
Dynamics in Abstract Argumentation Frameworks
with Recursive Attack and Support Relations

Gianvincenzo Alfano 1 and Andrea Cohen 2 and Sebastian Gottifredi 2 and
Sergio Greco 1 and Francesco Parisi 1 and Guillermo Simari 2

Abstract. Argumentation is an important topic in the field of AI.
There is a substantial amount of work about different aspects of
Dung’s abstract Argumentation Framework (AF). Two relevant as-
pects considered separately so far are extending the framework to ac-
count for recursive attacks and supports, and considering dynamics,
i.e., AFs evolving over time. In this paper, we jointly deal with these
two aspects. We focus on Attack-Support Argumentation Frame-
works (ASAFs) which allow for attack and support relations not only
between arguments but also targeting attacks and supports at any
level, and propose an approach for the incremental computation of
extensions (sets of accepted arguments, attacks and supports) of up-
dated ASAFs. Our approach assumes that an initial ASAF extension
is given and uses it for first checking whether updates are irrelevant;
for relevant updates, an extension of an updated ASAF is computed
by translating the problem to the AF domain and leveraging on AF
solvers. We experimentally show our incremental approach outper-
forms the direct computation of extensions for updated ASAFs.

1 Introduction

Argumentation has become an attractive and efficient paradigm for
knowledge representation and reasoning within the field of Artifi-
cial Intelligence [17, 39, 43, 47]. In particular, Dung’s abstract Argu-
mentation Framework (AF) [32] provides a simple yet powerful for-
malism for modelling and reasoning with information expressed in
terms of arguments and their conflicts. Following the work by Dung,
there have been many extensions of AFs allowing for bipolar inter-
actions [26], second-order attacks [20] or, more generally, recursive
attacks [10]. In addition to these approaches extending Dung’s AFs,
the Attack-Support Argumentation Framework (ASAF) [37] allows
for attacks and supports not only towards arguments but also target-
ing the attack and support relations at any level. This framework has
the advantage of enabling a straightforward representation of rea-
soning situations (e.g. in the area of modelling decision processes),
which are not easily accommodated within other frameworks such
as Dung’s AF or flat bipolar AFs. In particular, the support in ASAF
is interpreted as necessity [45]: if argument A supports argument B,
then the acceptance of A is necessary to get the acceptance of B;
equivalently, the acceptance of B implies the acceptance ofA. How-
ever, a support can also target an attack or a support.

An ASAF can be represented by a graph as that in Figure 1(a),
where arguments are denoted with calligraphic letters, attacks are de-

1 DIMES, University of Calabria, Italy, email: {g.alfano, greco,
fparisi}@dimes.unical.it

2 DCIC, Universidad Nacional del Sur, ICIC (CONICET-UNS), Argentina,
email: {ac, sg, grs}@cs.uns.edu.ar

RN ST D PT

W P

β1
α3
α2

α1

α4β2

RN ST D PT

W P

β1
α3
α2

α1

α4β2

NS
α5

(a) (b)

Figure 1: (a) Initial ASAF ∆1 and (b) Updated ASAF

noted with single arrows (→), and supports are denoted with double
arrows (⇒). In particular, the ASAF in Figure 1(a) models the fol-
lowing scenario. Suppose John is planning to spend his winter hol-
idays in Bariloche and has to decide whether to rent a car to drive
during his stay (D) or make use of public transportation (PT ). Ar-
guments D and PT are two alternatives John has, and the conflict
between them is represented by the attacks α2 and α3. In general,
John has a preference towards driving over using public transport
(P). This is encoded by the attack α4 from P to α3. However, he
has been told that in order to drive safely in Bariloche he needs to
put a snow traction device on the car (ST ), but this is only required
during winter, the current season in Bariloche (W). Hence, ST sup-
ports D (support β1) as the acceptance of ST is necessary for the
acceptance of D, andW supports β1. In addition, rental car services
ran out of such devices (RN ). In this context, John will end up de-
ciding to use public transportation in Bariloche.

However, in practice, argumentation frameworks can be dynamic
systems [4, 7, 12, 13, 18, 29, 35, 42]. In fact, typically an ASAF
represents a temporary situation, and new arguments, attacks and
supports can be added/removed to take into account new available
knowledge. For instance, in our running example, suppose now that
John comes across with new information stating that it has not
snowed in Bariloche for the last two months and will not snow during
his stay, represented by an argument NS. Then, when considering
the previous arguments and attacks together with the new argument,
a new conflict arises, needing to update John’s knowledge: argument
NS attacks β1, the support from ST to D, as it provides a context
in which John will not need to put a snow traction device on his car
in order to drive safely in Bariloche. The new scenario, with the ad-
dition of argumentNS and then, of the attack α5, corresponds to the
updated ASAF shown in Figure 1(b), according to which John will
choose to rent and drive a car during his stay in Bariloche.

Recently, there has been a growing interest in studying dynam-
ics of different argumentation systems, including Dung AFs [1, 3,
12, 19, 31, 38], Bipolar AFs and AFs with second order attacks [2].
Notwithstanding this, none of the developments regarding dynamics

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



in argumentation has so far considered bipolar recursive frameworks
like the ASAF. However, incremental computation techniques could
improve performance, as they only require to reconsider the accep-
tance status of those arguments and interactions that are affected by
the new information. For instance, the acceptance status ofRN and
ST , as well as that of α1, does not change after adding the attack α5

fromNS to the support from ST to D.
With the aim of exploiting features like those above, in this paper

we propose an incremental approach for efficiently computing exten-
sions of an ASAF after performing an update. Specifically, we pro-
pose a technique addressing the following problem: given an ASAF
∆, an initial extension E0 of ∆, and an update u consisting of the
addition/removal of an attack/support, determine an extension E of
the updated ASAF u(∆).

Contributions. Our main contributions are as follows:

1. We identify and formally characterize irrelevant updates for an
ASAF, for which an extension E of an updated ASAF u(∆) can
be directly obtained without requiring its overall computation.
These results can be used to avoid wasted effort for any incre-
mental algorithm, not just that proposed in this paper.

2. We characterize an ASAF in terms of an AF, and formally show
that this AF yields equivalent extensions to those of the ASAF.
Note that this AF can be used to compute ASAFs’s extensions
even in the static case, where updates are not considered.

3. We define an incremental algorithm for computing an extension
E of an updated ASAF u(∆), accounting for early termination
conditions implied by irrelevant updates and leveraging on the in-
cremental technique proposed in [1] for the computation on the
(extensions-equivalent) AF for an updated ASAF u(∆). The tech-
nique is able to incorporate any existing AF-solver to perform the
incremental computation of ASAFs’s extensions.

4. We perform an experimental analysis showing that our incremen-
tal approach outperforms the computation from scratch, where the
fastest solvers from the International Competition on Computa-
tional Models of Argumentation (ICCMA) 3 are used as baselines.

As a side contribution, we develop a benchmark for testing ASAF
solvers, and we briefly introduce labellings for the ASAF.

2 Essential Background
We briefly review the essential background for abstract Argumen-
tation Frameworks (AFs) [32] and Attack-Support Argumentation
Frameworks (ASAFs) (for a full presentation see [37]).

An AF consists of a set of arguments whose origin is left unspeci-
fied, and a set of conflicts between them [32].

Definition 1 (AF). An abstract Argumentation Framework (AF ) is
a pair 〈A,R〉, where A is a set of arguments and R ⊆ A × A is an
attack relation.

In [32] some semantic notions are defined leading to the charac-
terization of collectively acceptable sets of arguments. Given an AF
〈A,R〉 and a set S ⊆ A of arguments, we say that:

• S is conflict-free iff @A,B ∈ S s.t. (A,B) ∈ R.
• A ∈ A is acceptable w.r.t. S iff ∀B ∈ A s.t. (B,A) ∈ R, ∃C ∈ S

s.t. (C,B) ∈ R.
• S is admissible iff it is conflict-free and ∀A ∈ S, A is acceptable

w.r.t. S.
3 http://argumentationcompetition.org

Then, by adding restrictions to the notion of admissibility, the
complete (co), preferred (pr), stable (st), and grounded (gr) exten-
sions of an AF are defined as follows. Given an AF 〈A,R〉 and a set
of arguments S ⊆ A, we say that:

• S is a complete extension of AF iff it is admissible and ∀A ∈ A,
if A is acceptable w.r.t. S, then A ∈ S.

• S is a preferred extension of AF iff it is a maximal (w.r.t. ⊆)
complete extension of AF .

• S is a stable extension of AF iff it is a complete extension of AF
and ∀A ∈ A\S, ∃B ∈ S s.t. (B,A) ∈ R.

• S is the grounded extension of AF iff it is the smallest (w.r.t. ⊆)
complete extension of AF .

Attack-Support Argumentation Framework. The ASAF extends
Dung’s AF by incorporating bipolar higher-order interactions. In that
way, the ASAF allows for the representation and reasoning with at-
tack and support relations not only between arguments, but also tar-
geting the attack and support relations themselves. The support rela-
tion of the ASAF is interpreted as necessity [45]. That is, the neces-
sary support relation in the ASAF imposes the following acceptabil-
ity constraints on the elements it relates: the acceptance of B implies
the acceptance of A or, equivalently, the non-acceptance of A im-
plies the non-acceptance of B.

Definition 2 (ASAF). An Attack-Support Argumentation Framework
(ASAF) is a tuple 〈A,R,S〉 whereA is a set of arguments,R ⊆W
is the attack relation, and S ⊆ W is the support relation, where W
is the set iteratively defined as follows: W = A × A (basic step)
andW = A×W (iterative step). It is assumed that S is acyclic and
R ∩ S = ∅.

As stated before, attacks and supports in an ASAF can also be
attacked and supported. To simplify the notation, an attack (A,B) ∈
R will be denoted as α1 = (A,B); similarly, a support (B, C) ∈ S
will be denoted as β1 = (B, C). Then, for instance, an attack from
D to α1 will be denoted as α2 = (D, α1). Moreover, given an attack
α = (A, X) ∈ R,A is called the source of α, denoted src(α) = A,
and X is called the target of α, denoted trg(α) = X . Analogously,
given a support β = (B, Y ) ∈ S, B is called the source of β, denoted
src(β) = B, and Y is called the target of β, denoted trg(β) = Y .

An ASAF ∆ can be represented following a graph-like notation
by G∆: an argument A ∈ A will be a node in G∆, an attack
α = (A, X) ∈ R will be an edge A α−→ X in G∆, and a support

β = (B, Y ) ∈ S will be an edge B β
=⇒ Y in G∆. Attacks and

supports whose target is an argument are said to be first-level inter-
actions, while attacks and supports whose target is an interaction of
level i are said to be interactions of level i+ 1.

Example 1. The initial example from the introduction can be rep-
resented by the ASAF ∆1 = 〈A1 ,R1 ,S1 〉 in Figure 1(a), with
A1 = {D,PT ,P,ST ,W,RN}, R1 = {α1, α2, α3, α4}, and
S1 = {β1, β2}; where α1 = (RN ,ST ), α2 = (D,PT ) and α3 =
(PT ,D) are first-level attacks, β1 = (ST ,D) is a first-level sup-
port, and the second-level interactions are the attack α4 = (P, α3)
and the support β2 = (W, β1).

In standard graphs, paths are defined among nodes. Here, for
graphs denoting ASAFs, we consider paths whose target can also
be an edge. In particular, we define a support path from A to X as
a path A = A1 =⇒ A2 =⇒ . . . =⇒ An = X , where each Ai
(1 ≤ i < n) is an argument and An = X is an argument, attack or
support, whose set of edges S contains the support links in the path;

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



a support path is empty iff A = X . Then, the conflicts between the
elements of an ASAF, referred to as defeats, are defined as follows.

Definition 3 (Defeats). Let ∆ = 〈A,R,S〉 be an ASAF, α ∈ R,
X ∈ (A ∪R ∪ S) and S ⊆ S. We say that α defeats X (given S),
denoted α def X given S (or simply α def X , whenever S = ∅) iff:

• there exists a (possibly empty) support path from trg(α) to X ,
whose set of edges is S; or

• X ∈ R and there exists a (possibly empty) support path from
trg(α) to src(X), whose set of edges is S.

The preceding definition not only accounts for defeats originated
by the attack relation, but also accounts for defeats arising from the
coexistence of the attack and support relations in the ASAF.

Example 2. Given the ASAF ∆1 from Example 1, these defeats
occur: α1 def ST , α2 def PT , α2 def α3, α3 def D, α3 def α2,
α4 def α3, α1 def D given {β1} and α1 def α2 given {β1}.

We now define the sets of elements (arguments, attacks and sup-
ports) of an ASAF that can be collectively accepted under some cri-
teria, called extensions. When not explicitly stated otherwise, attacks
in an ASAF will be denoted with α, supports will be denoted with β
(both, possibly with subscripts), and elements that can either be ar-
guments, attacks or supports will be denoted with capital letters such
asX or Y . Similarly, sets of elements from an ASAF will be denoted
with capital boldface letters such as S or S′.

The notion of conflict-freeness establishes the minimum require-
ments a set of arguments, attacks, and supports should satisfy in order
to be collectively accepted.

Definition 4 (Conflict-freeness). Let ∆ = 〈A,R,S〉 be an ASAF
and S ⊆ (A ∪R ∪ S). We say that S is conflict-free iff @α,X ∈ S,
@S′ ⊆ S s.t. α def X given S′.

The notion of acceptability characterizes the defense by a set of
arguments, attacks and supports against the defeats on its elements.

Definition 5 (ASAF Acceptability). Let ∆ = 〈A,R,S〉 be an
ASAF, X ∈ (A ∪ R ∪ S) and S ⊆ (A ∪ R ∪ S). We say that
X is acceptable w.r.t. S iff ∀α ∈ R, ∀T ⊆ S s.t. α def X given T:
∃Y ∈ ({α} ∪T), ∃α′ ∈ S, ∃S′ ⊆ S s.t. α′ def Y given S′.

Then, admissible sets are defined by combining the notions of
conflict-freeness and acceptability.

Definition 6 (ASAF Admissibility). Let ∆ = 〈A,R,S〉 be an ASAF
and S ⊆ (A ∪ R ∪ S). S is admissible iff it is conflict-free and
∀X ∈ S: X is acceptable w.r.t. S.

Example 3. Given the ASAF ∆1 from Example 1, for instance, D is
not acceptable w.r.t. {α4} because, even thoughα4 defends it against
the defeat by α3, it does not defend it against the defeat by α1 given
{β1}. In contrast, PT is acceptable w.r.t. {α1, β1} because this set
defends it against the defeat by α2. Consequently, for instance, the
set {α1, β1,PT } is admissible whereas the set {α4,D} is not.

Finally, the complete (co), preferred (pr), stable (st), and
grounded (gr) extensions are defined as follows.

Definition 7 (ASAF Extensions). Let ∆ = 〈A,R,S〉 be an ASAF
and S ⊆ (A ∪R ∪ S):

• S is a complete extension of ∆ iff it is admissible and ∀X ∈
(A ∪R ∪ S), if X is acceptable w.r.t. S, then X ∈ S.

• S is a preferred extension of ∆ iff it is a maximal (w.r.t. ⊆)
complete extension of ∆.

• S is a stable extension of ∆ iff it is
a complete extension of ∆ and ∀X ∈ (A ∪R ∪ S)\S, ∃α ∈ S,
∃S′ ⊆ S s.t. α def X given S′.

• S is the grounded extension of ∆ iff it is the smallest (w.r.t. ⊆)
complete extension of ∆.

Example 4. The grounded extension of the ASAF ∆1 from Exam-
ple 1 is {RN , α1, β1,W, β2,PT ,P, α4} (it is also the only pre-
ferred and stable extension, thus it is the unique complete extension).

Similarly to the case of AFs (see [8] for an overview), exten-
sions of an ASAF can also be expressed through labellings. A la-
belling for an ASAF ∆ = 〈A,R,S〉 is a total function Lab :
(A ∪ R ∪ S) 7→ {IN, OUT, UNDEC}. Given a labelling Lab, we
define IN(Lab) = {X | Lab(X) = IN}, OUT(Lab) = {X |
Lab(X) = OUT}, and UNDEC(Lab) = {X | Lab(X) = UNDEC}.
Also, when convenient, a labelling Lab will be represented as the
triple (IN(Lab), OUT(Lab), UNDEC(Lab)).

Then, the complete labellings can be defined as follows. Lab is a
complete labelling of an ASAF ∆ = 〈A,R,S〉 iff for every X ∈
(A ∪R ∪ S) it holds that: (1) Lab(X) = IN iff ∀α ∈ R, ∀S ⊆ S
s.t. α def X given S, ∃Y ∈ ({α} ∪ S) s.t. Lab(Y ) = OUT; and
(2) Lab(X) = OUT iff ∃α ∈ R, ∃S ⊆ S s.t. α def X given S and
∀Y ∈ ({α} ∪ S), Lab(Y ) = IN.

Hence, for X to be labelled as IN by a complete labelling of the
ASAF we require that, for every set of elements originating a defeat
on X , one of the elements in the set is labelled as OUT (i.e., either
the attack or one of the supports, if they exist). Analogously, for X
to be labelled as OUT, we require that there exists a set of elements
originating a defeat on X where every element in the set (i.e., the
attack and every support) is IN. Finally, if X is neither labelled as IN

nor OUT, it is labelled as UNDEC.
As it holds for AFs (cf. [23]), a one-to-one correspondence be-

tween complete extensions and complete labellings of an ASAF can
be established. Specifically, each complete extension E is in one-to-
one correspondence with a complete labelling L = (E,E+, (A ∪
R ∪ S)\(E ∪ E+)), where E+ = {X ∈ (A ∪ R ∪ S) | ∃α ∈
E,∃S ⊆ E s.t. α def X given S }. In other words, the complete
labelling L corresponding to a complete extension E of an ASAF is
given by the triple (IN(L), OUT(L), UNDEC(L)), where IN(L) = E,
OUT(L) = E+, and UNDEC(L) = (A ∪R ∪ S)\(E ∪ E+)).

Then, the preferred, stable and grounded labellings of an ASAF
can be defined in terms of the complete labellings of the framework:
Lab is a preferred (resp. stable, grounded) labelling of ∆ iff it is a
complete labelling s.t. IN(Lab) is a preferred (resp. stable, grounded)
extension of ∆.

Example 5. Given the ASAF ∆1 and its extensions
listed in Example 4, the grounded labelling is ({RN ,
α1, β1,W, β2,PT ,P, α4}, {ST ,D, α2, α3}, ∅) (it is also the
only complete, preferred and stable labelling of ∆1).

3 Dynamics: Updates and Translation into AF
We start by defining the notion of update for an ASAF and identify
updates that can be considered as irrelevant, since they do not re-
quire to compute the corresponding extension of the updated ASAF.
Then, we formally characterize an ASAF in terms of an AF, whose
extensions are shown to be equivalent to the extensions of the ASAF.

We start by defining the universal sets of attacks and supports,
which account for every conceivable relationship that may appear

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



in an ASAF. For a set of arguments A, the set of universal attacks
RU and the set of universal supports SU are such that RU ⊆ W ,
SU ⊆W , andRU∩SU = ∅ (whereW is as defined in Definition 2).

An update consists of the addition (resp., removal) of an attack or
a support not present (resp., present) in a given ASAF, as formalized
in what follows.

Definition 8 (Update for ASAF). Let A be a set of arguments,
RU and SU the universal sets of attacks and supports, and ∆ =
〈A,R,S〉 an ASAF, where R ⊆ RU and S ⊆ SU. An update u
over ∆ belongs to any of the sets characterized below, yielding the
updated ASAF ∆′ = 〈A,R′,S′〉:

• u ∈ {+X | X ∈ (RU ∪ SU)\(R ∪ S), src(X) ∈ A, trg(X) ∈
(A ∪R ∪ S)}. If X ∈ RU, thenR′ = R ∪ {X} and S′ = S; if
X ∈ SU, thenR′ = R, S′ = S ∪ {X} and S′ is acyclic.

• u ∈ {−X | X ∈ R∪S, @X ′ ∈ R∪S s.t. trg(X ′) = X}. Thus,
R
′ = R\{X} and S′ = S\{X}.

The ASAF ∆′ obtained by applying an update u over an ASAF
∆ will also be denoted as u(∆). Furthermore, for simplicity, we
write ±X for the addition or removal of an attack or a support
X = (src(X), trg(X)). Then, for an update u = +X , the inter-
action X must not belong to the attack and support relations of the
ASAF it will be applied on, and the source and target of X must
belong to the ASAF; moreover, the support relation of the updated
ASAF must remain acyclic. Contrastingly, for an update u = −X ,
the interaction X cannot be targeted by any other interaction in the
ASAF. For instance, in the scenario described in the introduction,
if we first extend the ASAF ∆1 to also include argument NS, an
update over this extended framework could be u = +(NS, β1).

We only focus on updates that involve the addition or deletion of
an attack or a support, as the effect of adding/removing arguments
to/from an ASAF has a trivial effect on its extensions. In fact, in such
cases, an updated extension E of the updated ASAF u(∆) can be
trivially obtained by adding/removing the added/removed argument
to/from an initial extension E0 of ∆.

It should be noted that not every update has a large impact on the
acceptability of the elements of the ASAF it is applied on. That is,
there are some situations in which an update is irrelevant for the ac-
ceptability calculus, meaning an extension of the updated ASAF can
be easily obtained, without requiring its overall computation. More
in detail, given an extension E0 of an ASAF ∆ and an irrelevant up-
date u = +X , an extension E of the updated ASAF u(∆) will at
most differ from E0 in that it includes X . Similarly, given an irrel-
evant update u = −X , the updated extension will differ from the
initial extension in that it does not include X .

Tables 1–4 illustrate all cases of irrelevant updates for an ASAF
under the four considered semantics. Irrelevant updates are identified
by looking at the labelling L0 corresponding to an extension E0 of
the initial ASAF, under the semantics S ∈ {co, pr, st, gr}. We use
ES(∆) (resp., ES(u(∆))) to denote the set of S-extensions of the ini-
tial ASAF ∆ (resp., of the updated ASAF u(∆)). For each irrelevant
update, the caption of Tables 1–4 states how to obtain the updated
extension in ES(u(∆)) starting from the initial one in ES(∆). N/A
in a cell means not applicable (e.g. in Table 4 it cannot be the case
that L0(src(β)) = OUT and L0(trg(β)) = IN).

The following theorem tells us for each of the four cases of update
(addition/deletion of an attack/support) and for each combination of
the labelling of the source and target of the updated interaction, and
for each semantics, if the update is irrelevant or not.

Theorem 1. Let ∆ = 〈A,R,S〉 be an ASAF, u = ±X
an update for ∆, and u(∆) the updated ASAF. Also, let E0

be an S-extension of ∆ and L0 the labelling corresponding to
E0, where S ∈ {co, pr, st, gr}. Then, for each type of up-
date considered in Tables 1–4, a semantics S occurs in the cell
〈L0(src(X)), L0(trg(X))〉 of Table i (i ∈ [1, 4]) iff u is irrelevant
for ∆ w.r.t. S and an S-extensionE of u(∆) can be obtained directly
from E0 as described in the caption of Table i.

Proof. (Sketch) The proof considers each kind of update separately
and then moves to considering, for each of the four semantics ap-
pearing in a given cell, the initial labelling (L0) of the source and
target of the updated interaction. For each case of update that is
not irrelevant, a counter-example showing that the initial labelling
changes after performing an update is given. As an example, the
proof corresponding to the top-middle cell in Table 3 follows. Con-
sider the update u = +β, with β ∈ (SU\S). Also, let L0 be an
S-labelling of ∆, with S ∈ {co, pr, gr}, s.t. L0(src(β)) = IN

and L0(trg(β)) = UNDEC. We have to show that there exists an
S-labelling L of u(∆) s.t. IN(L0) = IN(L) ∪ {β}. First, since no
interaction in u(∆) can target β, no defeats on β will exist in u(∆)
and β will be IN in every co, pr and gr-labelling of u(∆). Then,
we have to show that IN(L0) ⊆ IN(L). The only way in which the
addition of β can change the labelling of other elements in u(∆)
is by generating new defeats towards them, in which β will be in-
volved. Since L0(src(β)) = IN, it holds that ∀α1 ∈ R, ∀S′ ⊆ S
s.t. α1 def src(β) given S′, ∃Y ∈ ({α1} ∪ S′) s.t. L0(Y ) = OUT.
Then, since every new defeat existing in u(∆) but not in ∆ also has
α1 and the supports in S′ among its originating elements, the new de-
feats do not affect the labelling of the arguments, attacks or supports
they defeat. Therefore, ∀Z ∈ (A ∪ R ∪ S), Z maintains in u(∆)
the labelling assigned by L0 in ∆. Consequently, there exists an S-
labelling L of u(∆) corresponding to an S-extension E of u(∆) s.t.
E = E0 ∪ {β}.

Tables 1 and 2 generalize similar results for AFs [1] to ASAFs
where the target of an interaction can be also an attack or support.

Table 1: Cases in which the update u = +α, with α ∈ (RU\R) is ir-
relevant. If L0(src(α)) = IN, then E0 ∪ {α} ∈ ES(u(∆)); otherwise,
E0 ∈ ES(u(∆)).

Update u = +α, L0(trg(α))
with α ∈ (RU\R) IN UNDEC OUT

L0(src(α))
IN co,pr,st,gr

UNDEC co,gr co,pr,gr
OUT co,pr,st co,pr,gr co,pr,st,gr

Table 2: Cases in which the update u = −α, with α ∈ R, is irrelevant. In
all cases, E0\{α} ∈ ES(u(∆)).

Update u = −α, L0(trg(α))
with α ∈ R IN UNDEC OUT

L0(src(α))
IN N/A N/A

UNDEC N/A co,pr,gr
OUT co,pr,st,gr co,pr,gr co,pr,st,gr

AF for ASAF. We now introduce the notion of AF for an ASAF,
corresponding to an AF that encodes every argument, attack, and
support of the ASAF. Then, we show that there exists a one-to-one

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Table 3: Cases in which the update u = +β, with β ∈ (SU\S) is irrelevant.
In all cases, E0 ∪ {β} ∈ ES(u(∆)).

Update u = +β, L0(trg(β))
with β ∈ (SU\S) IN UNDEC OUT

L0(src(β))
IN co,pr,st,gr co,pr,gr co,pr,st,gr

UNDEC co,gr co,pr,gr
OUT co,pr,st,gr

Table 4: Cases in which the update u = −β, with β ∈ S, is irrelevant. In all
cases, E0\{β} ∈ ES(u(∆)).

Update u = −β, L0(trg(β))
with β ∈ S IN UNDEC OUT

L0(src(β))
IN co,pr,st,gr co,pr,gr co,pr,st,gr

UNDEC N/A co,pr,gr
OUT N/A N/A

correspondence between the S-extensions of an ASAF and the S-
extensions of its AF, where S ∈ {co, pr, st, gr}.

Briefly, the set of arguments of the AF consists of the arguments
of ∆ plus a pair of arguments, α and α∗, for each attack α in ∆ and
a pair of arguments, β and β∗, for each support β in ∆. Arguments
α and α∗ determine whether α is accepted or not, and are used to
propagate defeats on the source of α to the attack itself. Argument
β represents the support itself and is used to determine whether it is
accepted or not, whereas argument β∗ is used to propagate defeats
on the source of β to its target. Then, the attacks of the AF are as
follows. For each attack α in ∆, the AF contains a chain of 3 attacks
starting in the source of α and ending in its target, with intermediate
arguments α and α∗; moreover, if the target of α is a support β, then
an attack between α and β∗ is added to the AF. For each support β
in ∆, the AF contains a chain of 2 attacks starting in the source of β
and ending in its target, with intermediate argument β∗; moreover, if
the target of β is a support β1, an attack between β∗ and β∗1 is added.

Definition 9 (AF for ASAF). Let ∆ = 〈A,R,S〉 be an ASAF. The
AF for ∆ is ∆AF = 〈A,R〉, where:

• A = A ∪ {α, α∗ | α ∈ R} ∪ {β, β∗ | β ∈ S}.
• R = {(src(α), α∗), (α∗, α), (α, trg(α)) | α ∈ R} ∪

{(α, trg(α)∗) | α ∈ R, trg(α) ∈ S} ∪
{(src(β), β∗), (β∗, trg(β)) | β ∈ S} ∪
{(β∗, trg(β)∗) | β ∈ S, trg(β) ∈ S}.

Example 6. The AF for the ASAF ∆1 from Example 1 is ∆AF ,
shown in Figure 2. For instance, the attack α3 = (PT ,D) cor-
responds to the chain of 3 attacks from PT to D. The attack
α4 = (P, α3) corresponds to the chain of 3 attacks from P
to α3. The support β1 = (ST ,D) corresponds to the attacks

RN α∗1 α1 ST β∗1 D

β1

α∗2 α2

PT

α3 α∗3

β∗2

Wβ2
α4 α∗4 P

Figure 2: AF for the ASAF ∆1

(ST , β∗1 ), (β∗1 ,D), while the attack β2 = (W, β1) corresponds to
the attacks (W, β∗2 ), (β∗2 , β1), plus (β∗2 , β

∗
1 ).

Before showing the equivalence between S-extensions of an
ASAF and S-extensions of its AF, we introduce functions mapping
extensions of ∆ into extensions of ∆AF and vice-versa.

Definition 10 (ASAFtoAF and AFtoASAF Functions). Let ∆ =
〈A,R,S〉 be an ASAF and ∆AF = 〈A,R〉 its AF. We define the
functions ASAFtoAF and AFtoASAF, where E is a complete exten-
sion of ∆ and E′ is a complete extension of ∆AF :

• ASAFtoAF(E) = {X | X ∈ E} ∪ {α∗ | α ∈ R\E, src(α) /∈ E
and ∃α1 ∈ E, ∃S ⊆ E s.t. α1 def src(α) given S } ∪ {β∗ | β ∈
S ∩ E, and ∃α1 ∈ E,∃S ⊆ E s.t. α1 def src(β) given S }

• AFtoASAF(E′) = E′\{α∗, β∗ | α ∈ R, β ∈ S}

The following theorem states that the AF for a given ASAF yields
extensions which are equivalent to those of the ASAF.

Theorem 2. Let ∆ = 〈A,R,S〉 be an ASAF, ∆AF = 〈A,R〉 its
AF, E ⊆ (A ∪R ∪ S), E′ ⊆ A and S ∈ {co, pr, st, gr}. It holds
that E is an S-extension of ∆ iff ASAFtoAF(E) is an S-extension
of ∆AF . Equivalently, it holds that E′ is an S-extension of ∆AF iff
AFtoASAF(E′) is an S-extension of ∆.

Then, given an ASAF and an update, we can obtain its AF and
perform the update on this AF. For this purpose, we redefine an up-
date u over an ASAF in terms of a set of updates u′ over its AF, and
say that u′ is the set of updates corresponding to u. Briefly, each up-
date identified in Definition 8 will be expressed as a set of updates
in terms of the elements of the AF, following the translation given in
Definition 9. In case of an addition update +X , the corresponding
arguments X and X∗ will be added first. Then, the set of updates
on the AF can be directly obtained by applying Definition 9: it is the
set of attacks belonging to the AF for the updated ASAF but not be-
longing to the AF for the initial ASAF. On the other hand, the set of
updates on the AF corresponding to the removal of an attack or a sup-
port in the ASAF are those identified in Definition 9 by the attacks
corresponding to the mapped attack or support.

4 Computing Extensions of Updated ASAFs
Given an ASAF ∆0, a semantics S ∈ {co, pr, st, gr}, an extension
E0 ∈ ES(∆0), and an update u = ±X , we define an incremen-
tal algorithm (Algorithm 1) for computing an S-extension E of the
updated ASAF u(∆0), if it exists.4

Algorithm 1 first checks if the update is irrelevant at Line 1, where
checkIrrelevantUpdate(∆0, u, E0,S) is a function returning true
iff some condition of Theorem 1 holds. If this is the case, Algo-
rithm 1 returns the updated extension directly obtained from E0 as
given in Theorem 1. Otherwise, it computes the AF ∆AF for ∆0

(Line 4) according to Definition 9, and, if the update is an addition,
augments ∆AF with the auxiliary arguments X and X∗, obtaining
the AF ∆′AF . Then, the set u′ of updates over ∆′AF corresponding
to u is built and an S-extension E′0 of ∆′AF corresponding to E0 is
computed (Lines 6–7). Next, function Incr-Alg encoding the incre-
mental algorithm proposed in [1] for Dung’s AFs is invoked. Incr-
Alg takes as input the parameters ∆′AF , u

′,S, E′0, and an external
solver SolverS that computes an S-extension for the input AF. Incr-
Alg returns an S-extension for u′(∆′AF ) by first identifying a suit-
able sub-graph of the updated AF, then computing an S-extension

4 The set of stable extensions Est(u(∆0)) of the updated ASAF may be
empty; in this case, the algorithm returns ⊥.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Algorithm 1 DynamicASAF(∆0, u,S, E0, SolverS )
Input: ASAF ∆0 = 〈A,R,S〉, update u = ±X (X is either an

attack or a support), semantics S ∈ {co, pr, st, gr}, initial S-
extension E0 of ∆0, function SolverS (〈A,R〉) returning an S-
extension for an AF 〈A,R〉 if it exists, ⊥ otherwise.

Output: S-extension E for u(∆0) if it exists, ⊥ otherwise.
1: if checkIrrelevantUpdate(∆0, u, E0,S) then
2: Obtain E from E0 as per Theorem 1;
3: return E;
4: Let ∆AF = 〈A,R〉 be the AF for ∆0;
5: Let ∆′AF=〈A∪{X,X∗},R〉 if u=+X , otherwise ∆′AF=∆AF ;
6: Let u′ be the set of updates over ∆′AF corresponding to u;
7: Let E′0 = ASAFtoAF(E0) ∪ EX , where EX = {X,X∗} if
u = +X , otherwise EX = ∅;

8: Let E′ = Incr-Alg(∆′AF , u
′,S, E′0, SolverS );

9: if (E′ 6= ⊥) then
10: return E = AFtoASAF(E′);
11: else
12: return ⊥;

on this part only by using SolverS , and finally merging it with E′0
to get an extension E′ of the updated AF. Finally, the extension of
the updated ASAF (if any) is obtained by mapping the extension E′

returned by Incr-Alg to the corresponding ASAF extension using the
result of Theorem 2 (Line 10).

As stated next, Algorithm 1 is sound and complete.

Theorem 3. For any ASAF ∆0, extension E0 ∈ ES(∆0), update
u, and semantics S ∈ {co, pr, st, gr}, if SolverS is sound and
complete then Algorithm 1 computes E ∈ ES(u(∆0)) if ES(u(∆0))
is not empty, otherwise it returns ⊥.

5 Empirical Evaluation
We implemented a C++ prototype and, for each semantics S ∈
{co, pr, st, gr}, compared the performance of Algorithm 1—where
SolverS is a solver that won the last or second-to-last edition of the
ICCMA competition for the task of determining an S-extension—
against the computation from scratch, that is, the computation of an
extension of the updated ASAF by running SolverS directly on the
corresponding updated AF. The latter is the best competitor we can
compare with as, to our knowledge, there is no other available ASAF
solver. As for SolverS , it is either µ-toksia [44] that won the IC-
CMA’19 competition for all the considered semantics, or ArgSem-
SAT [28] for S = pr, goDIAMOND [48] for S = st, heureka [36]
for S = gr, and cegartix [34] for S = co, the winners of ICCMA’17.

Dataset. Although there are several benchmark generators and
solvers for Dung’s AFs [49], no benchmark is available for ASAFs.
Thus, we generated a set of benchmark ASAFs by starting from AFs
used as benchmarks at ICCMA for the tracks SE-pr and SE-st of
determining an S-extension. Specifically, we use the AF datasets
named B1 and B2 both consisting of 50 AFs, and B3 consisting of
100 AFs, and given a benchmark AF 〈A,R〉, we generate an ASAF as
follows: 30% of attacks in R are transformed into first-level supports;
12% (resp. 3%) of attacks in R are transformed into second-level
supports towards a support (resp. an attack); 3% (resp. 2%) of at-
tacks in R are transformed into third-level supports supports towards
a support (resp. an attack); 12% (resp. 3%) of attacks in R are trans-
formed into second-level attacks towards an attack (resp. a support);
2% (resp. 3%) of attacks in R are transformed into third-level attacks
towards an attack (resp. a support); the remaining 30% of attacks in

R are kept as first-level attacks of the resulting ASAF. This bench-
mark generation process aimed at preserving AFs’ topology as much
as possible. However, the process of generating ASAF benchmarks
starting from AF benchmarks is challenging because we require spe-
cific amounts of different kind of attacks and supports, and we also
need to check that the sub-graph induced by first-level supports is
acyclic. Hence, to make it feasible, for each dataset, we generated
an ASAF ∆ if the number of arguments |A| of the associated AF
∆AF does not exceed the number of arguments of the biggest AF
in the original dataset. Therefore, starting from the AF datasets B1,
B2, and B3, we obtained an ASAF dataset B∆ consisting of 139
ASAFs 〈A,R,S〉 with a number of arguments |A| ∈ [35, 2.2K]
and a number of interactions |R ∪ S| ∈ [48, 271K]. The associated
set of AFs consists of 139 AFs 〈A,R〉 with |A| ∈ [138, 251K] and
|R| ∈ [128, 338K].

Methodology. For each semantics S ∈ {co, pr, st, gr} and ASAF
∆0 in the datasets, we consider i) a randomly selected S-extension
E0 of ∆0 (initial extension), and ii) an update u selected among
one of the possible 12 types (addition/deletion of an attack/support
towards an argument/attack/support). Next, we compute an S-
extension E of the updated ASAF u(∆0) by calling our incremental
algorithm DynamicASAF. Finally, the average run time of Dynami-
cASAF to compute an S-extension is compared with the average run
time required by the competitor, which computes an S-extension of
the updated ASAF by directly computing an S-extension of the up-
dated AF for u(∆0). The experiments have been carried out on an
Intel Core i7-3770K CPU 3.5GHz, 12GB RAM, running Ubuntu.

Results. Figure 3 reports the average run times (log scale) of the in-
cremental computation (DynamicASAF) and the computation from
scratch over B∆ for the grounded (top), preferred (center) and sta-
ble (bottom) semantics. Each data point reported in the figure is the
average over 12 runs, each of them corresponding to a different up-
date. For the sake of readability, Figure 3 also shows the lines ob-
tained by linear regression, and the results obtained for the complete
semantics are not shown as they were analogous to those obtained
for the grounded semantics. Moreover, the diagrams for the stable
and grounded semantics contain less data points than those for the
preferred one. As for the stable semantics, the missing points cor-
respond to generated benchmark ASAFs having no stable extension
(it is not possible to run Algorithm 1 without the input parameter
E0). As for the grounded semantics, the missing points correspond to
ASAFs whose grounded extension is empty, for which we found that
running the incremental algorithm gives worthless improvement—in
fact, for the grounded semantics, one could run the incremental ap-
proach only if E0 6= ∅. This is due to the fact that Incr-Alg uses the
initial extension E0 to compute a sub-AF (called reduced AF) that is
used for the computation of an extension of the updated AF. But if
E0 is empty and the considered semantics is polynomial, as for the
grounded one [33], the overhead of computing the reduced AF may
not pay off. Finally, the diagrams on the right-hand side do not con-
tain data points for a large number of ASAF interactions because the
solver ran into memory capacity saturation.

The results in Figure 3 show that, on average, the incremental
algorithm outperforms the competitors that compute the extensions
from scratch. However, the improvement obtained for the preferred
and stable semantics—for which DynamicASAF is between one and
two orders of magnitude faster than the competitors—is better than
that obtained for the grounded semantics. This happens because the
harder the computation from scratch is for a given semantics, the
larger the improvements are for Incr-Alg [1]. In fact, the improve-

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



●
●

●

●

● ●● ●● ●●●●●●●●●●●●
●

●●● ●
●●● ●●●●●●●●

●●
●

●

●

●
●

●

●

●

●●

●●
●●●●

●●●●●●●●●●●●●●

10−2

100

102

104

102 103 104 105

ASAF Interactions

 R
un

ni
ng

 ti
m

e 
(m

s)

●● DynamicASAF heureka

●
●●

●
●

● ●● ●●●●●●
●●●●●●

●

●●●
●

●●● ●●●●●●●●

●
●

●

●

●

●

●●

●

●●
●●

●●

●●
●●●●●●●●●●●

●

10−2

100

102

104

102 103 104 105

ASAF Interactions
 R

un
ni

ng
 ti

m
e 

(m
s)

●● DynamicASAF mu−toksia

●

●

●

● ●● ●
●
●●
●
●

●●●
●●●

●

●●●
●

●●●

●

● ●
●●

●●●
●
●
●●●●●●●●

●
●●●●●●●

●

●●●●●●
●●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

● ●

●

●
● ●

●
●●

●
●
●
●●●
●
●

●
●●●●●●

●
●●●
●
●
●
●●

●●
●
●●●
●●
●●
●
●

●●●●
●
●
●●

●
●●

●●●
●●●●

10−2

100

102

104

102 103 104 105

ASAF Interactions

 R
un

ni
ng

 ti
m

e 
(m

s)

●● DynamicASAF ArgSemSAT

●
●●

●
●

● ●● ●●●●●●
●●●●●●

●
●●●

●

●●●

●

●
●

●
●

●●●●●●
●

●●●●●●●●

●
●

●

●

●

●

●

●

●
●

●●

●●
●●

●●

●●●●
●●●●
●

●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●

●●●●
●●●

●●●

●●●
●

10−2

100

102

104

102 103 104 105

ASAF Interactions

 R
un

ni
ng

 ti
m

e 
(m

s)
●● DynamicASAF mu−toksia

●

●

●
●●●●●●

● ●●
●●●●

●●●●●●●

●
●●●●●●●●

●● ●●
●●●●●●●●●●●●●●●●●

●●

10−2

100

102

104

102 103 104 105

ASAF Interactions

 R
un

ni
ng

 ti
m

e 
(m

s)

●● DynamicASAF goDIAMOND

●
●

●●●●
●●

●
●

●

●●●●
●

●●
●

●

●●●●●●●
●

●●●
●●●●●●

●●

10−2

100

102

104

102 103 104 105

ASAF Interactions

 R
un

ni
ng

 ti
m

e 
(m

s)

●● DynamicASAF mu−toksia

Figure 3: Run times (ms) of ICCMA solvers and DynamicASAF versus the
number of interactions (attacks and supports) for the ASAFs in B∆ and the
grounded (top), preferred (center), and stable (bottom) semantics

ment of Incr-Alg is proportional to the size of the restriction (argu-
ments and attacks of the input AF not occurring in the reduced AF).
Thus, for the semantics whose computation is exponential in the size
of the input AF, the improvement derived from considering the re-
duced AF is exponential in the size of the restriction. However, for
faster solvers (e.g. µ-toksia vs ArgSemSAT) the improvement slightly
decreases, though it remains greater than one order of magnitude.

As for the grounded semantics, the median of the improvements
w.r.t. the ICMMA’17 solver is 4.3, and the average improvement
without considering the two outlier ASAFs having the largest size is
5.6 (the average considering these two ASAFs would be skewed by
the extremely large improvements obtained for those ASAFs). Also,
the average improvement w.r.t. the ICMMA’19 solver is 4.1.

Finally, the experiments also showed that the identification of irrel-
evant updates is useful as they allowed to directly obtain the updated
extension of the input ASAF for 42.4% of the updates performed on
average. In particular, the average improvement for the case where
only relevant updates are considered is almost half of the improve-
ment for the case where all updates are considered. However, the
improvements remain of the same order of magnitude.

6 Related Work
There have been significant efforts coping with dynamic aspects of
Dung’s abstract argumentation framework. [21, 22] have investigated

the principles according to which the grounded extension of an AF
does not change when the set of arguments/attacks are changed.
[24, 25] addressed the problem of revising the set of extensions of
an AF, and studied how the extensions can evolve when a new ar-
gument is considered. [18] have studied the evolution of the set of
extensions after performing a change operation (addition/removal of
arguments/interactions). Dynamic argumentation has been applied to
decision-making of an autonomous agent by [6], where it is studied
how the acceptability of arguments evolves when a new argument is
added to the decision system. The division-based method, proposed
by [42] and then refined by [12], divides the updated framework into
two parts: affected and unaffected, where only the status of affected
arguments is recomputed after updates. [41] investigated the efficient
evaluation of the justification status of a subset of arguments in an AF
(instead of the whole set of arguments), and proposed an approach
based on answer-set programming for local computation. In [40],
an AF is decomposed into a set of strongly connected components,
yielding sub-AFs located in layers, which are then used for incre-
mentally computing the semantics of the given AF by proceeding
layer by layer. [50] introduced a matrix representation of argumenta-
tion frameworks and proposed a matrix reduction that, when applied
to dynamic AFs, resembles the division-based method in [42].

Relevant work on dynamic aspects of Dung’s AFs also includes
the following. [13] have proposed an approach exploiting the concept
of splitting of logic programs to deal with dynamic argumentation.
The technique considers weak expansions of the initial AF, where
added arguments never attack previous ones. [16] have investigated
whether and how it is possible to modify a given AF so that a desired
set of arguments becomes an extension, whereas [46] have studied
equivalence between two AFs when further information (another AF)
is added to both AFs. [14] have focused on expansions where new
arguments and attacks may be added but the attacks among the old
arguments remain unchanged, while [15] characterized update and
deletion equivalence, where adding/deleting arguments/attacks is al-
lowed. (deletions were not considered by [46, 14]).

Bipolarity in argumentation is discussed in [5], where a survey of
the use of bipolarity and a formal definition of bipolar argumentation
framework (BAF) that extends Dung’s AF by including supports is
provided. A survey of different approaches to support in argumenta-
tion can be found in [30]. Changes in bipolar argumentation frame-
works (BAFs) have been studied in [27], where it is shown how the
addition of one argument together with one support involving it (and
without any attack) impacts the extensions of the updated BAF. The
problem of incrementally computing extensions of dynamic BAFs,
with deductive interpretation of support [20], has been first addressed
in [1], and then extended in [2] to deal with second-order attacks [9].
However, none of the existing approaches deals with the incremental
computation and the empirical evaluation of a general framework as
the ASAF framework.

Finally, it is worth noting that our translation from an ASAF to
an AF improves that of [37] from two standpoints: i) it is direct, not
requiring the two-step process of [37] which first obtains an Argu-
mentation Framework with Necessities (AFN) [45] and then an AF;
ii) the size of the resulting AF is smaller than that of [37].

7 Conclusions and Future Work

To the best of our knowledge, this is the first paper addressing the
problem of efficiently and incrementally computing extensions for
dynamic ASAFs. Given the generality of the ASAF, our technique
can be also applied to restricted frameworks such as Argumentation

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Frameworks with Recursive Attacks (AFRAs) [11] and AFNs [45]
(and, of course, Dung’s AFs). Moreover, although for the sake of the
presentation we have focused on single attack/support updates, the
technique also applies to the case of multiple ASAF updates consist-
ing of the addition/removal of a set of attacks and supports.

Future work will be devoted to extending our technique to deal
with other computational problems, such as enumerating extensions
and deciding credulous/sceptical acceptance in dynamic ASAFs.

REFERENCES

[1] G. Alfano, S. Greco, and F. Parisi, ‘Efficient computation of extensions
for dynamic abstract argumentation frameworks: An incremental ap-
proach’, in Proc. of IJCAI, pp. 49–55, (2017).

[2] G. Alfano, S. Greco, and F. Parisi, ‘A meta-argumentation approach
for the efficient computation of stable and preferred extensions in
dynamic bipolar argumentation frameworks’, Intelligenza Artificiale,
12(2), 193–211, (2018).

[3] G. Alfano, S. Greco, and F. Parisi, ‘An efficient algorithm for skeptical
preferred acceptance in dynamic argumentation frameworks’, in Proc.
of IJCAI, pp. 18–24, (2019).

[4] G. Alfano, S. Greco, F. Parisi, G. I. Simari, and G. R. Simari, ‘An incre-
mental approach to structured argumentation over dynamic knowledge
bases’, in Proc. of KR, pp. 78–87, (2018).

[5] L. Amgoud, C. Cayrol, and M.-C. Lagasquie-Schiex, ‘On the bipolarity
in argumentation frameworks’, in Proc. of NMR, pp. 1–9, (2004).

[6] L. Amgoud and S. Vesic, ‘Revising option status in argument-based
decision systems’, J. Log. Comp., 22(5), 1019–1058, (2012).

[7] P. Baroni, G. Boella, F. Cerutti, M. Giacomin, L. W. N. van der Torre,
and S. Villata, ‘On the input/output behavior of argumentation frame-
works’, Artif. Intell., 217, 144–197, (2014).

[8] P. Baroni, M. Caminada, and M. Giacomin, ‘An introduction to argu-
mentation semantics’, The Knowl. Eng. Rev., 26(4), 365–410, (2011).

[9] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida, ‘Encompassing at-
tacks to attacks in abstract argumentation frameworks’, in Proc. of EC-
SQARU, pp. 83–94, (2009).

[10] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida, ‘AFRA: Argumen-
tation Framework with Recursive Attacks’, Int. J. Approx. Reasoning,
52(1), 19–37, (2011).

[11] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida, ‘AFRA: Argumen-
tation Framework with Recursive Attacks’, Int. J. Approx. Reasoning,
52(1), 19–37, (2011).

[12] P. Baroni, M. Giacomin, and B. Liao, ‘On topology-related properties
of abstract argumentation semantics. A correction and extension to dy-
namics of argumentation systems: A division-based method’, Artif. In-
tell., 212, 104–115, (2014).

[13] R. Baumann, ‘Splitting an argumentation framework’, in Proc. of LP-
NMR, pp. 40–53, (2011).

[14] R. Baumann, ‘Normal and strong expansion equivalence for argumen-
tation frameworks’, Artif. Intell., 193, 18–44, (2012).

[15] R. Baumann, ‘Context-free and context-sensitive kernels: Update and
deletion equivalence in abstract argumentation’, in Proc. of ECAI, pp.
63–68, (2014).

[16] R. Baumann and G. Brewka, ‘Expanding argumentation frameworks:
Enforcing and monotonicity results’, in COMMA, pp. 75–86, (2010).

[17] T. J. M. Bench-Capon and P. E. Dunne, ‘Argumentation in artificial
intelligence’, Artif. Intell., 171, 619 – 641, (2007).

[18] P. Bisquert, C. Cayrol, F. Dupin de Saint-Cyr, and M.-C. Lagasquie-
Schiex, ‘Characterizing change in abstract argumentation systems’, in
Trends in Belief Revision and Argumentation Dynamics, volume 48,
75–102, (2013).

[19] S. Bistarelli, F. Faloci, F. Santini, and C. Taticchi, ‘Studying dynamics
in argumentation with Rob’, in Proc. of COMMA, pp. 451–452, (2018).

[20] G. Boella, D. M. Gabbay, L. W. N. van der Torre, and S. Villata, ‘Sup-
port in abstract argumentation’, in COMMA, pp. 111–122, (2010).

[21] G. Boella, S. Kaci, and L. W. N. van der Torre, ‘Dynamics in argu-
mentation with single extensions: Attack refinement and the grounded
extension (extended version)’, in ArgMAS 2009.

[22] G. Boella, S. Kaci, and L. W. N. van der Torre, ‘Dynamics in argumen-
tation with single extensions: Abstraction principles and the grounded
extension’, in Proc. of ECSQARU, pp. 107–118, (2009).

[23] M. W. A. Caminada and D. M. Gabbay, ‘A logical account of formal
argumentation’, Studia Logica, 93(2-3), 109–145, (2009).

[24] C. Cayrol, F. Dupin de Saint-Cyr, and M.-C. Lagasquie-Schiex, ‘Revi-
sion of an argumentation system’, in Proc. of KR, pp. 124–134, (2008).

[25] C. Cayrol, F. Dupin de Saint-Cyr, and M.-C. Lagasquie-Schiex,
‘Change in abstract argumentation frameworks: Adding an argument’,
Journal of Art. Int. Res., 38, 49–84, (2010).

[26] C. Cayrol and M.-C. Lagasquie-Schiex, ‘On the acceptability of argu-
ments in bipolar argumentation frameworks’, in Proc. of ECSQARU,
pp. 378–389, (2005).

[27] C. Cayrol and M.-C. Lagasquie-Schiex, ‘Change in abstract bipolar ar-
gumentation systems’, in Proc. of SUM, pp. 314–329, (2015).

[28] F. Cerutti, M. Vallati, M. Giacomin, and T. Zanetti, ‘Argsemsat-2017’,
Second ICCMA, (2017).

[29] G. Charwat, W. Dvorák, S. A. Gaggl, J. P. Wallner, and S. Woltran,
‘Methods for solving reasoning problems in abstract argumentation - A
survey’, AIJ, 220, 28–63, (2015).

[30] A. Cohen, S. Gottifredi, A. J. Garcia, and G. R. Simari, ‘A survey of
different approaches to support in argumentation systems’, The Knowl.
Eng. Rev., 29(5), 513–550, (2014).

[31] S. Doutre and J.-G. Mailly, ‘Constraints and changes: A survey of ab-
stract argumentation dynamics’, Argument & Computation, 9(3), 223–
248, (2018).

[32] P. M. Dung, ‘On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games’,
Artif. Intell., 77(2), 321–358, (1995).

[33] P. E. Dunne and M. Wooldridge, ‘Complexity of abstract argumenta-
tion’, in Argumentation in Artificial Intelligence, 85–104, (2009).

[34] W. Dvorák, M. Järvisalo, and J. P Wallner, ‘Cegartix v2017-3-13: A sat-
based counter-example guided argumentation reasoning tool’, Second
ICCMA, (2017).

[35] M. A. Falappa, A. J. Garcia, G. Kern-Isberner, and G. R. Simari, ‘On
the evolving relation between belief revision and argumentation’, The
Knowl. Eng. Rev., 26(1), 35–43, (2011).

[36] N. Geilen and M. Thimm, ‘Heureka: A general heuristic backtracking
solver for abstract argumentation’, in TAFA, pp. 143–149, (2017).

[37] S. Gottifredi, A. Cohen, A. J. Garcia, and G. R. Simari, ‘Characterizing
acceptability semantics of argumentation frameworks with recursive at-
tack and support relations’, Artif. Intell., 262, 336–368, (2018).

[38] S. Greco and F. Parisi, ‘Incremental computation of deterministic ex-
tensions for dynamic argumentation frameworks’, in Proc. of European
Conf. on Logics in Artif. Intell. (JELIA), pp. 288–304, (2016).

[39] A. Hunter, ‘Towards a framework for computational persuasion with
applications in behaviour change’, Argument & Computation, 9(1), 15–
40, (2018).

[40] B. Liao, ‘Toward incremental computation of argumentation semantics:
A decomposition-based approach’, Ann. Math. Artif. Intell., 67(3-4),
319–358, (2013).

[41] B. Liao and H. Huang, ‘Partial semantics of argumentation: basic prop-
erties and empirical results’, J. Log. Comp., 23(3), 541–562, (2013).

[42] B. Liao, L. J., and R. C. Koons, ‘Dynamics of argumentation systems:
A division-based method’, Artif. Intell., 175(11), 1790–1814, (2011).

[43] S. Modgil, F. Toni, F. Bex, I. Bratko, C. I. Chesñevar, W. Dvorák, M. A.
Falappa, X. Fan, S. A. Gaggl, A. J. Garcia, M. P. González, T. F. Gor-
don, J. Leite, M. Mouzina, C. Reed, G. R. Simari, S. Szeider, P. Torroni,
and S. Woltran, Agreement Technologies, volume 8 of Law, Governance
and Technology, chapter 21: The Added Value of Argumentation: Ex-
amples and Challenges, 357–404, Springer, 2013.

[44] A. Niskanen and M. Järvisalo, ‘µ-toksia participating in iccma 2019’,
Third ICCMA, (2019).

[45] F. Nouioua and V. Risch, ‘Argumentation frameworks with necessities’,
in Proc. of SUM, pp. 163–176, (2011).

[46] E. Oikarinen and S. Woltran, ‘Characterizing strong equivalence for
argumentation frameworks’, Artif. Intell., 175(14-15), 1985–2009,
(2011).

[47] I. Rahwan and G. R. Simari, Argumentation in Artificial Intelligence,
Springer, 2009.

[48] H. Strass and S. Ellmauthaler, ‘godiamond 0.6. 6–iccma 2017 system
description, 2017’, Second ICCMA, (2017).

[49] M. Thimm and S. Villata, ‘The first international competition on com-
putational models of argumentation: Results and analysis’, Artif. Intell.,
252, 267–294, (2017).

[50] Y. Xu and C. Cayrol, ‘The matrix approach for abstract argumentation
frameworks’, in Proc. of TAFA, pp. 243–259, (2015).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain


