degree of compatibility to jointly solve
tasks. These weights are updated along multiple encounters between
agents. In the formalization, a task is given as a set of triples that
specifies required amount for each skill to finish the given task. The
proposed algorithm aims to maximize the collaborative compatibil-
ity and satisfy the skill requirement, budget constraints, bound on
the team size and distance based constraint. When a team is formed,
every agent is assumed to perform every skill it has. While these ap-
proaches provide the best assignment for agents to subtasks in terms
of performance, they do not explicitly consider the relations among

subtasks, the context in which the teams are formed, as well as the
team building properties, such as privacy preserving or fairness [3].

More recent approaches to team formation consider factors apart
from the optimization of tasks, such as the synergy of the team or
the personal traits of the individuals. Liemhetcharat and Veloso [12]
propose a model that learns capabilities of agents and constructs a
synergy graph among them to solve the team composition problem
using previous joint experiences. They define a synergy model as
a graph where the distance between agents is an indicator of how
well they work together. They form teams from capable agents to
maximize team’s internal synergy. Andrejczuk et al. [4] represent
agents with personal properties and tasks with information on re-
quired congeniality, competence, and so on. They partition a given
set of agents into teams using minimum costs so that within a task
all competence requirements are covered and team members work
well together. They propose a model that considers competence lev-
els and personality measures together to compose synergistic teams.
Peleteiro et al. [17] try to capture the quality of the solutions of team
tasks via a model that besides using skills and compatibility between
agents (called the strength of collaboration synergies within coali-
tions), calculates the reputation of teams (coalitions) as a whole and
of single agents. These reputation values are used by the team com-
position process.

Our work differs from these approaches in that we consider how
well two agents work together on a given subtask as well as the pos-
sible degradation of performance when multiple subtasks are per-
formed by a single agent. Further, we develop methods for forming
teams by modifying teams. With our proposed iterative algorithm,
we can start with teams with low performance and improve them
to yield performances that are far better than individually assigning
agents to tasks. The proposed qualities for team building can be used
further to measure and compare teams. We use the expertise graph as
the representation of knowledge. The expertise graph could be read-
ily available from the system. Alternatively, the expertise graph can
be constructed at once, as we do in the experiments, or at run time
as information becomes available. Whenever a new agent joins the
network, it is possible to extend the graph by observing the perfor-
mance of the new agent. The team building algorithms do not require
the graph to contain the complete knowledge of the pair-wise per-
formance values. Using a partial expertise graph is possible but the
expected performance results are more accurate with the complete
graph.

This work opens up interesting directions for further research.
Currently, we are reusing existing teams that are available for the ex-
act same task at hand. However, many times the requested task could
resemble an existing task but still be different. Quantifying the simi-
larity of the task, deciding on which previous team to reuse, and adapt
the team appropriately are all important challenges to tackle. Further,
our current team compositions assign a single subtask to each agent.
However, it is possible in teams to have multiple agents to work on
the same subtask. It would be possible to exploit the s-edges in the
expertise graph to devise teams that collaborate on subtasks.

ACKNOWLEDGEMENTS

This work was done in the context of the Golden Agents project,
funded by the Netherlands Organization of Science NWO – Large
Investments program.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

REFERENCES
[1] Jose Alemany, Elena Del Val, Juan M Alberola, and Ana Garćia-Fornes,

‘Metrics for privacy assessment when sharing information in online so-
cial networks’, IEEE Access, 7, 143631–143645, (2019).

[2] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gio-
nis, and Stefano Leonardi, ‘Online team formation in social networks’,
in Proceedings of the 21st International Conference on World Wide
Web, pp. 839–848. ACM, (2012).

[3] Ewa Andrejczuk, Rita Berger, Juan A Rodriguez-Aguilar, Carles Sierra,
and Vı́ctor Marı́n-Puchades, ‘The composition and formation of effec-
tive teams: computer science meets organizational psychology’, The
Knowledge Engineering Review, 33, (2018).

[4] Ewa Andrejczuk, Filippo Bistaffa, Christian Blum, Juan A Rodriguez-
Aguilar, and Carles Sierra, ‘Synergistic team composition: A compu-
tational approach to foster diversity in teams’, Knowledge-Based Sys-
tems, (2019).

[5] Michael S Bernstein, Eytan Bakshy, Moira Burke, and Brian Karrer,
‘Quantifying the invisible audience in social networks’, in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 21–30. ACM, (2013).

[6] Christian Bizer, Tom Heath, and Tim Berners-Lee, ‘Linked data: The
story so far’, in Semantic Services, Interoperability and Web Applica-
tions: Emerging Concepts, 205–227, IGI Global, (2011).

[7] Michelle Girvan and Mark EJ Newman, ‘Community structure in so-
cial and biological networks’, Proceedings of the National Academy of
Sciences, 99(12), 7821–7826, (2002).

[8] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler, ‘Conjunc-
tive query answering for the description logic shiq’, Journal of Artificial
Intelligence Research, 31, 157–204, (2008).

[9] Michael N Huhns and Munindar P Singh, ‘Service-oriented computing:
Key concepts and principles’, IEEE Internet Computing, 9(1), 75–81,
(2005).

[10] Mehdi Kargar, Morteza Zihayat, and Aijun An, ‘Finding affordable and
collaborative teams from a network of experts’, in Proceedings of the
2013 SIAM International Conference on Data Mining, pp. 587–595.
SIAM, (2013).

[11] Hiroaki Kitano and Satoshi Tadokoro, ‘Robocup rescue: A grand chal-
lenge for multiagent and intelligent systems’, AI Magazine, 22(1), 39–
52, (2001).

[12] Somchaya Liemhetcharat and Manuela Veloso, ‘Modeling and learning
synergy for team formation with heterogeneous agents’, in Proceed-
ings of the 11th International Conference on Autonomous Agents and
Multiagent Systems-Volume 1, pp. 365–374. International Foundation
for Autonomous Agents and Multiagent Systems, (2012).

[13] Kathryn Sarah Macarthur, Ruben Stranders, Sarvapali Ramchurn, and
Nicholas Jennings, ‘A distributed anytime algorithm for dynamic task
allocation in multi-agent systems’, in Twenty-Fifth AAAI Conference on
Artificial Intelligence, (2011).

[14] Leandro Soriano Marcolino, Albert Xin Jiang, and Milind Tambe,
‘Multi-agent team formation: diversity beats strength?’, in Twenty-
Third International Joint Conference on Artificial Intelligence, (2013).

[15] Tenda Okimoto, Nicolas Schwind, Maxime Clement, Tony Ribeiro,
Katsumi Inoue, and Pierre Marquis, ‘How to form a task-oriented ro-
bust team’, in Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 395–403. International
Foundation for Autonomous Agents and Multiagent Systems, (2015).

[16] Tore Opsahl, Filip Agneessens, and John Skvoretz, ‘Node centrality
in weighted networks: Generalizing degree and shortest paths’, Social
networks, 32(3), 245–251, (2010).

[17] Ana Peleteiro, Juan C Burguillo, Michael Luck, Josep Ll Arcos, and
Juan A Rodrı́guez-Aguilar, ‘Using reputation and adaptive coalitions to
support collaboration in competitive environments’, Engineering Ap-
plications of Artificial Intelligence, 45, 325–338, (2015).

[18] Bastian Quilitz and Ulf Leser, ‘Querying distributed RDF data sources
with sparql’, in European Semantic Web Conference, pp. 524–538.
Springer, (2008).

[19] Syama Sundar Rangapuram, Thomas Bühler, and Matthias Hein, ‘To-
wards realistic team formation in social networks based on densest sub-
graphs’, in Proceedings of the 22nd International Conference on World
Wide Web, pp. 1077–1088. ACM, (2013).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

