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Abstract. An incomplete filtering technique known as variable fix-
ing has been used in integer programming for a long time. It relies
on the reduced costs of the variables given by an optimal dual solu-
tion of the linear relaxation. Reduced-costs are used to detect some
of the 0/1 variables that must be fixed to either 0 or 1 in any solution
improving the best known. Reduced cost based filtering was intro-
duced in CP for a global constraint referred to as MINIMUM WEIGHT

ALLDIFFERENT and to the best of our knowledge, no analysis of this
filtering technique has ever been performed. We therefore propose
an analysis of reduced costs filtering for this constraint, showing that
arc-consistency can be achieved with reduced-costs of n dual solu-
tions and that this bound is sharp. For ALLDIFFERENT, a single dual
solution is enough. From a practical side, our end goal is the design
of incomplete but anytime primal-dual filtering approaches. We il-
lustrate this idea on the MINIMUM WEIGHT ALLDIFFERENT where a
near-complete filtering can be done in shorter times.

1 Introduction
Mixed integer programming (MIP) and Constraint Programming
(CP) have often been combined in the past to take advantage of the
complementary strengths of the two frameworks. Many approaches
have been proposed to benefit from their modeling and solving capa-
bilities [6, 21, 19, 3, 2]. A typical integration of the two approaches is
to use the linear relaxation of the entire problem in addition to the lo-
cal consistencies enforced by the CP solver. The relaxation can detect
infeasibility and is often added to provide a bound on the objective.

A number of previous works have also proposed to use the lin-
ear relaxation for filtering the domains in a constraint programming
framework [18, 19, 3, 2, 10]. Based on the relaxation, filtering can
be performed using a technique referred to as reduced cost based fil-
tering [10, 13]. It is a specific case of cost-based filtering [9] that
aims at filtering out values leading to non-improving solutions. It
originates from variable fixing [16] which is performed in MIP to
detect some 0/1 variables that must be fixed to either 0 or 1 in any
solution improving the best known. Variable fixing relies on the re-
duced costs of the variables given by an optimal dual solution of the
linear relaxation. It is known to be incomplete because it strongly de-
pends on the specific dual solution used. Alternatively, it was recently
shown in [11] that a complete filtering, namely arc-consistency, can
be achieved with a linear relaxation when the problem considered
is a satisfaction problem with an ideal integer programming formu-
lation. Such formulations can be found for a number of common
global constraints such as ELEMENT, ALLDIFFERENT, GLOBAL-
CARDINALITY or GEN-SEQUENCE [19, 11]. The approach does not
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apply to global constraints involving a cost variable such as MINI-
MUMWEIGHTALLDIFFERENT [7, 10] even though it has an ideal LP
formulation. A natural extension to the work [11] is to handle an ob-
jective function i.e a cost variable from the constraint point of view.
We are therefore interested in the design of filtering algorithms based
on linear programming for polynomial global constraints with a cost
variable. Note that when an ideal LP formulation is available for the
constraint, a naive approach, typically used in practice when check-
ing or designing propagators is to solve one LP for each variable-
value pair.

Since the approach of [11] does not easily extend, we go back to
reduced cost based filtering and investigate the specific case of the
MINIMUMWEIGHTALLDIFFERENT global constraint (referred to as
MINWALLDIFF for short in the rest of the paper). This constraint
enforces n distinct values to be assigned to n variables so that the
cost of the assignment is no more than a given upper-bound. Assign-
ing to a variable Xi a value j of its domain incurs a cost cij ∈ N and
the overall cost is the sum of all individual assignment costs. This
constraint is related to the assignment problem for which a well-
known LP ideal formulation is available. Interestingly, cost-based
filtering was introduced in CP with the MINWALLDIFF [10] and re-
duced costs of the linear relaxation were used to perform filtering.
An arc-consistency algorithm is first given in [20] for the more gen-
eral case of the GLOBALCARDINALITY constraint with costs. Later
on, [22] focuses on MINWALLDIFF and achieves arc-consistency in
O(n(d + mlog(m))), where n denotes the number of variables, m
is the cardinality of the union of all variable domains, and d denotes
the sum of the cardinalities of the variable domains. Let’s give some
details about reduced costs filtering to properly state the results of
the present paper. In general, the consistency of a given value j of
a variable Xi is established by computing the minimum increase of
the optimal objective due to the assignment Xi = j. The optimal
value of the problem restricted with Xi = j is referred to as the
(i, j)-optimal value and denoted z∗|ij . Value j of Xi is inconsistent if
z∗|ij is greater than the maximum cost allowed denoted z. A typical
lower bound of z∗|ij is the LP reduced cost, ru∗,ij available from an
optimal dual solution u∗ of the linear relaxation of the assignment
problem (namely z∗ + ru∗,ij ≤ z∗|ij). It was used to perform an in-
complete filtering in [10]. However, the value of ru,ij depends on the
dual solution u found and greatly varies in practice from one solu-
tion to another. We are now ready to state the results presented in this
paper.

We prove that there always exists an optimal dual solution u∗

such that the reduced cost ru∗,ij provides the (i, j)-optimal value
(i.e. such that z∗ + ru∗,ij = z∗|ij). Moreover, we show that n
dual solutions are sufficient to compute all (i, j)-optimal values and
this bound is tight. These results also show that arc-consistency for

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



ALLDIFFERENT can be achieved with the reduced costs of a sin-
gle dual solution, which is consistent with [11] but gives a different
view-point.

Finally, we propose a preliminary primal-dual algorithm to en-
force filtering. It remains preliminary but highlights the motivation
for this line of research. By enumerating dual solutions, filtering is
performed in an opportunistic manner and can be interrupted even
if it is incomplete. We believe such an anytime algorithm is key for
very costly global constraints where arc-consistency is rarely worth a
high runtime complexity such as O(n3). See for instance the discus-
sion in [8] where the arc-consistency algorithm for MINWALLDIFF

is found too costly and the filtering of [10] used as a baseline is too
weak. Primal-dual filtering techniques could be a very good frame-
work to design anytime and adaptive consistency algorithms [5]. Our
experiments on random cost matrices show that a near-complete fil-
tering can be done with reduced costs in much shorter times than the
proof of arc-consistency.

2 Notations and problem’s definition
A constraint satisfaction problem is made of a set of variables, each
with a given domain, i.e. a finite set of possible values, and a set
of constraints specifying the allowed combinations of values for a
subset of variables. In the following, the variables, e.g. Xi, are writ-
ten with upper case letters for the constraint programming models as
opposed to the variables of linear programming models that are in
lower case. D(Xi) ⊆ Z denotes the domain of Xi. The minimum
and maximum values in D(Xi) are respectively denoted Xi and Xi.
A constraint C over a set of variables 〈X1, . . . , Xn〉 is defined by
the allowed combinations of values (tuples) of its variables. Such tu-
ples of values are also referred to as solutions of the constraint C.
Given a constraint C with a scope 〈X1, . . . , Xn〉, a support for C
is a tuple of values 〈a1, . . . , an〉 that is a solution of C and such that
ai ∈ D(Xi) for all variables Xi in the scope of C. Consider a vari-
able Xi in the scope of C, the domain D(Xi) is said arc-consistent
for C if and only if all the values of D(Xi) belong to a support for
C. A constraintC is said arc-consistent if and only if all its variable’s
domains are arc-consistent.

The MINWALLDIFF constraint considers a cost cij ∈ N for as-
signing value j to variable Xi. It enforces n variables (X1, . . . , Xn)
to take distinct values so that the cost of the assignment is no more
than a given cost variable Z. The cost is defined as the sum of the
individual assignment costs so that if Xi is assigned to value ai, it is
computed as

∑n
i=1 ci,ai .

Definition 1. MINWALLDIFF(X1, . . . , Xn, Z, c) has a solution if
and only if the following constraint network has a solution:

ALLDIFFERENT(X1, . . . , Xn)
n∑
i=1

ci,Xi ≤ Z

For sake of simplicity, we consider the specific case of a permuta-
tion where

⋃n
i=1D(Xi) = {1, . . . , n}. The results presented below,

namely properties 1, 2, 3 and 4 hold if there are more values than
variables (the proofs remain identical).

The minimum weight alldifferent is strongly related to the assign-
ment problem or weighted bipartite perfect matching problem stated
in the graph G = (U, V,E, c) referred to as the weighted variable-
value bipartite graph. The set U = {X1, . . . , Xn} relates to the
variables, V = {a1, . . . , am} to the set of values and edge (Xi, aj)
of cost cij (also denoted as a triplet (Xi, aj , cij)) is in E if and only

if aj ∈ D(Xi). A perfect matching M in G is a set of n vertex-
disjoint edges that define a feasible assignment of distinct values to
the variables. A minimum weighted perfect matching inG is denoted
M∗ and is a minimum cost assignment of the X variables.

A useful graph representation associated to a matchingM of G is
the residual graph GM as introduced in [20]. GM = (U, V,A, c′)
is a directed bipartite graph with the same node sets as G and with
arcs defined as follows:

A = {(Xi, aj ,−cij) | (Xi, aj) ∈M}
∪ {(aj , Xi, cij) | (Xi, aj) ∈ E \M}

In other words, the edges fromM are directed from U to V with a
cost multiplied by −1 and the remaining edges are directed from V
to U with their original cost. The total cost of a set of weighted edges
or arcs S is denoted cS and defined as cS =

∑
(i,j)∈S cij . Figure 1

illustrates these notions with an example made of three variables that
will serve later on. A non-optimal matchingM of cost cM = 1 is
shown onG in bold with its residual graph. Assuming Z = 2, values
2 and 1 from X1 and X2 respectively are not consistent and the arc-
consistent domains are shown on the right of the figure.

3 Filtering algorithms for Minimum Weight
AllDifferent

We briefly review the filtering algorithm achieving arc-consistency
that was initially given in [20] and detailed in [22]. A support for
Z, the lower bound of Z is a matchingM∗ of minimal cost in the
weighted variable-value bipartite graphG. Such an optimal matching
can be computed with the famous Hungarian algorithm [15]. For all
edges e ∈ E \M∗, there exists a perfect matching of cost less than
Z that contains e if and only there exists a cycle Ce in the residual
graphGM∗ containing e and such that cCe +cM∗ ≤ Z. Inconsistent
values can be characterized as arcs that are not contained in any such
cycles. This can be checked by computing the shortest path distances
from U to V in GM with an all-pairs shortest path algorithm such
as Johnson’s algorithm [14]. All (i, j)-optimal values are known at
this stage and all inconsistent values can be removed. The complete
procedure runs in time O(n(d+m log(m))).

A more practical and cheaper incomplete filtering technique is
based on the use of linear reduced costs. It is based on the assign-
ment problem and its Integer Programming (IP) formulation. Recall
that G = (U, V,E, c) denotes the weighted variable-value bipartite
graph. Variables xij ∈ {0, 1} encode the assignment so that xij = 1
means that Xi is assigned to j. The IP formulation is as follows:

(PIP )



z∗ = min
∑

(i,j)∈E
xijcij

s.t.
∑

j:(i,j)∈E
xij = 1 ∀i ∈ U (1)∑

i:(i,j)∈E
xij = 1 ∀j ∈ V (2)

xij ∈ {0, 1} ∀(i, j) ∈ E (3)

The objective is to minimize the cost of the assignment. Con-
straint (1) states that each vertex i of U is assigned to exactly one
vertex of V . Conversely, constraint (2) enforces each vertex j of V
to be assigned to a single vertex of U . We denote by (P) the linear
relaxation of (PIP ) i.e. the formulation where constraints (3) stating
the domains xij ∈ {0, 1} have been replaced by xij > 0. It is well-
known that (P) is an ideal formulation so that an integer solution is
returned by the simplex algorithm. Finally, the dual (D) of (P) is the
following:
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:M = {(X1, 1) , (X2, 3) , (X3, 2)}

D(X1) = {1, 2}
D(X2) = {1, 2, 3}
D(X3) = {2, 3}
D(Z) = [0, 2]

c =

0 2 −
1 0 1
− 0 0
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Figure 1. Example of MINIMUMWEIGHTALLDIFFERENT(X1, X2, X3, Z, c) with the weighted variable-value graph, the residual graph and the
arc-consistent domains.

(D)


w∗ = max

∑
i∈U

ui +
∑
j∈V

vj

s.t. ui + vj 6 cij ∀(i, j) ∈ E (4)
ui ∈ R ∀i ∈ U (5)
vj ∈ R ∀j ∈ V (6)

Variables ui and vj are respectively the dual variables related to con-
straints (1) and (2) of the primal. ui and vj are often referred to as
the potentials of each i ∈ U and j ∈ V . The reduced cost of an edge
(i, j) ∈ E for a dual solution (u, v) is denoted ru,ij and is the slack
of constraint (4):

ru,ij = cij − ui − vj
Recall thatZ is the maximum cost allowed, reduced cost based filter-
ing (or variable fixing) is performed from an optimal dual solution u∗

of value z∗ and states that if z∗+ru∗,ij > Z then xij is set to 0 in any
solution of cost less than or equal to Z. In other words, from the view
point of our global constraint, value j can be removed from the do-
main of Xi. Figure 2 shows the dual (D) of the example used previ-
ously and two dual optimal solutions (u, v) = (2, 0, 0,−2, 0, 0) and
(u, v) = (0, 1, 1, 0,−1,−1) with the corresponding reduced costs.
It can be easily checked that the objective value is z∗ = w∗ = 0
for both solutions and that both are feasible. Since Z = 2, the first
solution is able to filter value 1 fromX2 whereas the second solution
filters value 2 from X1. Thus, each of these dual solution performs
an incomplete filtering.

If we consider Z = 1, it is possible to filter both values with a sin-
gle dual solution such as (0.5, 0, 0,−0.5, 0, 0). Dual values can also
be used to detect variables that must be set to 1. This is meaningful
when the filtering is incomplete (It is otherwise implied by the fact
that all remaining values of the domain are forbidden). We do not
discuss this aspect in the present paper and refer the reader to [11]
for the general statement of the rules used for reduced cost filtering.

4 Analysis of reduced costs based filtering
Recall that z∗ is the optimal value of the assignment problem and
z∗|ij denotes the optimal value of formulation (P) with the additional
constraint xij = 1. This restricted formulation is denoted (P|ij) and
z∗|ij is referred to as the (i, j)-optimal value. Both (P) and (P|ij) are
known to have the integrality property and an integer solution can be
found by solving the linear relaxation with the simplex algorithm.

Definition 2. The exact reduced cost Rij of an edge (i, j) ∈ E is
defined as

Rij = z∗|ij − z∗

Rij = +∞ if (i, j) does not belong to a perfect matching of
G = (U, V,E, c).

The exact reduced cost is defined from a primal point view even
though its name refers to the dual problem. This will be justified with
Property 1. Rij can be seen as the minimum increase of the optimal
value z∗ when forcing the edge (i, j) in a solution. It provides the
(i, j)-optimal value from an optimal solution. On our running exam-
ple, it is easy to see that R12 = R21 = 3 and R23 = R32 = 1. Note
that these exact reduced costs can be obtained as the reduced costs of
two dual optimal solutions. For instance, (2, 0, 0,−2, 0, 0) provides
R21 and R23 whereas (0, 1, 0, 0,−1, 0) provides R12 and R32.

An (i, j)-optimal value can be computed from a non-optimal so-
lution. The notion of complete set of dual solutions is introduced to
avoid referring to optimal solutions.

Definition 3. A set {ut}qt=1 of dual solutions is said to be complete
if and only if max

t=1,...,q
(wt + rut,kl) = z∗|kl for each edge (k, l) of E

where wt denotes the objective value of solution ut.

A complete set of dual solutions provide all (i, j)-optimal values
and ensures arc-consistency. Reversely, a set of dual solutions is said
incomplete when there exists at least one edge (i, j) for which the
(i, j)-optimal value is not reached in any of the solutions of the set.

Finally, we assume from now on that all edges of E belong to
a perfect matching of G to avoid handling the case of unbounded
exact reduced costs (Rij = +∞). This assumption can be enforced
by the filtering algorithm of the ALLDIFFERENT global constraint as
a pre-preprocessing.

4.1 Analysis
Property 1. For each edge (k, l) of E, there exists an optimal dual
solution u∗ such that ru∗,kl = Rkl.

Proof. Let’s build explicitly the dual solution u∗. Let
(
P̃
)

be the

primal problem identical to (P) except for the cost of edge (k, l) so
that: {

c̃kl = ckl − (z∗|kl − z∗)
c̃ij = cij ∀(i, j) ∈ E\(k, l)

Recall that (k, l) belongs to at least one perfect matching of G so

that c̃kl is finite. Let z̃∗ be the optimal value of
(
P̃
)

and ũ∗ be any

optimal dual solution for
(
D̃
)

, the dual of
(
P̃
)

. We show below that
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(cij , ru,ij)
: filtered

max
∑3
i=1 ui +

∑3
j=1 vj

u1 + v1 ≤ 0

u1 + v2 ≤ 2

u2 + v1 ≤ 1

u2 + v2 ≤ 0

u2 + v3 ≤ 1

u3 + v2 ≤ 0

u3 + v3 ≤ 0

u1, u2, u3, v1, v2, v3 ∈ R
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Figure 2. Example MINIMUMWEIGHTALLDIFFERENT(X1, X2, X3, Z, c) continued with two dual solutions and the corresponding reduced costs.

ũ∗ is not only feasible and optimal for (D) but also gives the exact
reduced cost for edge (k, l):

• Since z∗|kl > z∗ the modified cost c̃kl is always lower than
the original cost so that c̃kl 6 ckl. As a result, ∀(i, j) ∈ E,
ũ∗i + ṽ∗j 6 c̃ij 6 cij and ũ∗ is feasible for (D).

• Let’s show that the optimal value is unchanged i.e. z̃∗ = z∗. Since(
P̃
)

is an ideal formulation, it has (at least) one optimal integer

solution. Suppose such an optimal matching of
(
P̃
)

has a cost
lower than z∗ (z̃∗ < z∗). On the one hand, if it didn’t contain
(k, l), it would have the same cost for (P) contradicting z∗ as the
optimum of (P). On the other hand, if it contained (k, l), its cost
would be smaller than z∗|kl in (P) since (k, l) is the only modified
cost by the quantity (z∗|kl − z∗). In either cases, it is not possible.
Moreover, since any optimal matching in (P) has also a cost of z∗

in
(
P̃
)

, we have z̃∗ = z∗. Thus ũ∗ is an optimal solution for
(D) since it is feasible with value z∗.

• Finally, an optimal solution of
(
P|kl

)
is an optimal solution of(

P̃
)

of value z∗ with the primal variable xkl set to 1. From the
complementary slackness theorem, the constraint associated with
xkl in ũ∗ must be tight.
Therefore ũ∗k + ṽ∗l = c̃kl

⇐⇒ ũ∗k + ṽ∗l = ckl − (z∗|kl − z∗)
⇐⇒ ckl − ũ∗k − ṽ∗l = z∗|kl − z∗

⇐⇒ rũ∗,kl = Rkl

The previous property shows that it is possible to establish the
consistency of a given value using an appropriate optimal dual so-
lution. But a given solution always provides |E| reduced costs and,
as discussed later on, a small number of dual solutions can often de-
tect most of the inconsistent values [4]. We show below that n dual
solutions are always enough to express all exact-reduced costs.

Property 2. There exists a complete set of n dual optimal solutions
i.e. a set {ut∗}nt=1 such that max

t=1,...,n
rut∗,kl = Rkl for each edge

(k, l) of E

Proof. We explicitly build the corresponding n optimal dual solu-
tions. Each one of them is related to a vertex k ∈ U and is built
from the modified primal problem

(
P̃k
)

which is identical to (P)

to the exception of the costs related to edges connected to k. More
precisely:{

c̃kkl = ckl − (z∗|kl − z∗) ∀l ∈ V
c̃kij = cij ∀(i, j) ∈ U\k × V

Let ũk∗ be an optimal solution for
(
D̃k
)

, the dual of
(
P̃k
)

, and

z̃k∗ its value. We must show that ũk∗ is feasible and optimal for (D)
while providing the exact-reduced costs of all edges connected to
vertex k. The proof is nearly identical to the one of property 1 and
not detailed here. The key additional idea to notice is that any per-
fect matching (P) contains exactly one edge connected to k. Since
no more than one such edge with a modified cost can be used, the
optimal value z∗ remains the same z∗ = z̃k∗ and the reasonings of
Property 1 hold. Overall, {ũk∗}k∈U is a complete set of |U | = n
optimal dual solutions.

Note that the property hold even if |V | > |U | i.e even if there are
more values than variables. We now show that n is sharp, i.e. that
there exists cases where it is not possible to find all (i, j)-optimal
values with less than n dual solutions.

Property 3. For any n, there exists an instance with n variables for
which any complete set of dual solutions contains at least n solu-
tions.

Proof. Consider a complete bipartite graph G = (U, V,E, c) with
|U | = n and where the costs c are defined as follows:

cij =

{
0 if i ≥ j
1 if i < j

Note that the optimal value is null (z∗ = 0), the only optimal primal
solution is the matchingM∗ = {(1, 1), (2, 2), . . . , (n, n)} and all
(i, j)-optimal values are equal to 1 (to the exception of the edges
of M∗). Consider two edges (Xα, α − 1) and (Xβ , β − 1) with
1 < α < β as shown on Figure 3 with α = 2 and β = 4.

Let’s show that edges (Xα, α−1) and (Xβ , β−1) are incompat-
ible i.e. that a single dual solution can not provide the (i, j)-optimal
values of both edges.

Suppose that such a dual solution u exists with value ω. Then
u would be such that ω + ru,(α,α−1) = z∗|α,α−1 which means
ω − uα − vα−1 = 1. Similarly, ω − uβ − vβ−1 = 1. By summing
the two equalities, we have:

4
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Figure 3. Edges (X2, 1) and (X4, 3) are incompatible.

2ω − uα − vα−1 − uβ − vβ−1 = 2
⇔ ω +

∑n
i=1 ui +

∑n
j=1 vj − uα − vα−1 − uβ − vβ−1 = 2

⇔ ω +
n∑
i=1

i 6=α, i6=β

ui +
n∑
j=1

j 6=α−1, j 6=β−1

vj = 2

Since u is a feasible dual solution, we also have:

⇔ ω = 2−

 n∑
i=1

i 6∈{α,α−1,β,β−1}

(ui + vi)︸ ︷︷ ︸
60


− (uα−1 + vβ)︸ ︷︷ ︸

61

− (uβ−1 + vα)︸ ︷︷ ︸
60

⇔ ω > 1 which contradicts z∗ = 0.
Moreover, the same contradiction occurs for the pair (Xα, α− 1)

and (X1, n). Overall, this highlights a set {(Xα, α − 1)}nα=2 ∪
{(X1, n)} of n edges that are pairwise incompatible. Therefore, at
least n dual solutions are required to express all (i, j)-optimal values.
Any set of less than n dual solutions is incomplete.

Firstly, note that arc-consistency would also require n dual solu-
tions when setting z = 1 on the example of Property 3 since exact-
reduced costs are equal to 1, their exact values must be computed to
assert the consistency of each value.

Secondly, note that no improvement can be expected with costs
c restricted to {0, 1} (compared to integer costs) since the proof of
property 3 is using an instance in {0, 1}.

Finally, the ALLDIFFERENT problem can be seen as a specific
case: it can be encoded as an assignment problem in a complete bi-
partite graph with costs in {0, 1} and an upper bound of z̄ = 0. The
edges of the variable-value graph are given a cost of 0 and edges with
a cost of 1 are added to make the bipartite graph complete. An edge
belongs to a solution of ALLDIFFERENT if and only if it belongs to
an assignment of cost 0. In this set-up, any positive (> 0) reduced
cost exhibits an inconsistent edge and a single dual solution can rule
them all out. Let I be the set of all the inconsistent edges.

Property 4. There exists an optimal dual solution u∗ s.t.

ru∗,ij > 0 ∀(i, j) ∈ I

Proof. Since the {0, 1} encoding presented above implies
Rij > 1 ∀(i, j) ∈ I, we can consider a set of optimal dual
solutions

{
ũij∗ : (i, j) ∈ I

}
with rũij∗,ij > 1.

Let ũ∗ be the average solution of the previous set:
ũ∗ =

∑
(i,j)∈I

ũij∗

|I| .
This solution is feasible, optimal, and has a positive reduced cost

for each (i, j) ∈ I.

Therefore, a single dual solution is enough to achieve arc-
consistency of ALLDIFFERENT. Such a solution can be seen as an
interior point of the dual problem since a positive reduced cost is a
positive slack of a dual constraint. It can be found with the method
given in [11] and sheds a different light on this result from a reduced
cost point of view.

5 Towards a primal dual algorithm for filtering
We suggest a very simple enhancement, based on reduced costs, of
the known algorithm to achieve arc-consistency initially proposed
by [20] and refined in [22]. Note that we only intend to motivate
our analysis and illustrate the design of anytime filtering algorithms
based on primal/dual iterations. Consider the algorithm of [22]:

1. Remove from E, all edges (i, j) that do not belong to a perfect
matching of G = (U, V,E, c) (see ALLDIFFERENT).

2. Solve the assignment problem with the Hungarian algorithm [15].
Let u∗ andM∗ respectively denote the optimal dual and primal
solution found at the end.

3. For each k ∈ U
• Replace all cij by the reduced costs ru∗,ij so that all costs are

positive (see Johnson’s algorithm [14] and [22]).

• Compute the shortest path distances d(l) from k to all vertices
of l ∈ U ∪ V in GM∗ with Dijkstra algorithm to get the exact
reduced-cost Rkl for all l ∈ V s.t (k, l) ∈ E.

We propose to add two filtering steps over all edges ofE so that the
algorithm can be interrupted at any time while still proving filtering
over all domains. Firstly, at the end of step 2, u∗ can be used to per-
form reduced cost based filtering on all edges as done by [10]. Note
that this can be done even if the Hungarian algorithm is interrupted
by using the dual feasible solution it provides when interrupted. Sec-
ondly, after each iteration k of step 3, reduced cost filtering for all re-
maining edges can be performed with an optimal dual solution built
as follows: ũi = u∗i + d(i) and ṽj = v∗j − d(j). It can be easily
checked that it is dual feasible:

• For each (i, j) ∈ E\M∗, the shortest path distances satisfy the
inequality d(i) 6 d(j) + ru∗,ij implying that:

ũi + ṽj 6 u∗i − d(j) + v∗j + d(j) + ru∗,ij = cij

• For each (i, j) ∈ M∗, ru∗,ij=0. Therefore d(i) = d(j) and
ũi + ṽj = cij .

The time complexity remains in O(n3) in the worst case. The fil-
tering algorithm can be seen as producing a sequence of dual fea-
sible solutions u1, . . . , un+1 whose reduced-costs are used for fil-
tering the entire domains. The only interest of this approach is to
derive an anytime algorithm and to stop the filtering after Q dual
solutions: u1, . . . , uQ. The Q − 1 vertices (variables) from which
the dual solutions are built can be chosen heuristically. In the exper-
iments and as a mean of illustration we chose them randomly and
fixed Q = 1 + 0.1n′ where n′ is the number of ungrounded vari-
ables (initially n). Steps 2 and 3 enhanced with reduced cost filtering
are illustrated in Figure 4. The variable-value graph is given in (a),
an optimal dual solution (provided by the Hungarian) is shown in (b)
and value 4 is filtered from D(X3) (step 2). The dual solution ob-
tained for k = 1 after computing the shortest path distances from
X1 (step 3) is shown in (c). The exact reduced costs of D(X1) lead
to filtering value 2 from D(X1). Additionally, value 3 is removed
from D(X2) by the same dual solution.
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D(X1) = {1, 2}
D(X2) = {1, 2, 3}
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Figure 4. Example. (a): Variable-value graph ; (b): Hungarian solution ; (c): Dual solution given by the Dijkstra algorithm from X1.
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Figure 5. (a): cpu time (in s) needed to filter 80%, 98% and 100% of the inconsistent values for different problem sizes n ranging from 20 to 400. The line
AC shows the time needed to prove arc-consistency. (b): Level of consistency depending on the cumulative number of dual feasible solutions enumerated

(n = 400, cij ∈ {0, . . . , 100} and z = 1.2z∗).

6 Experimental results
We analyse experimentally the filtering obtained with reduced costs
and the behavior of the primal-dual approach proposed in Section 5.
Levels of consistency are reported as a percentage of the total number
of inconsistent values (for a given upper bound z). All experiments
ran on a laptop Dell Precision 5530 (i7-8850H 2.60GHz 16Go Ram,
Linux Gentoo 64bits) using a single thread.

A single call to the filtering. The results reported on Figure 5 are
obtained with random costs matrices of sizes ranging from n = 20
to n = 400 and where each cij is drawn in {0, . . . , 100} with a uni-
form distribution. The value of z = 1.2z∗ is used to act as the upper
bound of z∗. Figure 5.a shows the cpu time needed to achieve three
levels of consistencies (80 %, 98 % and 100 % of AC) as well as the
time to perform and to prove that arc-consistency is enforced (de-
noted AC). Figure 5.b shows the level of consistency reached after
each dual feasible solution for 20 random instances of size n = 400.
Each line is one of the instances and a point (x, y) means that y%
of the complete filtering has been obtained with the x first dual so-
lutions u1, . . . , ux of the sequence produced by the primal dual ap-
proach. We include (in the sequence) the dual solutions provided af-
ter each primal/dual iteration of the Hungarian method itself to visu-
alize better what would happen when interrupting the Hungarian thus
the number of iterations can be larger than n+1 in the results. Table 1
presents the same results with more precise numerical values by ex-

plicitly giving the value of x required to achieve a given percentage p
of filtering (namely p ∈ {0.80, 0.98, 1}) as well as the correspond-
ing time in seconds (column T). Column Q gives the total number
of dual solutions produced when proving arc-consistency. Moreover,
we report the percentage of filtering that would be performed by the
optimal dual solution alone (column F), i.e. the solution found at the
end of the Hungarian algorithm which is the traditional approach for
filtering with reduced-costs [10]. There are in average around 25000

z
p = 80% p = 98% p = 100% AC F
x T x T x T Q T

mean

1
.2
0
z
∗ 12.7 0.02 39.5 0.05 452.8 0.69 460.7 0.70 99 %

median 1.0 0.00 56.0 0.06 455.5 0.66 461.5 0.67 99 %
max 58 0.06 66 0.14 465 1.11 467 1.11 99 %
mean

1
.2
3
5
z
∗ 80.0 0.51 316.3 1.84 450.3 2.67 460.7 2.75 80 %

median 58.0 0.18 308.5 1.55 451.5 2.37 462.0 2.42 85 %
max 274 2.93 453 4.80 464 5.34 469 5.52 94 %

Table 1. Numerical details of the results presented in Figure 5.
(20 random instances ; n=400)

values removed in the first case (z = 1.20z∗) and around 2500 in the
second case (z = 1.235z∗).

• For z = 1.20z∗, most of all inconsistent values are identified in
a fraction of the total time needed to enforce arc-consistency (See
Figure 5.a and Table 1 for p = 98%). Typically, 98% of the values
are removed in less than 10% of the total time.
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• Filtering is gathered with intermediate dual solutions.
• The optimal dual solution alone provides nearly all the filtering

for z = 1.20z∗ but the algorithm can be interrupted earlier with
very little loss.

• As the gap increases to z = 1.235z∗, the transition is abrupt and
achieving more than 80% of the filtering requires to go beyond the
dual solution of the Hungarian algorithm.

Preliminary results during resolution. We investigate the Re-
source Constrained Assignment Problem (RCAP) [1] to illustrate the
same ideas during resolution. The problem is to find a minimum
weight assignment that satisfies one or several resource constraints.
It is NP-Hard and can be formulated with the traditional model (PIP )
given in Section 3 (using a complete set E = U ×V of edges) and a
set K of additional resource constraints:

n∑
i=1

n∑
j=1

dkijxij ≤ bk ∀k ∈ K

dkij denotes the consumption of resource k by assigning value j to
variable i and bk is the capacity of the same resource. Moreover we
denote by b′ (resp. d′) the sum of all capacities (resp. consumption)
i.e d′ =

∑
k∈R b

k and d′ij =
∑
k∈R d

k
ij . Each resource can be seen

as an assignment problem and the CP model can be written as follow:

minZ
s.t. Z =

∑n
i=1 ci,Xi (7)

MINWALLDIFF(X1, . . . , Xn, Z, c) (8)

MINWALLDIFF(X1, . . . , Xn, d
k, bk) ∀k ∈ R (9)

MINWALLDIFF(X1, . . . , Xn, d
′, b′) (10)

Constraint (7) is implemented using ELEMENT constraints. Con-
straint (8) enforces the X variables to be all different and gives the
strong filtering dedicated to the objective function. Constraints (9)
model the resources. Finally (10) is a redundant constraint that was
found useful when resources are tight. Overall, this model involves
K+2 MINWALLDIFF constraints. We compare the following filter-
ing algorithms:

• The arc-consistency algorithm of [22] denoted ac.
• The initial approach of [10] denoted hung.
• A version of the primal-dual filtering withQ = 1+0.1n′ (denoted

pd10) where n′ is the number of ungrounded variables (initially
n). The 0.1n′ variables to build the dual solutions are chosen ran-
domly. The intention is that only 10% of the variables are filtered
precisely following the original algorithm of [22] but dual solu-
tions provide filtering over potentially all remaining variables.

We use a 600s time limit and the Choco 3 solver [17]. In-
stances are generated with a uniform distribution for costs/resources
in {0, ..., 100} and capacities between 0.1 and 0.6 of 100n. We
consider 6 classes of instances with n ∈ {100, 200, 500} and
k ∈ {2, 6}with 5 instances per class so 30 in total. The search is per-
formed by ordering the variables lexicographically in non-increasing
resource consumption. The consumption is computed (for Xi) as∑n
j=1

∑
k∈K d̃

k
ij where d̃ are the consumptions normalized in [0, 1]

to be able to compare resources with various capacities. The value
ordering heuristic picks the value j with the minimum resource con-
sumption (j = argminv∈D(Xi)

∑
k∈K d̃

k
iv). Finally, to make sure

the tree is traversed at various depths and the search does not remain
stuck in a subtree at a very high or very low depth, we use a Lim-
ited Discrepancy Search [12] provided by the solver. Table 2 reports

n k Algo nodes/s % AC ∆ Sol ] best Sol

100 2
ac 105.7 100% - 1

hung 619.2 87.1% −8.6% 0
pd10 406.1 92% −16.2% 4

100 6
ac 73 100% - 0

hung 366.5 73.2% −1.6% 0
pd10 351 83.4% −3.2% 5

200 2
ac 27.6 100% - 0

hung 249.4 84.6% −18.5% 0
pd10 179.6 92.4% −25.9% 5

200 6
ac 16.9 100% - 0

hung 108.5 75.6% −9.8% 0
pd10 90.2 87.5% −13.6% 4

500 2
ac 0.9 100% - 0

hung 36.1 68.9% −2.4% 0
pd10 30.6 79.8% −2.8% 5

500 6
ac 0.1 100% - 0

hung 15.7 58.9% −∞ 0
pd10 12 73.6% −∞ 5

Table 2. Results on the RCAP problem.

the number of nodes opened per second (nodes/s), the gap (∆ Sol)
between the best solution found compared to the one found by ac (a
negative gap is an improvement), the number of times the algorithm
obtained the best solution among the three approaches (] best Sol)
and the total percentage of the filtering that was performed compared
to arc-consistency (% AC). This last metric was obtained by instru-
menting the code and re-running the solving process for the same
number of nodes, to count (at each call to the filtering) the number
of values arc-consistency would have removed and the number of
values actually removed by the algorithm under evaluation.

pd10 performs (roughly) between 4 to 120 times more nodes per
seconds than ac while still achieving between 73 % and 92 % of the
complete filtering in average. It significantly improves the quality of
the solutions found. Although hung can be even faster in nodes per
seconds, it misses too much of the filtering and is not as competitive
with pd10. Note that for n = 500 and k = 6, ac does not find any
feasible solution within the time limit. Note that this experiment is
only an example of a specific solving context where pd10 provides a
better “inference versus search” trade-off than hung and ac.

7 Conclusion
We conducted an analysis of reduced cost based filtering for a very
fundamental global constraint related to the assignment problem:
MINIMUMWEIGHTALLDIFFERENT. Reduced-cost filtering was pro-
posed in 1999 by Foccaci and al [10] on the very same global con-
straint and has been used since without detailed analysis. The present
work shows that arc-consistency can be achieved with the use of re-
duced costs and that a minimum number of n dual feasible solu-
tions are always required in the worst-case. It also shows that arc-
consistency of ALLDIFFERENT can be established with the reduced
costs of a single dual solution giving a different view-point on the re-
sult of [11]. The analysis is based on the LP formulation of the con-
straint and its integrality property (ideal formulation). In particular,
it does not rely on the shortest path sub-problems of the dedicated
arc-consistency algorithm or the flow structure of [20]. The proofs
presented are new and we aim at generalizing these results to global
constraints with an ideal LP formulation and a cost variable which
encompasses a large class of constraints. The next step is to turn this
analysis into more efficient filtering algorithms based on primal/dual
iterations.
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