24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

Modeling the Incongruity between Sentence
Snippets for Sarcasm Detection

Hongliang Pan''2 and Zheng Lin'! and Peng Fu'* and Weiping Wang'

Abstract. Sarcasm is a form of irony used to mock or convey con-
tempt, which occurs when there is an incongruity between the lit-
eral meaning of an utterance and its intended meaning. Many studies
identify sarcasm by capturing the incongruity in-between the words.
However, consider the following example, “I love waking up at 4
am on Saturday”, there is no apparent incongruity in-between the
words. Intuitively, the word “love” and the snippet “waking up at
4 am on Saturday” form a strong contrast. Thus, capturing the in-
congruity among the sentence snippets is more reasonable since a
sentence snippet usually contains more semantic information than
a single word. Additionally, not all snippets are equally important
when human beings identify sarcasm. Thus, inspired by the above
observations, we propose the Self-Attention of Weighted Snippets
(SAWS) model for sarcasm detection, which overcomes the prob-
lem that the previous models are inefficient in determining the sar-
casm caused by snippet incongruity. The experiment results show
that our model achieves state-of-the-art performance on four bench-
mark datasets, including two short text Twitter datasets and two long
text Internet Argument Corpus (IAC) datasets.

1 Introduction

Sarcasm is a form of figurative language which is commonly used in
social media and online forum. Due to its linguistical nature, sarcasm
can completely flip the polarity of opinions. Failure to detect sarcasm
may result in poor performance in sentiment analysis [25]. Sarcasm
can be treated as a form of implicit sentiment expression. Most stud-
ies are currently focused on explicit sentiment analysis. However,
considering both explicit and implicit sentiment expression may con-
tribute to a series of applications, such as election prediction, product
review and customer support.

Sarcasm detection is a challenging task in sentiment analysis due
to its figurative nature [19]. Consider some sarcastic examples in Fig-
ure 1. We can observe that all these examples involve a disparity be-
tween the author’s intention and the events. This concept is defined
as “incongruity” by [9], which states that “verbal irony is recognized
as a technique of using incongruity to suggest a distinction between
reality and expectation”. In the given examples, without looking at
the incongruous snippets, it might be difficult to conclude whether
the sentence is sarcastic or not. For instance, “Going in to work for
2 hours was totally worth the 35 min drive”. It is insufficient to clas-
sify the sentence as sarcasm by only looking in-between the words.

I Institute of Information Engineering, Chinese Academy of Sciences,
Bejing, China. Emails: {panhongliang, linzheng, fupeng, wangweip-
ing} @iie.ac.cn. * Corresponding Author.

2 School of Cyber Security, University of Chinese Academy of Sciences, Be-
jing, China.

* Going in to work for 2 hours was totally worth the 35 min drive !

* Isaw a guy walking 4 dogs this morning and thought wow ! that guy
must be really blind .

* Alittle nervous to start school & 5 classes in one day should be fun ...

* So excited for my family hike at 9 freaking o'clock in the morning ! I
love not sleeping in on my day off .

* Ienjoy tweeting others and not getting a reply

Figure 1. The figure shows some examples of sarcastic tweets. The
sentence snippets with incongruity are marked in color.

A contrast of the snippet “work for 2 hours” and the snippet “worth
the 35 min drive” makes it a sarcastic tweet. Consequently, capturing
the incongruity between sentence snippets is a good choice.

Deep learning-based methods have achieved significant improve-
ments in many NLP tasks, such as machine translation, sentiment
analysis, and question answering. Deep learning models are also used
in sarcasm detection studies [6, 29, 12, 31]. [29] first proposed a self-
attention based neural network to explicitly model the contrast and
incongruity on word-level, which achieved the best performance at
the time. After that, following the work of [29], [31] introduced the
“co-attention” mechanism suggested by [20] in their model to cap-
ture the joint information between every word-to-word pair in the in-
put sentence. Meanwhile, they used a bilinear pooling method based
on Low-rank Bilinear Pooling (LRBP) [16] to reduce the dimension
of the final input without losing discriminative information. Their
model reported state-of-the-art results.

Both [29] and [31] only model the incongruity on word-level,
which may help to recognize the sarcasm exits in incongruous words
like {love, exam}. However, when it comes to the sentences with
complex semantic information like the given examples, their meth-
ods would be inefficient in determining the incongruity caused by
sentence snippets and lead to a low recall. Inspired by this, we pro-
pose to model the incongruity between sentence snippets as they con-
tain more semantic information. Moreover, snippets are intuitively
not equally contributed to identify sarcasm, the incongruous snippets
should be given more attention as they are the indispensible parts to
compose the sarcasm. Thus, we introduce a context vector to com-
pute the weights of the snippets according to their importance, which
is not used by previous works.

In this paper, our intention is to detect sarcasm by capturing the
incongruity between sentence snippets. We propose a novel model
based on self-attention mechanism of weighted snippets. It consists
of an input module, a convolution module, an importance weight-
ing module, and a self-attention module. As sentence snippets con-
tain more semantic information than words, we apply the convolution

24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

Input

vector

N
E

e
(e}

i §
I_I_I_II_ILII_II_LI_I

0
IIIIIII‘IIIIII

{ull-"vun}

{even} Hen e}

Convolution "~ Importance Weighting
Module Module | context Module
vector
Embedqmg - attention
Matrix

Self-attention
Module

Module .

e - o s o s s s .

Linear Layer

attention
vector

Softmax

Max
by

19487 JE2Uly

Not

Sarcasm
Sarcasm

fa

Figure 2. Overview of the model architecture. The leftmost is the input module which accepts the input words and converts them into low dimension
representations. The middle part illustrates three modules, including Convolution Module to obtain sentence snippet representations, Importance Weighting
Module to weight the snippets and Self-attention Module to capture the incongruity between snippets. On the right part, the Output module classifies the input
into sarcasm or non-sarcasm by using a softmax layer.

module to acquire the snippet representations. Besides, we also em-
ploy an importance weighting module in our work to highlight the
critical snippets for boosting the performance. Unlike [29] and [31],
we did not use any RNNSs to obtain the sentence compositional infor-
mation and achieve promising performance.

The main contributions of this work are as follows:

e We propose a model based on capturing the incongruity of
sentence snippets, which aims to address the problem that
existing models are inefficient in identifying the sarcasm
caused by sentence snippet incongruity.

e We introduce a context vector to calculate the importance of
the snippets to improve the performance as not all snippets
are equally important for sarcasm detection.

e Our model achieves state-of-the-art results on four bench-
mark datasets, including two short text Twitter datasets and
two long text Internet Argument Corpus (IAC) datasets. Be-
sides, the visualization part shows that our model strongly
complies with human intuitions.

2 Method
2.1 Task Definition

Sarcasm detection aims to identify if there exists sarcastic meaning
in a given scenario. Formally, given a text containing [words X =
{z1, 22, ...,z }, where z; represents a single word in the sequence.
Our model is supposed to classify the given text into sarcasm or non-
sarcasm categories correctly.

2.2 Framework

Figure 2 gives an overview of our model which is composed of five
modules, including an input module, a convolution module, an im-
portance weighting module, a self-attention module and an output
module. The input words are firstly converted into low dimension
representations via an encoding layer. Then, we use the convolution
module to acquire sentence snippet representations based on the en-
coded words. After that, in the importance weighting module, we

use a context vector to compute the weights of snippets, the critical
snippets will be given high weights and the trivial snippets will be
given low weights. Finally, the self-attention module is applied to
the weighted snippets and the output module produces an output for
classification.

2.3 Input Module

On the left of our model SAWS, the input text X is a sequence of
words with X € R™!, where [is the number of words in the se-
quence. To resolve different lengths of input, we transform X € R'*?
to X' € R™! where n is a pre-defined hyper-parameter. Input se-
quences less than n tokens will be padded to n and input sequences
more than n tokens will be truncated to n. In the input encoding layer,
each word is converted into a low-dimensional vector representation
(word embedding) by using a weighted matrix. We employ the pub-
licly available GloVe vector, which contains 400,000 most frequent
words [26]. Words not present in the set of pre-trained words are ini-
tialized randomly. As such, the output £ € R™*¢ of this layer is a
sequence of word embeddings, where e is the embedding size.

2.4 Convolution Module

Convolutional neural network (CNN) was firstly exploited by [17]
in text classification tasks and it achieved outstanding perfromance.
Convolution layers can be applied to grasp contextual local features
by implementing convolution operation between the convolution ker-
nels and the words in a sequence. As we want to acquire the represen-
tations of sentence snippets (usually consists of several consecutive
words), a convolutional layer seems to be a good choice to encode
local snippet information. A convolution filter ¥ € R™*¢ has the
same dimension e as the input matrix, which is applied to a window
of m consecutive words of the input matrix £ € R"*¢, perform-
ing element-wise product between selected windows of E and fil-
ter k to obtain a vector ¢ € R™ ™™ ¢ is a vector consisting of {
C1,C2,C3, ..., Cn—m+1}. Each ¢; is calculated as the following for-
mula:

24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

C; = ZEi:i+m71,e®kO:m,e (1)

where ® means element-wise product. We perform the same op-
eration using e such filters to acquire the snippet representation
U e R(v=m+Dxe [, ¢ R® represents ith snippet in the original
input sequence.

2.5 Importance Weighting Module

Based on the fact that sentence snippets are not equally contribute to
identify sarcasm, we introduce the importance weighting module to
weight the snippets during training and testing. In this module, we
randomly initialize a context vector v € R™=™HD) at the beginning.
Then we use v to compute the attention score a; of each snippet
U,. Firstly, we multiply snippet representation U; € R® with W €
Re*("=m+D) and add to b € R, which is fed into tanh layer
to get u;. Then, we calculate the similarity of u; and the context
vector v to measure the importance of the snippet . After that, a
softmax function is applied to normalize the weights and get a weight
distribution vector a. a is calculated as following equations. To be
specific,

u; = tanh(W' U; + b) ()
_exp(uv)

S, exp(uin) @

a = ((117 az, as. .. an77n+1) (4)

where a € R™ ™", Finally, we associate the snippets with their
corresponding attention values. In detail, we multiply these two to
get the weighted snippet representation P € R ~™+1*¢ and send
it to the next module. Our importance weighting module is inspired
by [32]’s work. v can be considered a high level representation of a
fixed query “how informative is this snippet” over all snippets. The
difference is that they use the vector v to compute attention weights
on word level and sentence level for document classification, but we
use v to compute attention weights across snippets. Similar to [32]’s
work, v is jointly learned during the training process. This procedure
is depicted in Figure 3.

2.6 Self-attention Module

In this part, we use self-attention mechanism to model the contrast
and incongruity between the weighted snippets P. Self-attention was
firstly proposed by [3] to compute the internal representation of a sin-
gle sequence relating different positions. Incongruity can be treated
as an internal characteristic of sarcastic text. Accordingly, perform-
ing self-attention on the weighted phrases yields an output containing
the incongruity information. Particularly, the incongruous phrases
will give a high attention value to each other in order to reduce the
training loss. In this module, we first compute the affinity score s
between weighted snippets and obtain a self-attention matrix S. The
affinity score s; ; between sentence snippet P; and sentence snippet
P; is calculated as follows:

si,5 = W([Pi; Pj]) +b S)

where s;; is a scalar in the self-attention matrix S, representing the
affinity score between snippet pair (P;, P;). P; and P; are the repre-
sentations of weighted snippet ¢ and j. [;] means the concatenation
operation of vectors. The self-attention matrix .S consists of the affin-
ity score of every sentence snippet pairs and shows as:

context
vector
WA e
..... e
-------- W\ attention

softmax

N,
\‘\\ . vector
Uy > :
W\
\
AN

{py - 0n}

weighted snippet
representations

sentence snippet
representations

Figure 3. The illustration of how Importance Weighting module works.
Critical snippets are granted with a high attention value in this module.

51,1 Sl,n7m+l
S = : : (6)

Sn—m+1,1 Sn—m+1,n—m+1

Then, we compute an attention vector a € R"~™1 by applying
a row-wise max-pooling operation on the self-attention matrix S.
[29] argues that words that might contribute to the contrastive the-
ories of sarcasm should be highlighted (usually accompany with a
high attention value). Thus, a more discriminative pooling operator
like max-pooling is desirable in our case. Note that it is meaningless
to calculate the interactive information between a snippet and itself
marked as s;, ;, where 7 = j. Consequently, the attention value of a
sentence snippet and itself has been masked to avoid influencing the
final results. The attention vector a is computed as follows:

a; = max(si,1, Si,2, Si,3--- Si;n—m+1) 7

a = Softmax (a1, az, as...an—m+1) (8)

where a € R"™™T! After having the attention vector a, it is em-
ployed to the weighted snippet representations P as:

n—m-+1

fa= Z Pa; (&)
i=1

where f, € R€ is the self-attentive representation of the weighted
snippets, which contains the incongruity information and will be
used to predict.

2.7 Output Module

The input of the output module is f, € R®, which is the self-
attentive representation. The prediction layer consists of a linear
layer and a Softmax classification layer. The linear layer aims to re-
duce the dimensionality of f,. Softmax layer is used to classify the
output into two categories Sarcasm or Non-sarcasm.

9 = Softmax (W fq + b) (10

where W € R%*? b € R? are the learnable parameters and training
along with the model. §j € R? is the classification result of our model.

24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

2.8 Training Objectives

Cross-entropy loss function is used in our work for optimizing the
model.
N
J= = [yiogji + (1 —yi)log(1 —§)] + AR (11)

i=1

where J is the cost function. g; is the prediction result of our model
for sample ¢ and y; is the true label for sample ¢. N is the size of
training data. R is the standard L2 regularization and) is the weight
of R.

3 Experiment

In this section, we describe the datasets, experiment setups and ex-
periment results. Besides, we also give out an ablation study and a
comprehensive analysis of our model.

3.1 Datasets

We evaluate our model on four benchmark datasets, including two
short text Twitter datasets' collected by Mishra et al. [24] and Ghosh
et al. [7] as well as two long text IAC datasets® collected by [30]
and annotated by [21]. Most previous works used the Twitter dataset
collected by Riloff et al. [28]. However, we retrieved the tweets using
the Twitter API by the provided tweet IDs, we found that only around
1/3 of the original dataset are available. Consequently, we test our
model on a recent collected Twitter dataset provide by Mishra et al.
[24]. Detailed statistics are summarized in Table 1.

Twitter is a microblogging platform on which users post and inter-
act with messages known as “tweets”. It allows users to update their
status within a limit of characters. In our work, we use two Tweets
datasets for sarcasm detection. More specifically, we use the dataset
collected by Mishra et al. [24] and Ghosh et al. [7]. Mishra dataset
was collected by manually annotated and Ghosh dataset was auto-
matically annotated by the hashtags in tweets, such as “Sarcasm”,
“sarcastic”, “irony”. In addition, they also devised a feedback-based
system that can contact the tweet authors to validate the correctness
of the sarcasm labels.

Internet Argument Corpus (IAC) is mainly focus on long text. It
was originally collected from an online debate forum to study po-
litical debates and annotated by [21] for sarcasm detection. We use
two versions of it, namely IAC-V1 and IAC-V2. [29] and [31] also
employed the same two datasets in their works.

Table 1. Datasets description

Dataset Train Test Total Avg length
Tweets(Mishra) 894 100 994 25.76
Tweets(Ghosh) 48635 3944 52579 17.90

TIAC-V1 1670 186 1856 68.32

TIAC-V2 4179 465 4644 55.82

1 We acquire the same Ghosh Twitter datasets as [31]. We acquire the Mishra
Twitter datasets from http://www.cfilt.iitb.ac.in/cognitive-nlp/

2 We download IAC datasets from https://nlds.soe.ucsc.edu/sarcasm1 and
https://nlds.soe.ucsc.edu/sarcasm? respectively.

3.2 Experimental Settings

Our model is implemented using PyTorch® and running on a NVIDIA
Tesla M40 GPU. We process the data in the same way as [29]. We use
<U N K > to replace the words that appear only once and remove all
samples less than five tokens and duplicate instances on the datasets.
We also remove the URLs on the dataset. We employ GloVe* [26]
for our word embeddings with a fixed embedding size 100 and we
fine tune the embeddings during training. As for the hyper-parameter
n, which is the maximum length of the sequences. We set it to 40 for
Tweets datasets because 91.1% data have a length less than 40 tokens
on Tweets (Ghosh) dataset. The number is 85.5% on Tweet (Mishra)
dataset. For IAC datasets, we set n to 60 as IAC datasets mainly con-
tain long texts. The sentence snippet length m is set to 3 for Twitter
datasets and 5 for IAC datasets, which is empirically motivated. We
use RMSProp optimizer [13] to optimize model parameters with the
learning rate equals to 10~*. The L2 regularization is set to 10™3
for Twitter datasets and 10~2 for IAC datasets. We use early stop-
ping in our experiment if the loss does not decrease on the validation
set for 20 epochs, the model will stop training. Our code is publicly
available’.

3.3 Baseline Models

o NBOW: The Neural Bag-of-words model performs classification
with an average of the input word embeddings followed by logistic
regression. It is an effective model even it has a simple architec-
ture.

o CNN-LSTM-DNN: The convolutional LSTM + DNN model was
introduced by [6]. They used two convolutional layers and two
LSTM layers to extract features from input word embeddings.
Followed by a deep neural network for classification. It is a deep
learning-based model but without applying any attention mecha-
nisms.

o SIARN and MIARN: SIARN and MIARN are the models first
used self-attention for sarcasm detection [29]. It overcomes the
weakness of traditional sequential models such as recurrent neural
networks, which cannot model the interaction between word pairs
in a sentence. SIARN uses single dimension of words to calculate
their interactions while MIARN used multi-dimension.

e SMSD and SMSD-BiLSTM: These two models were proposed by
[31]. Compared with [29]’s work, [31] introduced a weight matrix
between word pairs to improve the flexibility of capturing joint
information between word pairs. For the model SMSD-BiLSTM,
besides SMSD, it used an additional bi-directional LSTM en-
coder to cultivate sentence’s compositional information instead
of a common LSTM encoder in [29]’s work. SMSA and SMAD-
BiLSTM are state-of-the-art models on most of the benchmark
datasets.

3.4 Experimental Results

We compare our model with above baseline models on some stan-
dard evaluation metrics, including precision, recall, F1 score, and
accuracy®. Precision describes how effective the model is in apply-
ing a label for a given category (few false positives). Recall describes

3 https://pytorch.org/

4 http://nlp.stanford.edu/projects/glove/

5 https://github.com/marvel2120/SAWS

6 We calculate the precision, recall, F1 score, and accuracy by using
sklearn.metrics. https://scikit-learn.org/stable/modules/classes.html

24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

Table 2. Experiment results in two Twitter datasets. Best results are in bold.
Tweets(Ghosh) Tweets(Mishra)
Model Precision Recall Acc Precision Recall F1 Acc
NBOW 74.55 73.93 7394 74.21 72.00 68.13 69.04 74.00
CNN-LSTM-DNN
(Ghosh and Veale, 2017) 7320 71707250 i))) i
SIARN
(Tay et al. 2018) 81.26 81.01 81.07 81.16 82.14 79.67 80.60 83.00
MIARN
(Tay et al. 2018) 80.90 80.93 80.92 80.83 80.73 78.90 79.64 82.00
SMSD 80.25 80.23 80.24 80.27 78.21 80.00 78.78 80.00
(Xiong et al. 2019) ’ ’ ’ ’ ’ : : ’
SMSD_BILSTM 81.02 81.07 81.02 81.03 79.08 7945 79.26 81.00
(Xiong et al. 2019)
SAWS 83.18 83.12 83.14 83.21 86.31 84.73 85.41 87.00
(this paper)

how effective the model is in finding all the relevant examples of a
category (few false negatives). F1 score indicates a trade-off between
the precision and the recall. Table 2 and 3 show the results of our
model and other baseline models on Twitter dataset and IAC dataset
respectively. We observe that our model SAWS achieves state-of-the-
art performance in both Twitter datasets. It improves the F1 score by
around 2.1% on the Ghosh dataset and around 4.8% on the Mishra
dataset. It is worth noting that, some of the values that we are tak-
ing in consideration have been extracted from existing works. Others
are provided by our reimplementation of their works according to
their papers and they are in italic in the tables. Our model performs
better on the Mishra dataset than the Ghosh dataset. Mishra dataset
contains less special tokens, which makes it a clean dataset with bet-
ter qualification. In contrast, the Ghosh dataset has many undefined
symbols and emoticons, which are the noises on the dataset. Con-
sequently, the high quality of Mishra dataset might contribute to the
outstanding performance of our model.

As for IAC datasets, our model also achieves the best results on
both IAC-V1 dataset and IAC-V2 dataset. Our model obtains the
highest recall score on both datasets, which means that our model
is powerful to identify the potential sarcastic texts than other mod-
els. We owe this to the involvement of modeling sentence snippet
incongriuty. Our model is capable of capturing both word-level and
snippet-level incongruity. Thus, some sarcastic texts which based
on sentence snippets incongruity can be detected by our model
and results in an improved recall. Additionally, the experimental
results demonstrate that our model performs better on the Twit-
ter datasets compared with the IAC datasets. We believe that long
text datasets like IAC compries more complex semantic informa-
tion, which makes it difficult to be identified without involving extra
knowledge, such as “facial gesture”, “intonation” and some “facts”.

Compare with other baseline models. We notice that the NBOW is
still an effective model though it has a quite simple architecture. The
models proposed by [29] and [31] outperform both the NBOW model
and the CNN-LSTM-DNN model benefit by introducing the self-
attention mechanism and sequential models. Similarly, our model
also involves self-attention mechanism and it is proved to be effec-
tive. However, we perform self-attention on the weighted sentence
snippets to better capture the incongruity rather than on the words
like [29] and [31]. In addition, the results illustrate that our method
improves the model performance even without using separate RNNs

to accquire sequential information.

3.5 Ablation Study

In order to see if the snippet-level self-attention module and the im-
portance weigthing module improve the model performance, we con-
duct a series of ablative experiments. We first remove the convolution
module and get the model SAWS(w\o conv). SAWS(w\o conv) ac-
cepts words rather than sentence snippets because there is no con-
volution operation on the words. Then, we eliminate the importance
weigthing module and get the model SAWS(w\ o0 weighting). Model
SAWS(w\o weighting) uses the snippets directly obtained from the
convolution module without weighting.

Table 4 gives the results of the ablative experiments. It shows
that our model SAWS gets the best results when involving both
snippet-level self-attention module and importance weigthing mod-
ule. SAWS(w\o conv) performs the worst in the experiment, which
shows the importance of the convolution module and proves that
capturing the snippet incongruity is meaningful and effective. The
results also comply with the intuitive feelings that a snippet con-
tains more incongruous information than a single word. SAWS(w\o
weighting) also performs worse than SAWS, which demonstrates that
snippets are not equally crucial in identifying sarcasm. Giving the
critical snippets with high weights contributes to the performance.
Consequently, the convolution module and the importance weigthing
module play an indispendable role in our model.

3.6 Model Analysis

In this section, we give out a comprehensive analysis of our model.
We first measure the effect of the sentence snippet length m. Then,
a model visualization is given for importance weighting module and
self-attention module to prove their effectiveness.

e The effect of sentence snippet length
We measure the performance of our model, along with a range of
sentence snippet length m form 1 to 6. We can see in Figure 4, all
the metrics including Precision, Recall, F1 scores and Accuracy
keep increasing until reach a peak point when m is equal to 3. The
performance begins to decrease when m continues to grow. Thus,
the value of m is vital to model performance. A small m means
that our model only focuses on short sentence snippets, which

24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

Table 3. Experiment results in two IAC datasets. Best results are in bold.

IAC-V1 IAC-V2
Model Precision Recall F1 Acc Precision Recall F1 Acc
NBOW 57.17 57.03 57.00 57.51 66.01 66.03 66.02 66.09
CNN-LSTM-DNN
(Ghosh and Veale, 2017) 55.50 54.60 5331 55.96 64.31 64.33 64.31 64.38
SIARN
(Tay et al. 2018) 63.94 6345 62.52 62.69 72.17 71.81 71.85 72.10
MIARN
(Tay et al. 2018) 63.88 63.71 63.18 63.21 72.92 7293 7275 725
SMSD 63.04 63.06 62.90 62.90 72.08 72.12 72.04 72.04
(Xiong et al. 2019) ’ ’ ’ ’ ’ ’ ’ ’
SMSD_BILSTM 62.79 62.53 62.51 62.90 71.56 7149 7152 71.61
(Xiong et al. 2019)
SAWS 66.22 65.65 65.60 66.13 73.52 7340 7343 73.55
(this paper)
Table 4. Ablation experiment results.
Model Precision Recall F1 Acc
SAWS(w\o conv) 81.50 8146 8147 81.51
SAWS(w\o weighting) 82.90 82.79 82.83 82.89
SAWS 83.18 83.12 83.14 83.21

Effect of sentence snippet length m

—4— precision
0.830 | —&— Recall
—8— Accuracy
F1 score
0.825 1
(9]
o
'S 0.820 1
[
= 3
0.815 1
0.810 A

1 2 3 4 5 6
Snippet length

Figure 4. The performance curves with a variety of the sentence snippet
length m from 1 to 6. The metrics include precision, recall, F1 score, and
accuracy, which are marked with different colors.

might lose necessary information for sarcasm detection. Thus, re-
sulting in poor performance. In contrast, a large m might involve
some redundant messages. The redundant messages also would
impede the model performance.
o Model visualization

In this section, we visualize how importance weighting module
and self-attention module act in our model. We demonstrate sev-
eral sarcastic cases collected from the testing data. The first two
are correctly classified by our model while the last is not.

— “so excited for my family hike at 9 freaking o’clock in the
morning ! I love not sleeping in on my day off .”

— “yayy I have my english class from 9:00 to 12:00 today ! this is
going to be fun !”

— “love this store ! there all goodie box is awesome !”

freaking o'clock in to be fun NS box is awesome
. . 0.96
9 freaking o'clock from 9:00 to i is awesome !
0.96 1.04
0.92
my day off 0.94 9:00 to 12:00 - 0.94 100 love this store -
' - 0.88
-0.92
on my day to 12:00 today e 0.96 this store ! - 0.78
-0.84
-0.90
in the morning - 0.89 - 0.88 my english class FHUEE) 092 goodie box 4 U4 - 0.80

so excited for - 0.88 have my english - 0.89 goodie box is- 0.77

|
Attention
score

|
Attention
score

|
Attention
score

Figure 5. The demonstration of the top six critical snippets selected by our
importance weigthing module under the given examples. The numbers in the
graph are scaled attention score, which shows the importance of snippets.

Figure 5 gives out the top six important snippets selected by our im-
portance weighting module. In the second example, our model takes
the snippets “to be fun”, “my english class”, “from 9:00 to” and “to
12:00 today” as critical snippets. Intuitively, these snippets are indis-
pensable for a human being to identify the incongruity within a sar-
castic text. As a result, our importance weighting module is active in
selecting the critical snippets and giving a high score. However, note
that a critical snippet might mean that it appears frequently on the sar-
casm dataset, but this not guarantee it must be exactly the same as a

24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

human segmented incongruous snippet for a specific instance. How-
ever, the snippet weight indicates how informative the snippet is and
it can still give insights into considering the importance of snippets
for sarcasm prediction. For instance, our model takes “is awesome !”
as the most critical snippet, which might because “is awesome !” is
very common in sarcastic expression.

i love not -{U¥AN have my english N3 love this store -JVES]
0.35

9 freaking o'clock 1) be fun ! -JLAES this store ! - 0.11
0.200 0.135 0.30

- 0.175)
not sleeping in - to be fun 4 -0.120 goodie box is - 0.18 0.25
- 0.150

-0.125 - 0.105 -0.20

is awesome ! 1013 *_ 5,5 9:00t012:30- 0.1 is awesome ! - 0.087
-0.15

-0.075 -0.090

freaking o'clock in -0.081 class from 9:00 - 0.085 all goodie box - 0.073 _ 19

my day off - 0.06 12:30 today ! - 0.078 there all goodie - 0.067

| ! |
Attention Attention Attention
score score score

Figure 6. The visualization of snippet self-attention of the given examples.
The darkness of the background varies according to the value of the
corresponding attention weight.

Figure 6 visualizes how our self-attention module works. Figure 6
shows that our model is highly effective in attending the incongru-
ous snippets, which is a strong indicator to detect sarcasm. Take the
same example from last paragraph, we notice that the snippets “have
my english” and “be fun !” have been given the highest attention
weights. The same pattern can be found in the first example. Thus,
our self-attention module is powerful in capturing the snippet incon-
gruity within a sentence, which makes it effective to identify sar-
casm. However, for the third instance, our model fails to find such
incongruity patterns and leads to a false classification. This kind of
sarcasm is even hard for human beings to recognize without extra
information, such as the speaker’s facial gesture or intonation.

4 Related Work

Sarcasm is a linguistic phenomenon which has been widely studied
by linguistic scholars [1, 4, 11, 10]. Automatic sarcasm detection has
gained the NLP researchers’ interest partially due to the rising of so-
cial media and sentiment analysis [27]. Most existing works concen-
trate on text-only sarcasm detection. Nonetheless, some other valu-
able works also exploit user representations [18], contextual infor-
mation [12], congnitive features [24, 23] and multimodal features [2]
to determine sarcasm. While our work mainly focuses on text-only
sarcasm detection, we skip the detail of their works for brevity. The
existed text-based sarcasm detection works can be divided into three
categories: rule-based approaches, feature-based machine learning
approaches, and deep learning-based approaches [14].,

Sarcasm detection was originally solved by using rule-based ap-
proaches. Rule-based approaches aim to identify sarcasm with fixed
patterns. Such indicative patterns are extracted by using linguistic
rules. [28] observed that sarcastic Twitter message often contained a
common pattern that is a positive sentiment followed by a negative
situation. They proposed a bootstrapping algorithm which iteratively
expands the positive and negative sentiment phrase sets. They found

that identifying sarcasm using the phrases learned by their bootstrap-
ping algorithm resulted in an improved recall. Hashtags in Twitter
messages, such as #sarcasm, #sarcastic, #not, #not true, #greatstart
were also considered in sarcasm detection. The hashtags were la-
beled by users to express their feelings. [22] developed a hashtag
tokenizer, such that sentiment and sarcasm within hashtags can be
detected. They also compiled a number of rules to improve the accu-
racy of sentiment classification when sarcasm is known to be present.

However, rule-based approaches only rely on fixed patterns, which
makes it challenging to capture complex sarcastic texts. In order to
improve the performance, the scholars began to enrich the feature set
and use machine learning approaches. [5] used both structural fea-
tures, such as punctuation mark frequency, tweet length, uppercase
character amount and affective features to detect sarcasm. Affective
features involve sentiment-related features and emotional categories.
[8] treated the sarcasm detection task as a type of word sense dis-
ambiguation problem. They used an SVM classifier with a modified
kernel and word embeddings, which obtained a 7-10% improvement
compared with the baseline. [15] developed a system that harnesses
context incongruity to detect sarcasm. Their classifier incorporated
both explicit incongruity features and implicit incongruity features.
Their model outperformed two past works with 10%-20% F-score
improvement.

Though feature-based algorithms achieved promising perfor-
mance in sarcasm detection, the construction of discrete features is
a time-consuming job. Researchers have recently considered deep
learning-based methods because it is capable of extracting fea-
tures automatically. [27] used pre-trained Convolutional Neural Net-
works to extract sentiment, emotion, and personality features for sar-
casm detection. A self-attention based neural model was firstly pro-
posed by [29] for sarcasm detection. Similarly, [31] proposed a self-
matching network, in which the joint information of each word-to-
word pair was calculated to capture the context incongruity. Inspired
by their works, we propose a novel model SAWS. The major differ-
ence between their models and SAWS is that they consider the incon-
gruity on word-level, but we consider on snippet-level because we
believe that snippets contain more discernible sentiment than words.
Besides, we also introduce an importance weighting mechanism to
give high weights to critical snippets and low weights to trivial snip-
pets to enhance the performance.

5 Conclusion

In this paper, we present a novel model by introducing snippet-level
self-attention to model the incongruity between sentence snippets,
which addresses the issue that existing models cannot capture the
snippet incongruity in sarcastic texts. Besides, human beings can rec-
ognize sarcasm by paying different level attention to different snip-
pets. Accordingly, we introduce an importance weighting module in
our model to determine critical snippets. Meanwhile, we also con-
duct a series of ablative experiments to verify the effectiveness of the
modules proposed in this paper. Our model outperforms state-of-the-
art models on four benchmark datasets and enjoys a good interpreta-
tion as it heavily complies with human intuitions.

6 Acknowledgements

This work was supported by National Natural Science Foundation
of China (No. 61976207, No. 61906187). The authors would like to
thank the anonymous reviewers for their constructive comments.

24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

REFERENCES

(1]

(2]

[3]

(4]

(5]

(6]

(71

(8]

(9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

John D Campbell and Albert N Katz, ‘Are there necessary conditions
for inducing a sense of sarcastic irony?’, Discourse Processes, 49(6),
459480, (2012).

Santiago Castro, Devamanyu Hazarika, Verénica Pérez-Rosas, Roger
Zimmermann, Rada Mihalcea, and Soujanya Poria, ‘Towards multi-
modal sarcasm detection (an _obviously_ perfect paper)’, in Proceed-
ings of the 57th Conference of the Association for Computational Lin-
guistics, ACL 2019, pp. 46194629, (2019).

Jianpeng Cheng, Li Dong, and Mirella Lapata, ‘Long short-term
memory-networks for machine reading’, in Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing,
EMNLP 2016, pp. 551-561, (2016).

Jodi Eisterhold, Salvatore Attardo, and Diana Boxer, ‘Reactions to
irony in discourse: evidence for the least disruption principle’, Journal
of Pragmatics, 38(8), 1239-1256, (2006).

Delia Irazi Herndndez Farias, Viviana Patti, and Paolo Rosso, ‘Irony
detection in twitter: The role of affective content’, ACM Trans. Internet
Techn., 16(3), 19:1-19:24, (2016).

Aniruddha Ghosh and Tony Veale, ‘Fracking sarcasm using neu-
ral network’, in Proceedings of the 7th Workshop on Computa-
tional Approaches to Subjectivity,Sentiment and Social Media Analysis,
WASSA@NAACL-HLT 2016, pp. 161-169, (2016).

Aniruddha Ghosh and Tony Veale, ‘Magnets for sarcasm: Making sar-
casm detection timely, contextual and very personal’, in Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2017, pp. 482491, (2017).

Debanjan Ghosh, Weiwei Guo, and Smaranda Muresan, ‘Sarcastic or
not: Word embeddings to predict the literal or sarcastic meaning of
words’, in Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2015, pp. 1003-1012,
(2015).

Raymond W Gibbs Jr, Raymond W Gibbs, and Jr Gibbs, The poetics
of mind: Figurative thought, language, and understanding, Cambridge
University Press, 1994.

Raymond W Gibbs Jr and Jennifer O’Brien, ‘Psychological aspects of
irony understanding’, Journal of pragmatics, 16(6), 523-530, (1991).
Rachel Giora, ‘On irony and negation’, Discourse processes, 19(2),
239-264, (1995).

Devamanyu Hazarika, Soujanya Poria, Sruthi Gorantla, Erik Cambria,
Roger Zimmermann, and Rada Mihalcea, ‘CASCADE: contextual sar-
casm detection in online discussion forums’, in Proceedings of the
27th International Conference on Computational Linguistics, COLING
2018, pp. 1837-1848, (2018).

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky, ‘Neural net-
works for machine learning lecture 6a overview of mini-batch gradient
descent’.

Aditya Joshi, Pushpak Bhattacharyya, and Mark James Carman, ‘Auto-
matic sarcasm detection: A survey’, ACM Comput. Surv., 50(5), 73:1—
73:22, (2017).

Aditya Joshi, Vinita Sharma, and Pushpak Bhattacharyya, ‘Harnessing
context incongruity for sarcasm detection’, in Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics ACL
2015, pp. 757-762, (2015).

Jin-Hwa Kim, Kyoung Woon On, Woosang Lim, Jeonghee Kim, Jung-
Woo Ha, and Byoung-Tak Zhang, ‘Hadamard product for low-rank bi-
linear pooling’, in 5th International Conference on Learning Represen-
tations, ICLR 2017, (2017).

Yoon Kim, ‘Convolutional neural networks for sentence classification’,
in Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pp.
1746-1751, (2014).

Y. Alex Kolchinski and Christopher Potts, ‘Representing social media
users for sarcasm detection’, in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 1115-1121,
(2018).

Bing Liu, ‘Sentiment analysis and subjectivity’, in Handbook of Natu-
ral Language Processing, Second Edition., (2010).

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh, ‘Hierarchi-
cal question-image co-attention for visual question answering’, in Ad-
vances in Neural Information Processing Systems 29: Annual Confer-
ence on Neural Information Processing Systems 2016, pp. 289-297,
(2016).

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

Stephanie Lukin and Marilyn Walker, ‘Really? well. apparently boot-
strapping improves the performance of sarcasm and nastiness classi-
fiers for online dialogue’, in Proceedings of the Workshop on Language
Analysis in Social Media, pp. 30-40, Atlanta, Georgia, (June 2013).
Association for Computational Linguistics.

Diana Maynard and Mark A. Greenwood, ‘Who cares about sarcastic
tweets? investigating the impact of sarcasm on sentiment analysis’, in
Proceedings of the Ninth International Conference on Language Re-
sources and Evaluation, LREC 2014, pp. 4238-4243, (2014).

Abhijit Mishra, Kuntal Dey, and Pushpak Bhattacharyya, ‘Learning
cognitive features from gaze data for sentiment and sarcasm classifi-
cation using convolutional neural network’, in Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers,
pp. 377-387, (2017).

Abhijit Mishra, Diptesh Kanojia, and Pushpak Bhattacharyya, ‘Predict-
ing readers’ sarcasm understandability by modeling gaze behavior’, in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
pp. 3747-3753, (2016).

Bo Pang and Lillian Lee, ‘Opinion mining and sentiment analy-
sis’, Foundations and Trends in Information Retrieval, 2(1-2), 1-135,
(2007).

Jeffrey Pennington, Richard Socher, and Christopher D. Manning,
‘Glove: Global vectors for word representation’, in Proceedings of the
2014 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2014, pp. 1532-1543, (2014).

Soujanya Poria, Erik Cambria, Devamanyu Hazarika, and Prateek Vij,
‘A deeper look into sarcastic tweets using deep convolutional neural
networks’, in COLING 2016, 26th International Conference on Compu-
tational Linguistics Proceedings of the Conference: Technical Papers,
December, pp. 1601-1612, (2016).

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra De Silva, Nathan
Gilbert, and Ruihong Huang, ‘Sarcasm as contrast between a positive
sentiment and negative situation’, in Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP
2013, pp. 704-714, (2013).

Yi Tay, Anh Tuan Luu, Siu Cheung Hui, and Jian Su, ‘Reasoning with
sarcasm by reading in-between’, in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, ACL 2018,
pp. 1010-1020, (2018).

Marilyn A. Walker, Jean E. Fox Tree, Pranav Anand, Rob Abbott,
and Joseph King, ‘A corpus for research on deliberation and debate’,
in Proceedings of the Eighth International Conference on Language
Resources and Evaluation, LREC 2012, Istanbul, Turkey, May 23-25,
2012, pp. 812-817, (2012).

Tao Xiong, Peiran Zhang, Hongbo Zhu, and Yihui Yang, ‘Sarcasm de-
tection with self-matching networks and low-rank bilinear pooling’, in
The World Wide Web Conference, WWW 2019, pp. 2115-2124, (2019).
Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J.
Smola, and Eduard H. Hovy, ‘Hierarchical attention networks for docu-
ment classification’, in NAACL HLT 2016, The 2016 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 1480-1489, (2016).

