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Abstract. Recently, model-agnostic meta-learning (MAML) and

its variants have drawn much attention in few-shot learning. In this

paper, we investigate how to improve the performance of a portable

MAML network so that it can be used in handheld devices, such as

small robots, mobile phones, and laptops. We propose a novel ap-

proach named portable model-agnostic meta-learning (P-MAML),

where valuable knowledge is distilled from a teacher MAML net-

work to a portable student MAML. Moreover, data augmentation

and ResNet architecture are employed in the teacher MAML network

so as to avoid overfitting and enhance efficiency. To the best of our

knowledge, this is the first work to consider a portable meta-learning

model through knowledge distillation (KD) to learn a good initializa-

tion. Extensive experimental results on three real datasets show that

our P-MAML algorithm greatly enhances the accuracy through KD

from the teacher network. As shown, P-MAML with KD improves

the performance of one-shot learning as high as 10% in comparison

to that without KD.

1 INTRODUCTION

Current learning algorithms based on deep neural networks (DNNs)

require a mass of data to achieve state-of-the-art performance in

many classification tasks. In comparison, each human being learns

new concepts and skills much faster and more efficiently. For exam-

ple, children can quickly distinguish a cat from a dog just by being

told a few times. Therefore, it is possible to design a machine learn-

ing model with a similar principle to learn new tasks quickly with

only a couple of training examples.

For this purpose, meta-learning methods have been proposed.

Meta-learning is also well-known as “learning to learn”. This is be-

cause the meta-learning algorithm aims to train a meta-learner by us-

ing some similar tasks. During the fine-tuning process, a well-trained

meta-learner is capable of adapting to or generalizing new tasks and

environments that have never been encountered during the training

process. Tasks can be a well-defined family of machine learning

problems: regression, classification, reinforcement learning and so

on. For example, here are a couple of concrete meta-learning tasks:

• A classifier trained on non-cat images can judge whether a given

image contains a cat after looking at several photos of a cat.

• A go-robot is able to quickly learn to play chess based on similar-

ities in board layout and logical thinking.
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• A mini robot completes the desired task on an uphill surface dur-

ing the test phase even though it has been only trained in a flat-

surface environment.

Model-agnostic meta-learning (MAML) with four layers, the most

representative method of meta-learning, has achieved positive per-

formance in one-shot learning [9]. However, the performance of the

network with a large width, deep layers and many parameters, is gen-

erally superior to those with a small width, shallow layers and fewer

parameters when trained on the same dataset [18,25]. If we use large

networks in combination with the MAML method, it can be difficult

to deploy such large networks on resource-limited embedded systems

due to high computational complexity. So, along with the increasing

demand for low-cost networks with less computation and memory, it

is essential to design a smaller network that performs as good as a

relatively large network [11].

Based on the model compression algorithm [5], the knowledge

distillation (KD) is proposed [8], which uses a deep neural network

(a teacher network) to guide the training of shallow network (a stu-

dent network). The student network outperforms an identical-layer

network without distillation. We believe that if we use a teacher net-

work to mentor the four layers of MAML for training, the perfor-

mance can be further improved without introducing extra complex-

ity. In this paper, as the first work to combine MAML with KD, we

propose portable model-agnostic meta-learning (P-MAML). Exper-

iment results show that P-MAML with small capacity can improve

the recognition performance of one-shot learning.

Our main contribution can be summarized as follows

• We propose P-MAML to incorporate the power of knowledge dis-

tillation into MAML, showing that P-MAML outperforms vanilla

MAML on one-shot image classification.

• Data augmentation and ResNets are considered, because MAML

embedded in a deep network is easy to cause overfitting and

gradient-vanishing problem.

• Extensive experiments conducted on three popular datasets: Mini-

ImageNet [29], CUB [23] and Omniglot [27] demonstrate the ef-

fectiveness of our proposed P-MAML.

2 RELATED WORK
Our work is broadly related to three research topics: one-shot image

classification, meta-learning and knowledge distillation.

2.1 One-shot Image Classification
In recent years, the investigation of one-shot learning (OSL) has

made significant progress. As follows, we retrospect the literature

of OSL methods from three perspectives: data, algorithm and model.
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Training data can be augmented by using prior knowledge of ex-

isting samples. On image classification tasks, many data augmen-

tations are completed by transforming original training samples: 1)

flipping [22] takes the vertical axis passing through the image cen-

ter as the symmetry axis, and exchanges the left and right pixels; 2)

rotating [1] rotates the image through 60◦, 90◦ and 180◦; 3) scaling

means amplification or shortening of the training set [31]; 4) noise-

addition [15] represents the random disturbance of RGB of every

pixel in the image. The common noise modes include salt and pep-

per noise, and Gaussian noise.

Algorithms can train an excellent initial parameter through multi-

ple related tasks. Koch et al. [17] propose a method to use the siamese

neural network to do few-shot image classification. In order to out-

put the probability of two images belonging to the same class, the

siamese network uses two networks to extract features from both im-

ages and provides a ranking on the similarity score in metric space.

A non-parameter matching network is proposed [29], which maps a

small labeled training dataset and a new task to a correct label, adapt-

ing quickly to the new class without fine-tuning. The MAML [9] is

divided into the inner loop and outer loop, where the inner loop is

used to calculate the update direction of each batch of tasks, and

outer loop updates the meta-parameter θ by minimizing the output of

query set. Finally, it learns a good meta-learner, which can be gener-

alized to a new task through a few updates. And its variant in [2, 10]

is also a popular meta-learning method achieving high performance.

Models can update parameters via few-shot samples by design-

ing a model structure, and directly establishing the mapping func-

tion between the input and predicted value. Multi-task learning [6]

learns multiple related tasks spontaneously using specific informa-

tion of each task and generic information shared across tasks. In [16],

Jia et al. propose embedding learning that tranform input data into a

smaller embedding space, where the pair of dissimilarity and simi-

larity can be easily identified. Embedding learning is generally com-

posed of task-specific method, task-invariant method and a combina-

tion of task-specific and task-invariant.

2.2 Meta-Learning

From a macro perspective, meta-learning methods are mainly divided

into three categories: metric-based, model-based and optimization-

based [9, 27]. This paper focuses on the optimization-based meta-

learning method, which uses few-shot labeled samples in tasks to

update a meta-learner.

By focusing on the distribution of each category in the whole task

space, meta-learning can obtain prior knowledge and quickly adapt to

new tasks, so that it can solve few-shot problems. In [1], a memory-

augmented neural network can change the bias through weight up-

dating and adjust the output result through cache representations in-

memory stores. Benaim et al. [4] propose a unsupervised domain

translation method that has two steps: first, they train a variational

autoencoder for domain B; then, given a new sample x, a variational

autoencoder is created for domain A by directly adapting the layers

that are close to the image in order to directly fit x, and other layers

are indirectly adapted.

Different from the above meta-learning methods, several works

adopt feature extraction or domain transfer methods to enhance the

performance of meta-learning. In [32], Zhou et al. propose deep

meta-learning that can achieve good performance by integrating the

representation of deep learning into meta-learning. Instead of using

original data, they feed the meta-learner with deep features extracted

by the ResNet50. Sun et al. [28] show a novel few-shot learning

method named meta-transfer learning (MTL) that learns data infor-

mation from a deep neural network and then transfers to a shallow

neural network.

These algorithms do improve the performance of meta-learning in

few-shot image classification, but meanwhile suffer from the prob-

lem of high computational complexity.

2.3 Knowledge Distillation

Knowledge distillation aims to transfer knowledge from a teacher

network with deep layers and good performance to a high-accuracy

student network with shallow layers, which has drawn much atten-

tion in recent years.

In [5], Bucilu et al. propose model compression, in which the pur-

pose is to compress large and complicated ensembles into a smaller

and simpler model, without significant loss in performance. Hinton

et al. [8] propose knowledge distillation, in which a student network

is trained by the soft output (also called dark knowledge) of an en-

semble of a teacher network. Compared with a one-hot label, the

softening softmax from a teacher network contains more informa-

tion about different classes among data, and hence helps the student

network achieve better performance.

There have been lots of literature working on knowledge distil-

lation. In [24], Romero et al. propose the training of a student net-

work using both the final output and intermediate representations of

a teacher network, which adds a regressor on intermediate layers to

match different size of teacher’s and student’s outputs. Ba and Caru-

ana [3] show that a shallow feed-forward network trained using a

deep manner can learn a complex function and achieve high accu-

racy that previously can be only achieved using deep model. In [20],

Mirzadeh et al. think that the performance of a student network will

degrade when the gap between student and teacher is large, so a

teacher assistant is used as an intermediate network to reduce the

impact of this gap.

The process of learning between a teacher and a student net-

work is similar to the training process of generator and discrimina-

tor of generative adversarial networks (GAN). In recent years, the

combination of these two concepts has attracted the interest of re-

searchers [14, 26, 30]. They use an adversarial-based learning strat-

egy to update the training loss of a student network, so that the stu-

dent can better learn high-dimensional semantic information of the

teacher network. Furlanello et al. [12] do not utilize the conventional

model-compression of knowledge distillation, in which the number

of parameters of student network is the same as that of the teacher

network. Surprisingly, such a born-again network outperforms the

corresponding teacher dramatically.

3 PRELIMINARY

In this section, we briefly introduce a specific meta-learning method

MAML and knowledge distillation.

3.1 Model-Agnostic Meta-learning (MAML)

MAML is a meta-learning framework for one-shot learning. MAML

aims to effectively bootstrap from a good meta-learner to learn fast

on a new task, which assumes that tasks are drawn from a fixed dis-

tribution T ∼ P(T ).
More formally, we define the base model to be a neural network

fθ with meta-parameter θ. When facing with a new task Ti ∼ P(T )
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Figure 1. The framework of P-MAML(CEL: Cross-Entropy Loss; KL: Kullback Leibler Loss). First, we pre-train a teacher MAML network. Then, we
distill knowledge from the teacher network into the student MAML network and train the P-MAML. Last, we test the P-MAML network in one-shot learning

tasks.

from a support set T su
i , the meta-parameter θ is updated to θ∗k af-

ter a small number of gradient updates k. This set of k updates is

called the inner-loop update process. So, the θ∗k, called an inner-loop

parameter, can be updated as follows

θ∗k = θ∗k−1 − α∇θL1T su
i

(fθ∗
k−1

), (1)

where α is the learning rate, θ∗k is the weight of base-learner af-

ter k steps towards the task Ti and updated using cross entropy

loss L1(θ
∗
k, T su

i ). We define meta-objective from the query set T qu
i ,

which can be expressed as

L1T qu
i

(θ) = min
θ

∑
Ti∼P(T )

L1T qu
i

(fθ∗
k
). (2)

Note that our goal is to optimize meta-parameter θ, which is up-

dated using θ∗k with multi-task information. As in Eq. (2), the meta-

objective is to minimize the sum of the loss and optimize the initial

meta-parameter. The optimization of this meta-objective is called the

outer loop update process. The meta-parameter θ is updated as fol-

lows

θ ← θ − β �θ

∑
Ti∼P(T )

L1T qu
i

(fθ∗
k
), (3)

where the step size β might be taken as a hyperparameter or learned

rate in the outer update phase.

MAML-test aims to evaluate the performance of the meta-learner

for new tasks through several fast adaptations. Given a new task

Tnew, the initialized global θ is trained to adapt to the sample of

T su
new by a few gradient updates. Then, the test result on T qu

new is used

to evaluate the learning ability of meta-learner.

3.2 Knowledge Distillation (KL)
Deep neural networks can extract deep features, detect more complex

semantic information, and make a breakthrough in image recogni-

tion, speech recognition, machine translation and so on. However,

the computational complexity and some hardware requirements of

deep neural networks make it impossible for small devices. There-

fore, mobile phones or small robots cannot use such a large network

to run in real-time. In 2015, Hinton et al. proposed the concept of

knowledge distillation to overcome this problem [8].

The idea is that a soft target (i.e. the predicted probability from

softmax output) contains more information than a hard target (i.e.

one hot label of the data). So a hyper-parameter temperature τ > 1
is introduced to soften a teacher network, and provide more informa-

tion during the training. For example, in cat-dog classification, the

probability of misidentifying a dog as a cat maybe 0.001, but the

probability of misidentifying a dog as a truck maybe 0.00000001.

A higher τ produces a softer probability distribution over classes.

And the same τ is applied to the output of student network PS .

P τ
T = softmax

(zt
τ

)
, P τ

S = softmax
(zs
τ

)
. (4)

The student network is then trained to optimize the following loss

function:

LKD(θS) = (1− λ) ∗ L1(ytrue, PS) + λ ∗ L2(P
τ
T , P

τ
S ), (5)

where θS is the parameter of student networks and λ is an adjustable

hyper-parameter to balance the true label and KD loss. L1 means the
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cross-entropy loss, L2 denotes the KL loss, indicating that the stu-

dent network learns from the softened output of the teacher network.

4 METHODOLOGY

In this section, we elaborate on the proposed P-MAML, where the

knowledge is distilled from a teacher MAML network into a student

MAML network to improve the performance.

4.1 Framework

Figure 1 shows the framework of our proposed P-MAML approach,

which is composed of three modules: the teacher MAML Network,

the P-MAML network: Train, and the P-MAML network: Test.

On one hand, a teacher MAML network T is expected to be able

to extract task-agnostic meta-level representation that captures the

high-level abstract concept of the instances from many related tasks.

Such knowledge can be distilled into a student MAML network S
to quickly find good model parameters so as to accomplish one-shot

learning. On the other hand, from a different viewpoint, the smaller

student MAML network S is more likely to be applied in portable

devices due to fewer parameters and lower computational cost.

Firstly, as shown in Figure 1 (a), we train a teacher MAML net-

work, which commonly has a deep and wide network architecture.

Then, as shown in Figure 1 (b), through knowledge distillation from

the teacher MAML network, our proposed P-MAML, i.e. the stu-

dent MAML network, is trained using a double-gradient procedure.

After that, when facing with one-shot learning tasks, the trained P-

MAMAL network can be tested, as seen in Figure 1 (c).

4.2 Teacher MAML Network

A teacher network commonly has a large architecture and a large ca-

pacity. The teacher MAML network is learned using double-gradient

updates, as given in Eq. (1) and Eq. (3). However, as observed in

Figure 1 (a), for different cases that the number of network layers is

no more than 4 or greater than 4, the teacher MAML network has a

different preprocessing and network architecture.

When the number of network layers is no more than 4, as shown in

the upper part of Figure 1 (a), we take as input the original data XT

and train the teacher network with the label YT . The trained teacher

network is able to implement quick adaptation for new tasks. How-

ever, when the number of network’s layers is greater than 4, as shown

in the lower part of Figure 1 (a), the original procedure fails in ex-

tensive experiments because 1) the amount of data is insufficient to

train a deeper teacher MAML network and 2) the issue of gradient

vanishing appears. Therefore, in order to solve these two problems,

we propose to 1) use data augmentation to strengthen the training

data and 2) employ a residual network (ResNet) to solve the gradient-

vanishing problem.

Specifically, regarding the data augmentation, we rotate XT by

60◦, 90◦ and 180◦ and then generate XT with the corresponding

ground truth YT . With regard to the ResNet, we add several shortcut

connections in the output layer of the network.

For convenience, the teacher MAML network is denoted by zt =
ft(xt,Wt), where ft indicates a mapping function, xt represents

each of input data, Wt represents the network parameter and zt is

the output. And the final prediction probility in the teacher MAML

network is obtained by Pt = softmax(zt).

If the teacher model is the result of an ensemble, either PT or

zt is obtained by averaging outputs from different networks, includ-

ing both arithmetic average and geometric average. Finally, meta-

parameter Wt is updated in the process of back-propagation of the

cross-entropy loss (CEL).

4.3 P-MAML Network: Train
In Figure 1 (b), there are two MAML networks: the teacher network

from Figure 1 (a) has learned a good meta-parameter, and a student

network has a small architecture and small capacity. How do we use

the P-MAML method to train the student MAML network?

First, in MAML inner loop, we input training data XS (generally,

XT has more samples) through a mini-batch method. The student

network is trained using the support set of each batch of tasks, as

given in Eq.(1). The teacher network is fine-tuned to adapt to new

tasks. Then, in MAML outer loop, we update meta-parameter using

the query set of each batch of tasks, as given in Eq.(3). We consider

the combination of KD and MAML from the following two perspec-

tives that are named by P-MAML last and P-MAML every:

P-MAML last. We propose this method to only distill the last batch

of tasks from the teacher network to the student network, as the

Batch i in Figure 1 (b).

P-MAML every. We propose this method to distill each batch of

tasks from the teacher to the student network. The output of the query

set of each batch of tasks from the teacher network is distilled to

guide the training of the student network. For example, in Figure 1

(b), each small rectangle in the box on the upper part of the MAML

outer loop represents the output of the teacher network, and each

black bar represents the specific task in every batch. With the arrow

direction of KD, the training loss of the student network is guided.

The student network not only learns the knowledge of the teacher

network but also learns the updating direction of the teacher’s meta-

parameter in the iterative process. P-MAML every helps the student

network to learn a good meta-learner. The student network is trained

using the following Eq. (6)

θS ← θS − (1− λ)�θS

∑
Ti∼P(T )

L1T qu
i

(fθS
∗

k )

+λ�θS

∑
Ti∼P(T )

L2T qu
i

(
zt
τ
,
zs
τ
),

(6)

where zs = fs(xs,Ws) is the output of the query set of stu-

dent network. The student final prediction probability is P t
S =

softmax(zt). The first part of Eq. (6) is a cross-entropy loss be-

tween the prediction of student network and ground-truth. The sec-

ond part of Eq. (6) is a KD loss with the output of the teacher network

and student network, where Kullback-Leibler divergence is used.

4.4 P-MAML Network: Test
We test the performance of the student MAML network with KD

from the teacher MAML network, as observed in Figure 1 (c).

We define X
′
S as test data of the student network to evaluate the

P-MAML algorithm. In MAML inner loop, the student network is

fine-tuned by minimizing the cross-entropy loss between the ground-

truth Y
′
S and the prediction probability P

′
S . Test classification results

are given in the outer loop of MAML. And, in the next section, a

large number of experiments show that with the assistance of the

teacher’s network, the efficiency of portable MAML network can be

significantly improved in terms of one-shot learning.
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The corresponding algorithm is outlined in Algorithm 1. Algo-

rithm 2 shows the pseudo-code of P-MAML every knowledge distil-

lation method in this paper.

Algorithm 1 P-MAML for One-shot Supervised learning

Require: Distribution of tasks P(T );
Require: The learning rate α;

1: Pre-train θT ; Initialize θS randomly
2: while not done do
3: Sample mini-batch of tasks Ti ∼ P(T )
4: Each of Ti has support set T su

i and query set T qu
i

5: Inner loop:
6: Calculate �θT L1T su

i
(fθT ) and �θSL1T su

i
(fθS )

7: Compute adapted parameters with gradient descent: θT
∗

k = θT −
α�θT L1T su

i
(fθT ) and θS

∗
k = θS − α�θS L1T su

i
(fθS )

8: P-MAML every;
9: end while

Algorithm 2 P-MAML every

Require: Distribution of tasks P(T );

Require: Temperature τ ; Balance factor λ; θT
∗

k ; θS
∗

k ;
while not done do

2: Outer loop:
for all tasks do

4: Calculate L1T qu
i

(f
θS

∗
k

)

Save the teacher network pre-softmax output of the every batch of
tasks of query set zt and that of student network zs

6: end for
θS ← θS − (1 − λ) �θS

∑
Ti∼P(T ) L1T qu

i
(fθS

∗
k ) + λ �θS∑

Ti∼P(T ) L2T qu
i

( zt
τ
, zs

τ
)

8: end while

5 EXPERIMENT
In this section, we evaluate the proposed P-MAML in terms of few-

shot image recognition and compare our approach with state-of-the-

art baselines.

5.1 Datasets
We conduct experiments on three public datasets: MiniImagenet 4,

CUB 5, and Omniglot 6. Their information is detailed as follows:

• MiniImagenet: This dataset was proposed by Vinyals et al. [29]

for one-shot learning evaluation. It has 100 classes and contains

600 samples of 84 ∗ 84 ∗ 3 color images for each class. These 100

classes are randomly divided into 64 base, 16 validation, and 20
novel classes for meta-training, validation and test [9, 13].

• CUB: This dataset is a fine-grained classification dataset, where

we use CUB-200-2011 in this paper [7]. In total, there are 200
classes with 11, 788 images, and are randomly splited 100 base,

50 validation, and 50 novel classes.

• Omniglot: It consists of 20 instances of 1623 characters from 50
different alphabets, in which each of instances is collected by a

different person. To meet our requirements, We first augment the

classes by rotations in 90, 180, 270 degrees, resulting in 6492
classes [27]. Then, these classes are split into 4112 for meta-

training, 688 for meta-validation and 1692 for meta-test.

4 http://image-net.org/image/ILSVRC2015/ILSVRC2015 CLS-LOC.tar.gz.
5 http://www.vision.caltech.edu/visipedia-data/CUB-200-2011.
6 https://github.com/brendenlake/omniglot/blob/master/python/

images evaluation.zip.

5.2 Implementation details
The N-way, K-shot image recognition is considered on the CUB,

MiniImagenet, and Ominiglot datasets, where a gradient update is

computed using a data batch with N ×K samples.

The Conv1, Conv2 and Conv4 are frameworks for a student net-

work, while Conv4, Conv6, Conv8, ResNet10 and ResNet18
are frameworks for a teacher network. We take the Conv4 as an ex-

ample. Our model’s architecture has 4 modules with a 3×3 convolu-

tions and 64 filters. Then, the batch normalization, a ReLU function,

and 2 × 2 max-pooling are considered in this model. Besides, the

last layer uses soft-max. Finally, we use the cross-entropy as the loss

function for all cases.

In the meta-training stage, we train 60, 000 episodes. Four-task for

each batch is selected on MiniImagenet and CUB, while, Omniglot

datasets have 32-task for every batch. We use the validation set to se-

lect the training episodes with the best accuracy and model parameter

for meta-test. In each episode, we randomly sample 5-way for meta-

training and meta-test. In the meta-test stage, we pick 800 tasks to

test and find average results using the parameter of the best model.

5.3 Baselines
We consider to evaluate the performance of the following methods:

• Matching Nets [29]. This model can map a small set of dimensions

and an unmarked test sample to its corresponding label, avoiding

to adjust the new label category in this process.

• Meta-SGD [19]. Meta-SGD can not only initiate learning for

learners, but also learn the updated direction and learning rate of

learners.

• MAML [9]. MAML model can learn a good initialization and

adapt to a new task through a few updates.

• P-MAML last. We propose this method to only distill the last

batch of tasks from the teacher to student network.

• P-MAML every. We propose this method to distill each batch of

tasks from the teacher to student network.

5.4 Experimental Results on One-Shot Learning
In this subsection, we report experimental results on three datasets,

where the hyper-parameter τ and λ are set as 10 and 0.9 all cases

respectively 7.

5.4.1 Preformance on CUB Dataset

In order to evaluate our P-MAML, we show the performance of P-

MAML and baselines in Table 1. Overall speaking, it is concluded

that P-MAML achieves better performance in one-shot learning than

baselines owing to the knowledge distillation.

More concretely, it is observed from the upper part in Table 1 that

P-MAML last with 2 layers gets an improvement by 3% while P-

MAML every with 2 layers gets an improvement by 5% compared

to MAML with the same layers (Conv2 MAML).

In the lower part of Table 1, we focus on the 4-layer student net-

work and a teacher network with various layers. It is observed that all

P-MAML networks exceed the performance of baselines. When the

layer of teacher network increases, the accuracy of one-shot learning

gets improved. And P-MAML every shows its superiority over P-

MAML last because more knowledge is distilled from various rep-

resentations in the teacher network. One point to be noted is that

7 The selection of τ and λ are shown in Section 5.6
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when considering a teaching assistant for an 18-layer teacher net-

work, the accuracy gets enhanced by 4% because the difference be-

tween teacher and student is too large in this case [20].

Furthermore, in order to visualize such improvement, we depict

the test accuracy of various approaches in the upper part of Figure

2. It is clearly observed that knowledge distillation greatly improves

the performance of one-shot learning.

Table 1. Test Accuracy on CUB and MiniImagenet. ‘18-8-4’ stands for
distilling teacher network (ResNet18) to student network (Conv4) with the

help of teacher assistant (Conv8).

Datasets CUB magenet

Model Structure 5-way-1-shot 5-way-1-shot

Conv2 MAML 38.01%±0.79% 37.37%±0.71%

P-MAML last 4-2 41.56%±0.83% 39.65%±1.49%
P-MAML every 4-2 43.02%±0.55% 40.93%±1.23%

Conv4 Meta-SGD( [19]) 53.34%±0.97% 50.47%±1.87%

Conv4 MAML( [9]) 55.98%±0.89% 47.65%±0.81%

Conv4 Matching Nets( [29]) 56.53%±0.99% 43.56%±0.84%

P-MAML last 6-4 59.98%±0.95% 48.19%±1.22%
P-MAML every 6-4 61.39%±0.98% 50.16%±1.18%
P-MAML last 8-4 62.05%±1.26% 49.59%±0.91%

P-MAML every 8-4 64.52%±0.68% 51.62%±0.89%
P-MAML last 10-4 61.02%±0.94% 48.09%±0.90%

P-MAML every 10-4 62.03%±1.44% 49.76%±1.21%
P-MAML last 18-4 60.85%±0.84% 47.90%±0.69%

P-MAML every 18-4 61.24%±0.85% 48.94%±0.72%
P-MAML last 18-8-4 64.05%±1.02% 50.87%±0.65%

P-MAML every 18-8-4 65.97%±0.92% 53.02%±0.97%

5.4.2 Performance on MiniImagenet dataset

In Table 1, we show the performance of the MiniImagenet dataset.

Overall speaking, our method is better than baselines.

To be specific, the upper part of Table 1 shows that the knowledge

distillation from 4 layers to 2 layers. P-MAML every enhance 4%
compared to MAML with 2 layers.

As same as CUB dataset, we consider the distillation performance

from different-layer teacher network to 4-layer student network in

the lower part of Table1. One point to be noted is that the distilla-

tion performance of 10-layer network is 3% lower than that of 8-

layer network, which is caused by the larger difference between the

teacher network and the student network. In such case, we use the

teacher assistant to help students training. Finally, the best distilla-

tion performance of P-MAML every with a teacher assistant is 7%
higher than the same 4-layer MAML network, and increases by 9%
on average compared with other baselines.

In addition, in the lower part of Figure 2, we also show the visu-

alization of test results. It is further shown that 1) knowledge distil-

lation greatly improves the performance of one-shot learning and 2)

more guidance can lead to better performance.

5.4.3 Performance on Omniglot dataset

The results of 5-way-1-shot can be observed from the second col-

umn of Table 2. P-MAML is slightly better than the state-of-the-art

models on all classification tasks. In this dataset, we only use 4-layer

teacher network, because 98% recognition rate has been achieved

with one-shot sample of this structure.

Figure 2. Test Accuracy. L denotes P-MAML last; E denotes
P-MAML every; ‘t-s’ in horizon axis indicates that the teacher MAML has t
layers while the student MAML has s layers. Please see the name method in

Table 1.

Moreover, the student network with 2 layers can increase by 4% to

93.02% with the help of knowledge distillation of every batch tasks.

Even for 1-layer student network with P-MAML last, it has a 1%
improvement.

5.5 Experimental Results on Few-Shot Learning
In addition to one-shot learning, we also study few-shot learning (1-

shot, 3-shot, 5-shot, 7-shot, 9-shot) on the Omniglot dataset to further

verify the feasibility of P-MAML in this paper. These experimental

results are shown in Table 2.

In horizontal comparison, under the condition of 5-way classifi-

cation, the accuracy of image classification is enhanced with the in-

crease of the number of samples. This is because more data can train

a better meta-learner. As observed, the vertical comparison in Table

2 depicts a rising trend. This is because when using the same sam-

ples, 1) deep network can extract more features and 2) P-MAML can

bring better data information.

More concretely, it is observed from the upper part in Table 1 that

P-MAML every with 1 layer gets an advancement by 9.6% while P-

MAML last with 1 layer gets a growth by 7% compared to MAML

with the same layer (Conv2 MAML) on 5-way-9-shot.

In the lower part of Table 1, the knowledge distillation is

achieved from 4-layer teacher network to 2-layer student network.

P-MAML every shows its prominence over P-MAML last and base-

lines. For example, the Conv2 MAML without KD is 2% lower

than that of P-MAML last while P-MAML last is lower than P-

MAML every by 3% on average when considering 5-way 3-shot

classification. One interesting thing to be noted is that the perfor-

mance of the 2-layer student network P-MAML every on 5-way-7-

shot is better than the Conv2 MAML on the 5-way-9-shot.

5.6 Analysis on Hyper-Paramters and Complexity
5.6.1 Choose the Best Hyper-Parameter τ

We compare the experimental results at different temperature values,

such as 2, 5, 10 and 20, on CUB dataset. Following these related

works [8, 21], we know that hyper-parameter λ tends to KD loss,
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Datasets Omniglot

Model Structure 5-way-1-shot 5-way-3-shot 5-way-5-shot 5-way-7-shot 5-way-9-shot

Conv1 MAML 73.39%±1.97% 75.39%±0.66% 77.80%±1.75% 78.02%±0.83% 80.96%±0.53%

P-MAML last 4-1 74.01%±0.92% 76.01%±0.82% 79.89%±1.46% 81.97%±0.63% 83.27%±0.55%
P-MAML every 4-1 76.63%±1.61% 79.45%±0.64% 82.72%±1.28% 84.89%±1.52% 90.16%±1.38%

Conv2 MAML 89.85%±1.35% 92.61%±0.78% 95.60%±0.92% 97.78%±0.54 % 98.13%±0.56%

P-MAML last 4-2 91.99%±1.12% 93.53%±1.06% 96.67%±0.64% 98.39%±0.83% 98.99%±1.38%
P-MAML every 4-2 93.02%±0.45% 95.34%±0.83% 97.45%±0.64% 99.09%±1.21% 99.56%±1.08%

Table 2. Test accuracy on Omniglot dataset, where different model architectures are considered.

which will obtain a good performance. Therefore, when comparing

the effect of different temperatures, we fixed λ as 0.9.

Figure 3. Test accuracy with temperatures on CUB dataset when λ = 0.9.

We illustrate the average accuracy of 800 test tasks in Figure 3,

with P-MAML last on the left and P-MAML every on the right. It

is observed from the bar chart of Figure 3 that the temperature does

have a considerable effect on the classification accuracy.

From the overall trend of per distillation module in Figure 3,

τ = 10 shows the highest performance. For example, τ = 10
reaches 65.97% for P-MAML every and 64.05% for P-MAML last,

where the best accuracy is obtained by the student network (18-8-4)

with teacher assistant. To sum up, for all our experiments, we select

temperature value τ = 10.

5.6.2 Analysis on Hyper-Parameter λ

We evaluate the effect of different λ in the best two distillation net-

works, i.e. the distillation in cases of 8-4 and 18-8-4.

In Figure 4, with an increasing λ, from 0.3 to 0.9 with a space

of 0.2, the test accuracy improves gradually. This is because the ad-

justment factor λ is used to adjust the ratio of L1 and L2 in total L.

The larger the λ is, the more the global L is inclined to the output of

the teacher network (L2), so that the student network can learn more

data information in the training process. As the ablation study with

λ = 1, the accuracy rate decreases, indicating that the teacher net-

work and real label guidance are very helpful. To sum up, we select

λ = 0.9 for P-MAML.

5.6.3 Computational Complexity

Please be noted that P-MAML has the same computational complex-

ity as the standard MAML because they have an identical update

Figure 4. Different λ values on CUB dataset when τ = 10.

procedure except the novel loss function from knowledge distilla-

tion. On the other hand, if considering a fixed accuracy, the required

number of layers in P-MAML is less than that of standard MAML.

From this viewpoint, we may claim that P-MAML is more efficient.

The number of parameters in these networks is shown in Table 3.

It is observed that the number of parameters in ResNet18 is almost

100 times of that of Conv4, which indicates that its training time

and memory requirements are very large.

Table 3. Computational complexity of different model architecture.

Model Conv4 Conv6 Conv8 ResNet10 ResNet18

Params 0.4843M 0.7808M 1.0772M 19.6334M 44.7163M

6 Conclusion
In this paper, we propose a portable meta-learning approach for

small devices, named P-MAML, which considers knowledge distil-

lation into meta-learning and enables to accomplish one-shot learn-

ing using different model architectures. The student MAML network

learns from the teacher MAML network in two different ways: 1)

knowledge is distilled in every batch of tasks of teacher’s network

(P-MAML every) and 2) knowledge is only distilled from then last

batch of tasks of teacher’s network (P-MAML last). And the assis-

tant network is considered to reduce the gap between a large teacher

network and student work.

Extensive experiments on three real datasets demonstrate the ef-

fectiveness and superiority of our approach in one-shot image recog-

nition in comparison to state-of-the-art baselines. Experiment results

show that P-MAML every exceeds P-MAML last.
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