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Abstract. Object detection has achieved a tremendous advance-
ment based on feature-based learning in the vision space, while little
work has focused on reasoning in the perception space like human-
s. One of the greatest challenges lies in that it is difficult to build
a connectivity model in the topological space for relational reason-
ing, since the current network is better at modeling the distribution
of structured data. To settle this issue, we introduce a novel graph
modeling mechanism with class-based graph representation, which
contributes to modeling the high-order topology structure that maps
the data distribution to make the detection models have better rela-
tional reasoning ability. In this mechanism, we propose three learning
subtasks, i.e., vision-to-perception embedding, perception reasoning
graph representation, and perception-to-vision modeling. The mech-
anism based on such subtasks effectively maintains the independence
of the original detection network and the proposed mechanism-based
model, thus it can be well integrated with existing detection model-
s without additional modification. The experimental results demon-
strate the feasibility and effectiveness of our proposed mechanism,
and the new state-of-the-art performance can be achieved on the pub-
lic challenging datasets for object detection.

1 Introduction
The strong perception reasoning ability of humans makes it easy to
detect objects in an image or even a blurred image. For example,
the slender chopsticks next to a bowl on a dining table can be eas-
ily and correctly recognized by humans, while it may only be seen
as a slender stick independently. When seeing a blurred vehicle on
a river, humans tend to identify it as a boat rather than a car. These
cases fully demonstrate that perception reasoning plays an irreplace-
able role in human visual systems. To date, neither single-stage nor
two-stage remarkable detection models [29, 38, 31, 21, 4] have a
good perception reasoning ability, which mainly design more effec-
tive and sophisticated models for better feature mapping to achieve
the better performance in the vision space. Therefore, endowing ex-
isting detection models with better perception reasoning ability like
humans sheds new light on the development of object detection in
the high-order space.

A great deal of previous research on object detection has focused
on effectively boosting the performance in the vision space. SNIP
[31] and Trident [19] addressed the issue of multi-scale detection
via the optimization for the corresponding scale. Anchor-free frame-
works [32, 41, 15] were designed to alleviate the limitation of feature
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embedding based on anchor box (anchor-scale, anchor-ratio, anchor-
object mapping, etc.). Key-point-based models [40, 5, 17] generat-
ed key points, and grouped them to determine the objects. Howev-
er, such studies remain narrow in focus dealing only with making
better representations of the visual features for better feature-label
mapping. Especially, the relational reasoning in the high-order topo-
logical space remains to excavate, which is more in line with human
cognition for visual processing.

With the increasing emergence of unstructured graph representa-
tions, more and more graph models [2, 3, 35] are raised to realize
relational connectionist modeling and perception reasoning. Figure
1 shows several kinds of graph structures to encode the reasoning
relations via graph nodes and edges. Figure 1(a) expresses fully-
connected relations to model the unstructured graph representations
by global optimization through all graph nodes and edges. The graph
is initialized based on prior knowledge to fit the original distribution
of data structure. The models in [2, 3] were optimized by propagat-
ing the information in the global graph at a time, to encode the global
mapping relations of grid-like data. However, it is redundant to up-
date all the graph representations at each equilibrium, because many
node-to-node mutual relationships do not appear in an image. Fig-
ure 1(b) is locally responded with no prior knowledge to focus on
local optimization of graph structure, so that the problem of matrix
redundancy is effectively alleviated. Xu et al. [35] relied on the ex-
tracted features from the detection network to promote the attribute
representation of the graph nodes and edges, and the information
flow passed in the relative spatial layout of the graph. However, such
method easily results in the optimization of the graph jitter due to
the lack of supervision with prior knowledge, which is not conducive
to simulating the raw grid-like data representation. Thus to make the
detection model reasoning like humans, the crucial issues that are
tightly coupled with each other can be summarized as: (1) Modeling
high-order topology structure of data to realize correlation reasoning
like humans; (2) Learning the optimal graph representation based
on prior knowledge via the most relevant adaptive learning; and (3)
Decoupling the original detection network and graph structure, and
making optimization via mutual supervision.

To address the above issues, we introduce a novel class-based
graph representation mechanism based on Graph Convolutional Net-
work (GCN) [14], called ClassGCN. It aims to model the high-
dimensional topology structure that maps the data distribution, and
make the detection models have better relational reasoning ability,
as shown in Figure 1(c). Our mechanism divides the graph repre-
sentation pipeline into the following three subtasks: (1) Vision-to-
perception embedding – ClassGCN embeds the detection features
of the network in the vision space to a perception reasoning graph,
and obtains the supervised embedding; (2) Perception reasoning
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Figure 1. The comparison among different graph structures. (a) A fully
connected and globally optimized graph based on prior knowledge; (b) A
locally optimized graph with no prior knowledge; (c) Our ClassGCN with

prior knowledge and adaptively local optimization-maximization. “A-F” are
the nodes of the graph and mean the classes; the edge between two nodes

denotes the class-class relationship; the node filled with yellow color
represents the node with prior knowledge; the node filled with orange color
indicates the relevant optimization; and the first and second rows represent

the graphs without optimization and with optimization, respectively.

graph representation – the class-based graph with prior knowledge
is represented by means of the locally maximized optimization learn-
ing and the supervised embedding; (3) Perception-to-vision model-
ing – the node-level output of the perception graph is encoded to
supervise the optimization of detection model in the vision space. In
ClassGCN, the encoded feature of detection network is adaptively
employed as supervision to optimize the graph representation with
local maximization based on prior knowledge, and greatly address-
es the limitations of the abovementioned methods. Our method can
bridge the gap between the vision hierarchy and the perception hier-
archy, and makes the detection models have better reasoning ability.
It has good adaptability and independence, so that it can be easily in-
tegrated into existing detection models. The experimental results on
widely used PascalVOC [6] and MSCOCO [22] datasets validate that
our ClassGCN can significantly improve the performance of existing
detection models, and achieve the new state-of-the-art performance.

The main contributions of our work can be summarized as:

• A novel class-based graph representation mechanism,
named ClassGCN, is proposed to make the existing detec-
tion models have better reasoning ability.

• ClassGCN based on three learning subtasks, i.e., vision-to-
perception embedding, perception reasoning graph represen-
tation, and perception-to-vision modeling, sheds new light
on the development of object detection in high-order space.

• The related experiments fully demonstrate the advancement
and effectiveness of our proposed ClassGCN, which signif-
icantly improves the performance of detection models, and
achieves the new state-of-the-art performance.

2 Related Work
2.1 Graph Representation Model
A number of studies have postulated a convergence between grid-
like data interaction relationships and graph representation, which

are widely used in various deep learning tasks like few-shot learn-
ing [13, 7, 9], action recognition [18, 30], and so on. Graph Con-
volution Network [14], which was obtained by the local first order
approximation of a spectral convolution, completed the semi super-
vised learning task through layer by layer feature mapping. Chen et
al. [2] mapped features from geometric coordinate space to interac-
tion space for reasoning through graph convolution network, which
focused on aggregating features of all adjacent pixels through an
attention-like mechanism. Such graphs, however, are fully connect-
ed and pass the information stream among global nodes and edges,
which results in generating redundant matrices because flow trans-
mission is just locally related in some cases. Lee et al. [1] intro-
duced an RNN model to concentrate on the small but informative
parts of the graph, in order to denoise from the rest of the graph for
the classification. Veličković et al. [33] adaptively assigned various
weights via attention to neighbor nodes to highlight the most rele-
vant ones. However, it is sub-optimal to directly apply such methods
to object detection, because they rely on the attention weights gen-
erated by the graph itself and ignore the supervised auxiliary of the
features extracted from the base model. Correspondingly, our Class-
GCN achieves the local optimization-maximization of the graph by
integrating the graph-level information with the supervised embed-
ding encoded from the detection model in the vision space.

2.2 Object Detection in the Vision Space
A considerable amount of literature has been published with better
performance based on the vision space. These studies can be grouped
into two categories, that is, two-stage models and one-stage model-
s. Classical R-CNN-based models [11, 10, 29] divided the detection
process into region proposal extraction and object classification and
regression to detect objects from coarse to fine. In contrast, objec-
t detection was treated as a regression problem trained end-to-end
in [26, 27, 28, 24]. Although more recent models [21, 38, 25] sig-
nificantly boosted the performance over classical models owing to
better feature embedding, they were encumbered by the design of
the feature-label mapping mechanism artificially. Wu et al. [34] ex-
plored the object detection by a segmentation method, whereas how
to convert the detection labels to segmentation labels limited the per-
formance of the model. Ghiasi et al. [8] used a neural architecture
search to discover a new feature pyramid architecture in a new s-
calable search space covering all cross-scale connections, but huge
computing resources were a huge burden. What the most important
is that all these models build upon the vision space modeling, which
leads to the lack of critical reasoning ability like humans.

2.3 Object Detection in the Perception Space
In the field of object detection, just a few works have attempted to uti-
lize relation networks for better feature relation representation. Hu et
al. [12] proposed the relation networks to establish the relationships
among objects via learnable multi-head attention. However, the rela-
tion of the graph network was fully connected, which led to a redun-
dant graph rather than concentrating on what was the most interesting
relation. Xu et al. [35] introduced a spatial-aware graph relation net-
work to adaptively discover and infer the objects by combining key
semantics and spatial relations. However, the grid-like data of graph
networks were generated entirely by the inference of detection net-
works, thus the data imbalance might weaken the performance of the
class with fewer samples and the potential relationships of the graph
nodes and labels had been under utilized. In contrast to these work-
s, our method establishes a reasoning graph network based on prior
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Figure 2. An overview of our novel class-based graph representation mechanism for object detection. Our proposed method models the class-class relations
in an image as a directed graph, which can be integrated into existing detection models to provide reasoning ability. “Vision-to-Perception Embedding”

transforms the visual detection to perceptual reasoning; “Perception Reasoning Graph Representation” models a graph-level representation; and
“Perception-to-Vision Modeling” encodes the node-level output of the graph to optimize the visual detection progressively. Our proposed ClassGCN is suitable

for different detectors, whether with single or multiple detection heads.

knowledge, encodes the features of basic detection network to super-
vise the local optimization-maximization of the graph, and obtains
the optimal graph-level representation.

3 Methodology

3.1 Overview

Inspired by human visual systems, we propose a novel class-based
graph representation mechanism, ClassGCN, which is a class-class
directed graph based on Graph Convolution Network (GCN) for ob-
ject detection, as shown in Figure 2. ClassGCN can be easily integrat-
ed with current detection models to make them have better reasoning
ability and improve their performance by a large margin. The GCN is
described as G := f(V, E ,X0,A), and defined by its nodes V , edges
E , a feature matrix X0, and an adjacent matrix A. The objective of
GCN is to learn a non-linear function f(·) to optimize the global
propagation among nodes and edges. However, such representation
results in the redundant matrix and over-optimization for the grid-
like data as mentioned above. To address this issue, we maximize the
local response optimization of the graph by self-learning, which can
be formulated as:

G = f(V, E ,X0,A,F ,W), (1)

where F and W represent the supervised information for the opti-
mization of V and E , respectively.

In our proposed ClassGCN, the vision-to-perception embedding
subtask encodes the feature maps from the basic detection model via

cross-non-linear functions, to generate the corresponding supervised
information for diverse GCN layers. The perception reasoning graph
representation subtask adaptively maximizes the local optimization
of the lth layer H of the graph by combining the supervision infor-
mation Υ⇐{F , W} with the node-level output of the front GCN
layer and adjacent matrix, which can be formulated as the following
non-linear function.

H(l) = σ(H(l−1),A,Υ). (2)

In the perception-to-vision modeling subtask, the node-level output
of the last graph layer is re-encoded by the non-linear functions,
which aims to supervise the detection in the vision space. As fol-
lows, we will introduce vision-to-perception embedding for embed-
ding the visual detection to perceptual reasoning, perception reason-
ing graph representation for learning a graph-level representation,
and perception-to-vision modeling for modeling the node-level out-
put of the graph to optimize the visual detection in detail.

3.2 Vision-to-Perception Embedding
The vision-to-perception embedding subtask aims to explore the
non-linear function g(·) to generate the supervised embedding F for
graph optimization by encoding the features of the basic detection
network, and bridge the representation from the vision space to the
perception space. We initialize the feature map of the basic detection
network as F ∈ RW×H×C , where W denotes the width of the fea-
ture map, H is the height, and C is the channel. Hence we can get

F g(·)←−− F . There are different graph layers in the reasoning graph,
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and the corresponding supervised embedding needs to be generated
for such layers. For the ith graph layer, the function g(i)(·) is used to
encode F to obtain the corresponding F (i), and then the following
Eq. (3) is obtained.

F (i) = g(i)(F ), s.t. i ∈ {1, · · ·,L}, (3)

where L is the number of graph layers.
The original feature matrix is defined as X0 ∈ RN×D , whereN is

the number of nodes and D is the number of original input features.
The feature dimension of each graph layer is expressed as B and
gained by the following Eq. (4).

B(i) =


D if i = 0

C + i∗(C−D)
L if i = {1, · · ·,L − 1}

C if i = L
. (4)

The feature matrix X (i−1) ∈ RN×B
(i−1)

is the input feature matrix
of the ith graph layer, and X (i) ∈ RN×B

(i)

is the node-level out-
put of the ith graph layer. In our network, the supervised embedding
F (i) ∈ RN×B

(i−1)

of the ith graph layer corresponds to X (i−1).
This special progressive design can respond to the feature mapping
with different scales, retain the semantics among cross-domain fea-
tures, and optimize the feature correlation representation.

As shown in Figure 2, we feed F into two parallel convolution
layers to get two non-linear functions g(i)b (·) and g

(i)
n (·) for the

ith graph layer to encode multi-scale high-order multimodal fea-
tures. The first layer consists of the convolution with the kernel of
{C × 1 × 1,B(i−1)}, and the second one consists of the convolu-
tion with the kernel of {C × 1 × 1, N}. Both layers are followed
by batch normalization and ReLU activation to make the feature-
encoding flow more robust and softer, which can be formulated as
F

(i)
b = g

(i)
b (F ), and F (i)

n = g
(i)
n (F ), where F (i)

b ∈ RW×H×B
(i−1)

and F (i)
n ∈ RW×H×N are the outputs of the two layers separately.

We reshape the size of F (i)
b to RWH×B(i−1)

and F (i)
n to RN×WH as

the operation τ(·), multiply them by matrix product multiplication to
leverage dependency relations of feature semantics, and get the su-
pervised signals F (i) ∈ RN×B

(i−1)

. Finally Eq. (3) is expanded to
the following Eq. (5).

F (i) = [g(i)n (F )]τ ⊗ [g
(i)
b (F )]τ , s.t. i ∈ {1, · · ·,L}, (5)

where ⊗ means product multiplication.
The vision-to-perception embedding subtask employs the syner-

gies of the cross-non-linear functions to simulate the multimodal rep-
resentation. Furthermore, low-order visual information is transited
to high-order perceptual representation via graph matrix operations.
The feature F is encoded to generate the supervised information F ,
which is a sparse matrix with the corresponding weights and carries
the optimization relationship of the graph by the feature matrix.

3.3 Perception Reasoning Graph Representation
We generate a perception reasoning graph to achieve reasoning based
on GCN, which is used for the classification task originally. Every
GCN layer aims to learn the graph propagation rule to represent the
grid-like data, which can be formulated as:

H(l) = σ(H(l−1), Â)

= σ(ÂH(l−1)W (l−1))

= σ(D̃−
1
2 ÃD̃−

1
2H(l−1)W (l−1)),

(6)

where Ã = A + I; D̃ is the diagonal node degree matrix of Ã; I
is the identity matrix; W is a weight matrix for the corresponding
graph layer; and σ is an activation function (i.e., LeakyReLU in our
work). Moreover, the first input node-level feature matrix is X0, thus
H(0) = X0. We find that it is necessary to propagate information
among nodes based on prior knowledge, which can better guide the
optimization of graph network.

Our model constructs a class-class directed graph, in which the n-
odes denote the classes and the edges indicate the mutual synergies
among the classes in the dataset space. The original feature matrix
X0 and the representative description of the graph structure with the
adjacent matrix A are the prior knowledge of our graph network. T-
wo manners are adopted to encode the feature matrix. (1) We group
the regions of the ground truth bounding boxes of each class in the
dataset, embed the features in the corresponding regions to obtain
the mean feature presentation, and encode them into the feature ma-
trix; and (2) We encode each class by the word embedding to get
the corresponding feature matrix. Given the number of the classes in
the dataset is N and the feature dimension of each class is encoded
as D, the features of N classes are stacked to gain the feature ma-
trix X0 ∈ RN×D . To better represent the class-class correlations for
mining the value of prior knowledge in the dataset, a representative
description of the graph structure in the matrix form is constructed
and represented asA ∈ RN×N . The correlation among classes is de-
fined via conditional coexistence class-class pairs derived from [3].

The uniform propagation in the whole graph produces a dense ma-
trix, which is not the best choice with noise information for the graph
optimization. Whereas the supervised signal Υ is used to supervise
the local optimization-maximization. Υ contains two parts, that is,
F for V andW for E . Concretely, F is generated by Eq. (5), andW
is a self-learning parameter with the size of RN×N experimentally.
F andW are processed by sigmoid(·) activation function to relieve
feature shuffle. The supervised signals of the ith graph layer are ex-

pressed as F (i) δ(·)←−− F (i), andW(i) δ(·)←−− W(i). We then prune the
matrix data over the threshold θ to maximize the local optimization,
which can be formulated as:

F (i)

j̃∗,k̃∗ =

{
F (i)

j̃∗,k̃∗ if F (i)

j̃∗,k̃∗ ≥ θ
0 otherwise

, (7)

where j̃∗ ∈ {1, · · ·, N}, k̃∗ ∈ {1, · · ·, Bi−1}.

W(i)

j̈∗,k̈∗ =

{
W(i)

j̈∗,k̈∗ ifW(i)

j̈∗,k̈∗ ≥ θ
0 otherwise

, (8)

where {j̈∗, k̈∗} ∈ {1, · · ·, N}. In our experiments, θ is set as 0.5
empirically to effectively generate the sparse matrices for local opti-
mization by thresholding setting. We optimize Eq. (6) as:

H(l) = σ(H(l−1), Â,F (l),W(l))

= σ
(
(Â �W(l))(H(l−1) �F (l))W (l−1)), (9)

where � represents the Hadamard product, which is based on the
pixel-level operation to maintain the optimal feature-supervision
mapping distribution. By utilizing the supervised embedding encod-
ed from the basic detection network and depending on prior knowl-
edge, the model can better promote the graph local optimization-
maximization, generate sparse matrix, and obtain the best grid-like
graph representation for leveraging perception reasoning.
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3.4 Perception-to-Vision Modeling

The node-level output of the final graph layer is X ∈ RN×C . We
map the node-level output in the perception space to the detection
in the vision space by feature modeling, and supervise the detection
optimization progressively. X is encoded by two manners, ψ1 and
ψ2, in order to model the global and local optimal feature represen-
tation separately. The encoded X utilizes two learnable weights, α
and β, to adaptively learn the best way to integrate the global and
local representation, which is obtained by:

X = αψ1(X)⊕ βψ2(X). (10)

In the specific implementation, ψ1 is achieved by an average pooling
function to embed the global representation, and ψ2 by a max pool-
ing function in the first dimension to model the local representation.
The global and local representation are then aggregated by using two
learnable parameters to maximize the most favorable supervised in-
formation. α and β are initialized as 1, and adaptively assigned the
best weights gradually with end-to-end training.

The encoded supervision from the graph-level representation is
mapped to the detection in the vision space to facilitate optimization.
Each channel of the feature map often corresponds to various inter-
ested targets, and the dimensions of the channel and X are generated
with the same size as C. The supervised embedding as the attention
weight is mapped to the channel to focus on the most valuable chan-
nel. Finally, the node-level output of the perception reasoning graph
is encoded as the supervision, which can be utilized as attention in
the channel dimension of the feature map to optimize the detection
in the vision space.

4 Experiments

4.1 Dataset and Evaluation Metric

We carry out the experiments on two widely used benchmark datasets
for object detection, PascalVOC [6] and MSCOCO [22].

• PascalVOC It contains 20 classes of objects in daily life, which
consists of two versions, that is, PascalVOC2007 (including 5k
training images and 12k annotated objects) and PascalVOC2012
(including 11k training images and 27k annotated objects). We
train the ClassGCN on the union set of PascalVOC2007 and Pas-
calVOC2012 trainval, and test on the PascalVOC2007 test
set.

• MSCOCO It is a large-scale dataset including 80 classes. We use
the MSCOCO trainval35k set (including 80k training im-
ages and 35k validation images) for training, and the MSCOCO
test-dev set for testing.

The same and popular evaluation metrics in all experiments are
adopted to measure the performance of the models on both datasets.

• Evaluation on PascalVOC The mean Average Precision (mAP)
is adopted as the evaluation metric to evaluate the model perfor-
mance. When the Intersection over Union (IoU) between the pre-
dicted box and the ground truth box is more than 0.5, the predicted
box is labeled as “positive”, otherwise as “negative”.

• Evaluation on MSCOCO The Average Precision (AP) is adopted
as the evaluation metric to evaluate the model performance via the
official COCO API3.

3 https://github.com/cocodataset/cocoapi

4.2 Implementation Details
To demonstrate the effectiveness of our proposed ClassGCN, we in-
tegrate it into the classical detection models SSD [24], RFBNet [23],
and RetinaNet [21]. More specifically, ClassGCN is embedded be-
tween the basic backbone for feature extraction and the detection
heads of these models. To be fair, we adopt the same strategy, such
as training datasets, loss functions, matching strategy, training objec-
tive, scales and aspect ratios for default boxes, hard negative mining,
data augmentation, non-maximum suppression step, and other basic
settings, as the baseline models. Our network is implemented based
on Pytorch4. The hyperparameter θ is set as 0.5 empirically in all
experiments. SGD is applied to optimize the training models on N-
VIDIA 1080Ti. More importantly, we adopt the consistent parameter
setting, train and test the model on the consistent datasets with the
consistent detection backbone.

4.3 Overall Performance
We evaluate the performance of our proposed ClassGCN on Pas-
calVOC and MSCOCO with the consistent experimental setting and
single-scale training strategy. The related experimental results are
shown in Tables 1 and 2. The number in the “Method”, like 300 or
512, means the network with the corresponding input scale.

Results on PascalVOC. Table 1 presents the summary statistic-
s for the performance of ClassGCN on PascalVOC. We verify the
performance of ClassGCN on SSD and RFBNet. As shown in Table
1, ClassGCN (1), (2), (3), and (4) mean the experiments are con-
ducted by integrating our proposed ClassGCN into the SSD model,
but (1) with no prior knowledge, (2) with global optimization, and
(3) and (4) with full ClassGCN; ClassGCN (5) and (6) mean the ex-
periments are conducted by integrating ClassGCN into the RFBNet
model. Closer inspection of the table shows that for the SSD network,
ClassGCN significantly improves the mAP by 3.2% from 77.5% to
80.7% in the 300x300 input scale, and increases the mAP by 2.6%
from 79.5% to 82.1% in the 512x512 input scale; for RFBNet, the
mAP is improved by 1.7% in both the 300x300 and 512x512 in-
put scales. These results suggest that the proposed ClassGCN is not
only effective for different models, but also for multi-scale inputs.
More importantly, the mAP is just improved by 1.9% for SSD based
on ClassGCN with no prior knowledge, and 2.2% based on Class-
GCN with global optimization in the 300x300 input scale, which
reveals the rationality of our proposed ClassGCN based on prior
knowledge with adaptively local optimization-maximization. What
is striking about the figures in this table is that ClassGCN can adapt
to the object-level detection task, and significantly elevate the detec-
tion performance of diverse categories, like boat, bottle, bus, and so
on. It can be observed that ClassGCN achieves the new state-of-the-
art performance on PascalVOC.

Results on MSCOCO. Table 2 illustrates the summary statistics
for the performance of ClassGCN on MSCOCO. We test the per-
formance of ClassGCN on SSD (ClassGCN300 and ClassGCN512)
and RetinaNet (ClassGCN500 and ClassGCN800). It can be seen
from Table 2 that for the SSD model with the 300x300 input scale,
we can obtain 2.0%, 1.8%, and 2.1% improvement of AP, AP50, and
AP75 separately, which shows the robustness of ClassGCN; for the
SSD model with the 512x512 input scale, these metrics are raised by
1.9%, 2.0%, and 1.7%, respectively. It is worth noting that for the
state-of-the-art RetinaNet model, ClassGCN is equally efficient. We
can notice that ClassGCN outperforms the other detection models,
and promotes the metrics of AP, AP50, and AP75 by 2.0%, 1.9%,

4 https://pytorch.org
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Table 1. The detection results on PascalVOC2007 test. The bold fonts indicate the best performance, and ‘–’ means that no relevant data is provided in the
original work. (1), (2), (3), and (4) mean the experiments are conducted by integrating our proposed ClassGCN into SSD [24], but (1) with no prior knowledge,
(2) with global optimization, and (3) and (4) with full ClassGCN; (5) and (6) mean the experiments are conducted by integrating ClassGCN into RFBNet [23].

Note that all these models are trained on PascalVOC2007 trainval and PascalVOC2012 trainval.

Method Backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbikepersn plant sheep sofa train tv

Fast R-CNN [10] VGG-16 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4
Faster R-CNN [29] VGG-16 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
Faster R-CNN [29] ResNet-101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

R-FCN [4] ResNet-101 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9
RON384++ [16] VGG-16 77.6 86.0 82.5 76.9 69.1 59.2 86.2 85.5 87.2 59.9 81.4 73.3 85.9 86.8 82.2 79.6 52.4 78.2 76.0 86.2 78.0

DES300 [37] VGG-16 79.7 83.5 86.0 78.1 74.8 53.4 87.9 87.3 88.6 64.0 83.8 77.2 85.9 88.6 87.5 80.8 57.3 80.2 80.4 88.5 79.5
RefineDet320 [36] VGG-16 80.0 – – – – – – – – – – – – – – – – – – – –

STDN300 [39] DenseNet-169 78.1 81.1 86.9 76.4 69.2 52.4 87.7 84.2 88.3 60.2 81.3 77.6 86.6 88.9 87.8 76.8 51.8 78.4 81.3 87.5 77.8
DES512 [37] VGG-16 81.7 87.7 86.7 85.2 76.3 60.6 88.7 89.0 88.0 67.0 86.9 78.0 87.2 87.9 87.4 84.4 59.2 86.1 79.2 88.1 80.5

RefineDet512 [36] VGG-16 81.8 – – – – – – – – – – – – – – – – – – – –
STDN513 [39] DenseNet-169 80.9 86.1 89.3 79.5 74.3 61.9 88.5 88.3 89.4 67.4 86.5 79.5 86.4 89.2 88.5 79.3 53.0 77.9 81.4 86.6 85.5

SSD300 [24] VGG-16 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 84.0 79.4 52.3 77.9 79.5 87.6 76.8
SSD512 [24] VGG-16 79.5 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79.0 86.6 80.0

RFBNet300 [23] VGG-16 80.5 – – – – – – – – – – – – – – – – – – – –
RFBNet512 [23] VGG-16 82.2 – – – – – – – – – – – – – – – – – – – –

ClassGCN300 (1) VGG-16 79.4 82.8 86.0 77.5 72.5 53.7 88.8 87.9 87.8 62.2 63.5 79.5 85.9 88.4 87.1 81.0 55.2 81.5 78.1 88.4 79.4
ClassGCN300 (2) VGG-16 79.7 83.4 87.9 77.9 72.7 55.3 87.4 87.7 88.1 63.1 83.2 76.7 87.1 88.0 88.2 82.1 57.3 80.8 80.1 88.1 79.0
ClassGCN300 (3) VGG-16 80.7 85.2 88.3 79.0 74.9 56.6 87.2 88.1 89.3 65.4 84.6 78.3 87.6 88.9 88.7 82.6 58.0 81.5 80.8 87.5 81.7
ClassGCN512 (4) VGG-16 82.1 87.6 88.5 82.1 77.2 66.8 88.8 89.3 88.2 65.8 88.5 76.8 87.1 89.3 87.9 84.3 58.7 83.9 79.7 88.5 82.3
ClassGCN300 (5) VGG-16 82.2 87.1 89.1 82.4 76.3 63.9 89.1 88.8 88.9 67.6 87.5 78.9 86.7 89.0 89.0 84.7 60.4 80.1 81.9 88.8 84.2
ClassGCN512 (6) VGG-16 83.9 86.4 89.1 84.4 79.6 70.2 90.1 89.9 89.9 68.9 89.2 80.7 88.2 90.6 89.6 86.3 62.1 86.5 80.3 89.9 85.0

Table 2. The detection results on MSCOCO test-dev set. (1) and (2) mean the experiments are conducted by integrating our proposed ClassGCN into
SSD [24]; (3) and (4) mean the experiments are conducted by integrating ClassGCN into RetinaNet [24].

Method Data Backbone AP AP50 AP75 APS APM APL

Faster R-CNN [29] trainval VGG-16 21.9 42.7 - - - -
R-FCN [4] trainval ResNet-101 29.9 51.9 - 10.8 32.8 45.0

CoupleNet [42] trainval ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8
Faster R-CNN w FPN [20] trainval35k ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

YOLOv3 [28] trainval35k Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9
RefineDet512 [36] trainval35k ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4

FSAF [41] trainval35k ResNet-101 – 54.0 33.6 17.8 35.4 46.5
CornerNet511 [17] trainval35k Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

SSD300 [24] trainval35k VGG-16 25.1 43.1 25.8 6.6 25.9 41.4
SSD512 [24] trainval35k VGG-16 28.8 48.5 30.3 10.9 31.8 43.5

RetinaNet500 [21] trainval35k ResNet-101 34.4 53.1 36.8 14.7 38.5 49.1
RetinaNet800 [21] trainval35k ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

ClassGCN300 (1) trainval35k VGG-16 27.1 44.9 27.9 8.1 27.6 44.2
ClassGCN512 (2) trainval35k VGG-16 30.7 50.5 32.0 13.8 34.6 47.1
ClassGCN500 (3) trainval35k ResNet-101 36.4 55.0 39.0 16.7 40.2 51.1
ClassGCN800 (4) trainval35k ResNet-101-FPN 41.4 61.4 44.8 23.8 44.9 52.5

2.2% with the 500x500 input scale and 2.3%, 2.3%, 2.5% with the
800x800 input scale.

Comparison with Stated-of-the-art Models. We can summarize
that no matter the 300x300, 500x500, 512x512, or 800x800 input
scales, the performances of the baseline models all surpass the o-
riginal detection performance, which exhibits the good adaptability
of our method. From Tables 1, 2 and Figure 4, it is interesting to
note that our proposed ClassGCN outperforms other excellent mod-
els like [36, 39, 23, 24, 37, 29, 4] on Pascal. Meanwhile, compared
with the most advanced models [17, 42, 41, 36, 4] on MSCOCO, the
RetinaNet with ClassGCN can achieve better performance.

4.4 Ablation Study
To verify the reasonability and reliability of our proposed ClassGCN,
we perform the related ablation studies. We train the models on the
union set of the PascalVOC2007 and PascalVOC2012 trainval
set, and test them on the PascalVOC2007 test set. All ablation s-
tudies are performed on the SSD model in the 300x300 input scale
with the same experimental settings.

Experiments on Different Settings of The Hyper-parameter θ.
The setting of the hyper-parameter θ determines the scope of local

Table 3. The experimental results for our ClassGCN with different settings
of the hyper-parameter θ.

θ 0.1 0.3 0.5 0.7 0.9

mAP 79.9 80.2 80.7 80.0 N/A

Table 4. The experimental results for ClassGCN with different
feature-modeling styles.

Operation [ ψ1 ] [ ψ2 ] [ ψ1, ψ2 ]

mAP 80.2 79.9 80.7

optimization. The experimental results for ClassGCN with different
settings of θ are shown in Table 3. It can be viewed that setting θ to a
fixed value 0.1 is the worst choice, because this is largely equivalent
to the effect of global optimization. Fixing θ as 0.5 can get the best
performance, which is beneficial in fitting the most primitive data
distribution and guiding the optimization of the graph. It is apparent
that setting θ as 0.9 leads to the network failing to converge, and the
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Figure 3. Some examples of learned class-based graph representation from our ClassGCN. The red numbers are the predicted classification scores; the blue
boxes are the predicted bounding boxes; and the green graph structures are the graph relations with various weights. Row (a) is the detection visualization of the
base model [24], and Row (b) by means of our ClassGCN. Our method outperforms baseline with better classification scores due to the help of graph relations.

main reason is that the embedding matrix with a lot of zero values is
too sparse to cause weight imbalance.

Experiments on Feature-modeling from Perception to Vision.
The node-level output of the graph is fed into two functions ψ1 and
ψ2, to obtain the most compete encoding information. As shown in
Table 4, it can be found that encoding features with a combination
of two functions increases the model performance than using each
separate one by 0.5% and 0.8%, respectively. ψ1 can fully embed
the global representation of the graph, and ψ2 can model the most
effective local representation. Two encoding styles, along with two
self-learning weights, can obtain the optimal supervised embedding,
which is adopted by our proposed method.

Table 5. The experimental results for ClassGCN with different numbers of
graph layer. ‘M’ represents million.

Graph layer SSD 1 2 3 4 5

Parameters 26.3M 0.3M 0.7M 1.1M 1.5M 1.9M

mAP 77.5 79.7 80.7 80.8 80.4 80.1

Experiments on Different Numbers of Graph Layer. To deter-
mine the most appropriate layer setting, we explore the comparison
with different numbers of graph layer, as shown in Table 5. Keeping
other parameters consistent, only the layers of the graph are changed.
We can intuitively find that the performance of the graph reasoning
network is not positively related to the number of layer. Graph model
can obtain almost the best similar performance when the graph lay-
er is 2 or 3. Finally, we choose two layers as the graph structure to
better balance the trade-off between the performance and parameter.
The model without and with ClassGCN achieves the speed of 53 and
51 frames per second (FPS), respectively. ClassGCN can greatly im-
prove the performance of the original detection model at little cost.

4.5 Visualization and Discussion
To reveal the efficiency of our method intuitively, we visualize some
representative examples, as shown in Figure 3. The most important
relevant finding is that the detection models based on the vision space
obtain better performance at the aid of class-class relations by the
graph representation in the perception space. This can provide some
supports for the conceptual premise that using graph representation
to model the topological structure of high-order unstructured data is
of great significance for low-order visual object detection. In addi-
tion, we find that the performance of ClassGCN is not so significant

Figure 4. The comparison results between the stated-of-the-art detection
models and our proposed ClassGCN in different input scales. “99K” denotes
the performance improvement by ClassGCN. It is clear that the performance
of the baseline models can be greatly improved by integrating ClassGCN.

when there is only one object in the image. Because our method aims
to build the topological space relationships among different object-
s, which cannot effectively model the mutual support connectivity
based on one object.

5 Conclusion and Future Work
In this paper, considering that most of the existing object detection
models are only modeled in the vision space and little work has
focused on reasoning in the perception space like humans, a novel
class-based graph representation mechanism ClassGCN is proposed
to make the detection models adaptively learn to model the high-
order topology structure that maps the data distribution and have bet-
ter reasoning ability in the perception space. Our proposed Class-
GCN is adaptable, simple, and highly effective, which can be easily
integrated into the existing models without any extra modification
to such models. Extensive experiments show that our method can
greatly boost the model performance, while keeping the model high-
ly efficient. In the future, we will explore to design the independent
perceptual reasoning detection framework without building on the
existing detection models.
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