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Abstract.
In cognitive accounts of concept learning and representation three

modelling approaches provide methods for assessing typicality: rule-
based, prototype and exemplar models. The prototype and exemplar
models both rely on calculating a weighted semantic distance to some
central instance or instances. However, it is not often discussed how
the central instance(s) or weights should be determined in practice. In
this paper we explore how to automatically generate prototypes and
typicality measures of concepts from data, introducing a prototype
model and discussing and testing against various cognitive models.
Following a previous pilot study, we build on the data collection
methodology and have conducted a new experiment which provides a
case study of spatial language for the current proposal. After providing
a brief overview of cognitive accounts and computational models of
spatial language, we introduce our data collection environment and
study. Following this, we then introduce various models of typicality
as well as our prototype model, before comparing them using the
collected data and discussing the results. We conclude that our model
provides significant improvement over the other given models and
also discuss the improvements given by a novel inclusion of functional
features in our model.

1 Introduction
In cognitive accounts of concept learning and representation, three
modelling approaches provide methods for assessing typicality: rule-
based, prototype and exemplar models. The prototype and exemplar
models both rely on calculating a weighted semantic distance to some
central instance or instances. However, it is not often discussed how
the central instance(s) or weights should be determined in practice. In
this paper we explore how to automatically generate prototypes and
typicality measures of concepts from data, introducing a prototype
model and discussing and testing against various cognitive models.
Following a previous pilot study [29], we build on the data collection
methodology and have conducted a new experiment which provides
a case study of spatial language for the current proposal. After pro-
viding a brief overview of cognitive/computational models of spatial
language, we introduce the data collection environment4 and study5.
Following this we then introduce various models of typicality as well
as our prototype model, before comparing them using the collected
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data and discussing the results. We conclude that our model provides
significant improvement over the other given models and also discuss
the improvements given by a novel inclusion of functional features in
our model.

The primary motivation for this work is to explore semantic issues
of spatial language in order to provide a robust, cognitively-aligned
semantic model that can be applied to natural language understanding
and generation in the context of human-robot interaction. Through ex-
ploring semantics in situated dialogue we also aim to provide analysis
and data which furthers the theoretical work on spatial language and
cognition as well as cognitive models of concepts more generally.

In this paper we investigate the semantics of spatial prepositions,
in particular those considered to have a functional component as well
as those prepositions that seem to act as a geometric counterpart.
In English, we consider these to be: ‘in’, ‘inside’, ‘on’, ‘on top of’,
‘against’, ‘over’, ‘above’, ‘under’ and ‘below’.

2 Background & Related Work

A particular aspect of situated dialogue we explore is the processing of
referring expressions — noun phrases which serve to identify entities
e.g. ‘the book under the table’.

2.1 Referring Expressions

Referring Expression Generation and Comprehension (REG & REC)
situations provide useful scenarios for analysing the semantics of lexi-
cal items and how terms are used to achieve communicative success.
A lot of work has been done in creating computational models for
REG and REC, see [34] for an overview. However, most of this work
avoids expressions involving vague language i.e. where the extension
(set of things that could be referred to) of lexical items are ambiguous.
When vagueness is explored in REG, it is usually with respect to
gradable properties whose parameters are clearly defined e.g. [33].
We explore the issue of reference using spatial language, where the
semantics are not so clear and therefore a more thorough challenge is
presented for semantic representations.

In situations involving vague descriptions, binary classifications
of possible referents are problematic as the problem becomes over-
simplified and semantic information is lost. In place of categorisation,
typicality becomes a central notion i.e. how well a potential referent
fits the description [34]. Note that here we use typicality to denote
similarity to some ideal prototypical notion of a concept, rather than
simply frequency of occurrence.

For example, imagine a table-top scene containing an orangey-red
ball, o, and a red ball, r. Suppose an agent utters to a listener ‘the red
ball’. If they use this utterance to refer to o, they would be flouting
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the Gricean Maxim of Manner [13], as by committing to o being
red they are also committing to r being red and therefore making an
ambiguous description. We would therefore usually assume, or make
the conversational implicature, that they are referring to r. What is
important here is that r is closer to an ideal and generally agreed on
notion of ‘red’.

2.2 Modelling Prototypes & Typicality
Cognitive accounts of concept learning and representation present
three separate approaches to modelling typicality — rule-based, ex-
emplar and prototype models.

Rule-based models of typicality largely rely on expert intuition to
generate rules, for example [1, 25] in the context of spatial language.
This can prove successful where the semantics of terms involve a small
number of well-understood features; however due to the semantic
complexity of spatial language it is not clear how one would build
a robust rule-based model. In [16] these models are referred to as
Simple Relation models and many examples of the ways they fail are
given.

Based on Rosch’s Prototype Theory [30], prototype models assess
typicality of an instance by measuring its semantic distance to the
prototype, where the prototype is the most central member of the
category. In geometric representations this usually takes the form of
the geometric centre of the category [5]. In feature-models this takes
the form of family resemblance [30],where prototypical members of
a category are those members with the most properties in common
with other members of the category.

In exemplar models concepts are represented by a set of exemplars
— typical instances of a concept. Typicality in these models is then
calculated by considering the similarity of an instance to the given
exemplars [23, 35].

A more recent approach that has been considered as a unification
of both the prototype and exemplar view is that of Conceptual Spaces
[14]. As with prototype models, typicality in Conceptual Spaces is
often represented by the distance to a prototypical point or region in
the space. This prototypical point or region is often taken to be the
centre of the area represented by the concept [21, 26].

The overall picture that is painted of typicality in cognitive accounts
is that typicality is related to centrality within a concept model gen-
erated from concept instances. The current paper explores this issue
and proposes that for certain classes of concepts a different notion of
typicality may be suitable.

2.3 Computational Models
There have been many attempts to model the semantics of spatial
prepositions in grounded settings. The majority of this work, however,
focuses on modelling projective prepositions. We believe the under-
lying semantics of these terms to be simpler than those prepositions
with a functional component and that the problem of interpretation
is more pragmatic in nature. Of the models which tackle the spatial
prepositions that we are currently considering, there are some simple
rule-based models, e.g. [1, 25], as well as trained models, e.g. [2, 11],
whose representations do not provide a clear insight into the semantic
of the terms. We desire a detailed trained model which also provides
semantic insights.

Of particular interest is the work of Mast et al. [22] where a prag-
matic model is developed to tackle problems involving referring ex-
pressions. In order to model the semantics of the terms involved,
following [7, 14, 31], they use the notion of semantic distance in a

feature space, where graded category membership can be determined
by calculating the semantic distance to a prototype in the space. Mast
et al. also focus on projective prepositions (in particular, ‘left of’,
‘right of’, ‘in front of’ and ‘behind’) and as a result, the challenge
of assigning parameters to the model is simpler and appears to be
achieved via the researchers’ intuition.

We extend the approach taken by [22] to model a set of spatial
prepositions whose semantics are not so clear and show that model
parameters can be automatically determined from a small dataset.
By automatically generating model parameters we hope to provide
support for the inclusion of functional features in our model and
also to aid future work regarding the polysemy6 exhibited by spatial
prepositions.

2.4 Existing Features
In order for the conceptual representations we generate to sufficiently
capture the semantics of the given terms we ideally aim to incorporate
any features that may be considered salient. To this end, we give a
brief overview here of features that appear in existing computational
models, outlining geometric and functional relations that are used to
model the above terms.

Unsurprisingly, geometric features have been well covered in the
field. We list the principal and most commonly occurring geometric
features here:

• Contact [25]
• Distance [1, 2, 3, 11, 12, 19, 25]
• Overlap with projection from objects [1, 3, 25]
• Height difference [1, 25]
• Object alignment [1, 2, 11, 12, 19]
• Containment [1, 3, 11, 25]

Various subtle differences may exist between the features in these
models e.g. distance between objects may be calculated between
object bounds or centres of mass. Also, simplifications are often made
for computational reasons e.g. calculations are often made using
bounding boxes of objects.

Initial attempts to understand and model spatial language naturally
focused heavily on geometry. However, as has been recognised in
the past couple of decades, spatial constraints are not enough to fully
characterise spatial prepositions [4, 8, 10, 17]. The use of spatial
prepositions is determined by geometric and functional features, as
evidenced in [4, 8, 10].

This aspect of spatial language, however, has not been much ex-
plored in computational models. The functional notions of support
and location control are often cited as crucial for an understanding
of the prepositions ‘on’ and ‘in’; however there is very little with
regards to how these features should be modelled. Regarding support,
[18] does provide a crude interpretation but it is not clear how this
would be implemented in practice. With regards to location control,
there is some work which focuses on overlap with region of influence
[12, 19, 20, 27] which could be considered as something like a proxy
for location control, but other than this the feature is non-existent in
existing work.

3 Data Collection
In order to investigate typicality measures and compare models, we
extend our previous work [29] and collect data on spatial prepositions

6 A word is said to exhibit polysemy where the word has multiple related
senses. Each of these senses is called a polyseme.
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using 3D virtual environments. To do this we set up a data collection
framework which we describe below. Collected data and details of
the framework can be found in the Leeds research data repository5.

Regarding the names of the objects being discussed we use figure
(also known as: target, trajector, referent) to denote the entity whose
location is important e.g. ‘the bike next to the house’ and ground
(also known as: reference, landmark, relatum) to denote the entity
used as a reference point in order to locate the figure e.g. ‘the bike
next to the house’.

3.1 Environment & Tasks

The data collection framework is built on the Unity3D7 game devel-
opment software, which provides ample functionality for the kind of
tasks we implement. Two tasks were created for our study — a Prepo-
sition Selection Task and a Comparative Task. The former allows for
the collection of categorical data while the latter provides typicality
judgements.

In the Preposition Selection Task participants are shown a figure-
ground pair (highlighted and with text description, see Figure 1) and
asked to select all prepositions in the list which fit the configuration.
Participants may select ‘None of the above’ if they deem none of the
prepositions to be appropriate.

Figure 1. Preposition Selection Task

Often concepts are viewed as antagonistic entities; for example
work in Conceptual Spaces is often concerned with comparison of
categories, e.g. partitioning a feature space [6], and data collection for
exemplar models is often presented as a choice between categories.
We believe however that the vagueness present in spatial language is
so severe that it is not clear that a meaningful model distinguishing
the categories is possible. It is for this reason that in the Preposition
Selection Task participants are asked to select all possible prepositions
rather than a single best-fitting preposition.

In the Comparative Task a description is given with a single prepo-
sition and ground object where the figure is left ambiguous, see Figure
2. Participants are asked to select an object in the scene which best
fits the description. Again, participants can select none if they deem
none of the objects appropriate.

In both tasks, participants are given a first person view of an indoor
scene which they can navigate using the mouse and keyboard. To
allow for easy selection, objects in the scene are indivisible entities
e.g. a table in the scene can be selected but not a particular table leg.

7 https://unity.com/

Figure 2. Comparative Task

3.2 Features
The use of virtual 3D environments allows for the extraction of a
wide range of features that would not be immediately available in
real-world or image-based studies. In this section we describe the
features extracted from scenes and used in our analysis. Exact details
of how each feature is calculated are given in the data archive5.

In our analysis we have represented in some form each relational
feature discussed in Section 2.4, which we believe accounts for the
majority of features given in computational models of spatial preposi-
tions.

3.2.1 Geometric Features

Geometric features (distance between objects, bounding box overlap
etc..) are in general simple to extract. We made use of eight geometric
features:

• shortest distance: the smallest distance between figure and ground
• contact: the proportion of the figure which is touching the ground
• above proportion: the proportion of the figure which is above the

ground
• below proportion: the proportion of the figure which is below the

ground
• containment: the proportion of the bounding box of the figure

which is contained in the bounding box of the ground
• horizontal distance: the horizontal distance between the centre of

mass of each object
• g covers f : the proportion of the figure which is covered by the

ground, either above or below
• f covers g: the proportion of the ground which is covered by the

figure, either above or below

Some simplifications have been made in the calculations of these
features. For example, we measured contact as the proportion of the
vertices of the figure mesh which are under a threshold distance to an
approximation of the ground.

3.2.2 Functional Features

Building on our previous work [29], we explore the relationship
between spatial prepositions and functional features and consider how
to extend existing semantic models to account for them.

There are two particular functional notions that appear over and
over in the literature on spatial language: support and location control.
We take support to express that the ground impedes motion of the
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figure due to gravity, while location control expresses that moving the
ground moves the figure. Rather than attempting to formally define
these notions, as in [15, 18], we quantified these notions via simulation
using Unity3D’s built-in physics engine.

To assess the degree to which a ground gives support to a given fig-
ure, we first measure the distance fallen by the figure when the ground
is removed from the scene. This is then divided by an appropriate
normalising distance which creates a value of 1 if the ground fully
supports the figure and 0 if no support is offered. To measure location
control we apply horizontal forces to the ground and measure how
much the figure is moved.

3.3 Study
The study was conducted online and participants from the university
were recruited via internal mailing lists along with recruitment of
friends and family8. For the study 67 separate scenes were created
in order to capture a variety of tabletop configurations. Each partici-
pant performed first the Preposition Selection Task on 10 randomly
selected scenes and then the Comparative Task on 10 randomly se-
lected scenes, which took participants roughly 15 minutes. Some
scenes were removed towards the end of the study to make sure each
scene was completed at least 3 times for each task. 32 native English
speakers participated in the Preposition Selection Task providing 635
annotations, and 29 participated in the Comparative Task providing
1379 annotations.

As the study was hosted online we first asked participants to show
basic competence. This was assessed by showing participants two
simple scenes with an unambiguous description of an object. Partici-
pants are asked to select the object which best fits the description in
a similar way to the Comparative Task. If the participant makes an
incorrect guess in either scene they are taken back to the start menu.

4 Models
In this section we introduce the models we tested and provide details
of how they were generated. We set up three Simple Relation models
relying on expert intuition of the first author, all the other models were
generated using data from the Preposition Selection Task.

4.1 Standardising Features
Firstly, it is necessary to standardise the features such that the cal-
culated feature weights are meaningful and can be compared. As
in [26], we achieve this using the standard statistical method of z-
transformation — where a calculated feature value, x, is converted to
a standardised form, z, as follows:

z =
x− x̄

σ
(1)

where x̄ is the mean of the given feature and σ is the standard
deviation.

4.2 Distance & Semantic Similarity
The models that are trained on the data rely on a notion of semantic
distance and, following [7, 14, 22, 31], typicality in our proposed
model is calculated by considering the semantic distance to a proto-
type.

8 University of Leeds Ethics Approval Code: 271016/IM/216. Participants
were recruited without incentive.

Following much of the existing literature, e.g. [23], semantic simi-
larity between two points x and y in a feature space is measured as a
decaying function of the distance, d(x,y):

s(x,y) = e−c·d(x,y) (2)

where c is the specificity of the category which denotes how sensi-
tive the concept is to changing values. Note that we are not currently
concerned with this value and set c equal to 1 for the remainder. We
take the distance, d(x,y), to be the weighted Euclidean metric:

d(x,y) =
√

w1(x1− y1)2 + · · ·+wn(xn− yn)2 (3)

where wi is the weight for the ith feature and xi,yi are values of the
ith feature for points x and y.

With the exception of the Exemplar model, each of the following
models are then defined by a prototype and set of feature weights for
each preposition:

1. P = (x1, ...,xn) the prototype in the feature space
2. W = (w1, ...,wn) the weights assigned to each feature

where typicality of a configuration, x, is then calculated as the
semantic similarity to the prototype using Equation 2:

T (x) = s(x,P) = e−d(x,P) (4)

4.3 Simple Relation Models
For the Simple Relation models we replicate rule-based models given
in the literature and have chosen salient features and their typical
values for each preposition. Typicality is then calculated using the
above formulae where the weight is 1 for each salient feature and 0
for non-salient features. We set up a simple geometric model and an
intuitive best guess model as a benchmark and for comparison.

The Simple Model is based on what can be found in most computa-
tional models of spatial prepositions: ‘in’ and ‘inside’ are measured
by containment; ‘on’ and ‘on top of’ are measured using contact and
above proportion; ‘above’ and ‘over’ are measured using above
proportion and horizontal distance; ‘below’ and ‘under’ are mea-
sured using below proportion and horizontal distance; ‘against’ is
measured using contact and horizontal distance.

The Best Guess Model is a copy of the Simple Model except we
add in functional features for ‘in’, ‘on’ and ‘against’ — location
control for ‘in’ and ‘against’ and support for ‘on’ — and for ‘over’ we
change horizontal distance to f covers g and for ‘under’ we change
horizontal distance to g covers f . ‘inside’, ‘on top of’, ‘above’ and
‘below’ are the same as in the Simple Model.

Finally, as a baseline we created a Proximity Model which judges
typicality based solely on shortest distance — the closer two ob-
jects are, the higher the measure of typicality. We include this model
based on our previous study [29] which indicated that judgements
based solely on proximity may be relatively successful in interpreting
referring expressions for some prepositions.

4.4 Our Prototype Model
Our model is based on a simple idea — that, rather than being central
members of a category, prototypes should be learnt by extrapolation
based on confidence in categorisation. It is hoped that this accounts
for the possibility that many concept instances in the data will not
be an ideal prototype. For example, there may be many instances for
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‘in’ where the degree of containment is not 100% and in fact there
may be no such instance of ‘in’ with 100% containment. However,
if containment is a salient feature for ‘in’ and ‘in’ implies higher
containment we ought to see that the higher the degree of containment,
the more likely the instance is to be labelled ‘in’.

Firstly, we generate a ‘Selection Ratio’ for each configuration
and preposition based on how often participants would label the
configuration with the given preposition in the Preposition Selection
Task.

In order to find the prototypical value of a given feature for a
preposition we plot the feature against the selection ratio, then using
simple off-the-shelf Linear Regression modelling [24] we predict
the feature value when the selection ratio is 1. Figure 3 shows the
linear regression plot for some features in the case of ‘on’. The blue
cross denotes the prototype generated by the Conceptual Space model
and the orange asterisk denotes the mean value of exemplars in the
Exemplar model, which are described below.
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Figure 3. Finding prototypical feature values for ‘on’

On inspection of the plots it is clear that the simple linear regression
model is not well-suited to represent the data. This is in part because
the individual features alone cannot sufficiently capture the semantics
of the terms. For example, in the case of the feature above proportion
for the preposition ‘on’, there are clearly many possible cases where
above proportion is high but it is not an admissible instance of ‘on’
and vice versa (this can be seen by the line of instances along both
axes in Figure 3). As a result, there is significant deviation from the
linear regression. The linear regression, however, provides a simple
and effective method for generating feature prototypes — we can see
in Figure 3 that all salient features appear to be assigned appropriate
prototypical values.

In order to find the salience of each feature we plot the selection
ratio against the feature values. Using multiple linear regression we
obtain coefficients for each feature which indicate how the selection
ratio varies with changes in the feature. We can therefore assign
feature weights by taking the absolute value of the coefficient given
by this linear regression model.

4.5 Conceptual Space Model
In order to replicate the Conceptual Space approach, we take the set of
all possible instances of a given preposition (all configurations labelled
at least once with the preposition) to provide an approximation of
the conceptual region. To calculate the prototype in this space we
calculate the geometric centre of all these points. We assign feature
weights using the weights calculated for the Prototype model.

4.6 Exemplar Model
For the Exemplar model we first have to decide which datapoints
can act as exemplars for a given preposition. Rather than considering
all possible instances, we consider only instances that were always
labelled with the preposition, these instances act as typical exemplars.
In the absence of such instances, we take the next best instances as
typical exemplars.

Typicality of a given point, T (x), is then calculated by considering
the similarity of the point to the given exemplars [23, 35]:

T (x) = ∑
e∈E

s(e,x) (5)

where E is the set of exemplars. This is still reliant on having
appropriate feature weights and for the moment we assign feature
weights using the weights calculated for the Prototype model.

5 Results
Firstly, to assess whether it is sensible to try and capture a generally
agreed notion of typicality for spatial prepositions we calculate and
compare annotator agreement in both tasks.

5.1 Annotator Agreement
In order to assess annotator agreement we calculate Cohen’s Kappa
for each pair of annotators in each task, Table 1 provides a summary.
Cohen’s kappa for a pair of annotators is calculated as po−pe

1−pe
where

po is the observed agreement and pe is the expected agreement. For
the Comparative Task pe is approximated, see the data archive5 for
details.

Task Shared
Annotations

Average
Expected

Agreement

Average
Observed

Agreement

Average
Cohen’s
Kappa

Preposition
Selection 11880 0.757 0.878 0.684

Comparative 1325 0.566 0.766 0.717

Table 1. Summary of annotator agreements

The observed agreement is higher for the Preposition Selection
Task, however chance agreement is higher in this task due to the
distribution of responses — for a given preposition, participants were
very likely to not select the preposition for a given configuration in
our scenes. Expected agreement in the Preposition Selection Task is
therefore higher than in the Comparative Task and when we account
for this using Cohen’s Kappa we get higher agreement for the Com-
parative Task. We therefore conclude that it is reasonable to attempt
to construct a model which represents a generally agreed notion of
typicality for spatial prepositions.
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5.2 Evaluation Set Up

While the Preposition Selection Task provides categorical data from
each participant, the Comparative Task provides qualitative judge-
ments regarding which configurations of objects better fit a description.
We suppose that the configuration (figure-ground pair) which best fits
a given description should be more typical, for the given preposition,
than other potential configurations in the scene. We therefore use
these judgements to test models of typicality — a model agrees with a
participant if the model assigns a higher typicality score to the config-
uration selected by the participant than other possible configurations.

As there is some disagreement between annotators (see Table 1) it
is not possible to make a model which agrees perfectly with partici-
pants. We therefore create a metric which represents agreement with
participants in general.

Taking the aggregate of participant judgements for a particular
preposition-ground pair, we can order possible figures in the scene by
how often they were chosen. This creates a ranking of configurations
within a scene from most to least typical. We turn the collection of
obtained rankings into inequalities, or constraints, which the models
should satisfy. This provides a metric for testing the models.

As an example, consider an instance from the Comparative Task
— a ground, g, and preposition, p, are given and participants select a
figure. Suppose that there are three possible figures to select, f1, f2
and f3, which are selected x1, x2 and x3 times respectively. Let M
be a model we are testing and Mp( f ,g) denote the typicality, for
preposition p, assigned to the configuration ( f ,g) by the model M.

Suppose that x1 > x2 > x3, then we want Mp( f1,g) >Mp( f2,g)
and Mp( f2,g)>Mp( f3,g). Let’s say that x1 = 10, x2 = 1, x3 = 0. It
is more important that the model satisfies the first constraint. For this
reason we assign weights to the constraints which account for their
importance.

A constraint is more important if there is clearer evidence for it
— if more people have done that specific instance and if the number
of participants selecting one figure over another is larger. We assign
weights to the constraints by taking the difference in the number of
selections e.g. in the first constraint above, we would assign a weight
of x1− x2.

In this way we generate a set of weighted constraints to be satisfied.
The score given to the models is then equal to the sum of weights of
all satisfied constraints divided by the total weight of all constraints.
A higher score then implies better agreement with participants in
general.

In the following we separate the scores given for each preposition
in order to assess differences across the prepositions. We also give an
average score across prepositions which is simply the sum of scores
for each preposition divided by the number of prepositions.

5.3 Initial Model Testing

As a preliminary insight, we generate models as described above using
all the data from the Preposition Selection Task (∼140 configurations)
and then evaluate the models as described above using all data from
the Comparative Task. As the tasks use the same scenes, some of
the same configurations will be used for both learning and testing
and we therefore cannot be confident that the models are not over-
fitted. Nonetheless it is interesting to consider how well the models
translate categorical data into typicality rankings. See Figure 4 for
initial scores.

Regarding the Simple Relation models, the Best Guess and Simple
models are quite similar, with the Best Guess model performing
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Figure 4. Scores using all scenes for both training and testing

slightly better overall — adding functional features has significantly
improved results for ‘on’ but has not changed ‘in’ or ‘against’. In the
case of ‘in’ this may be the case because, though location control
does influence the usage of ‘in’, it is difficult to generate situations
where an object is the most ‘in’ another object without exhibiting any
containment.

Though most of the prepositions usually indicate proximity, we can
see that proximity alone does not provide a reasonable measure of
typicality for any of the prepositions.

Of the data driven models, the Exemplar model and Conceptual
Space model have similar results overall with our model appearing to
perform significantly better. We however need to test how robust the
models are to changes in training data, as there is a possibility these
models are over-fitted.

5.4 Restricting the Training Set
In order to test the ability of the models to generalise to unseen
configurations of objects and compare robustness of the models we
created train-test scenes using k-fold cross-validation with k = 2. We
then generate the models based on data from the training scenes
given in the Preposition Selection Task and test the models using
constraints generated from the testing scenes in the Comparative Task.
We repeated this process 100 times and averaged the results, shown
in Figure 5. The results with k = 3 are similar.

Firstly, initial results show that our model is robust to reducing the
training data. From ∼70 training configurations we can generate a
model which on average outperforms all other models. Moreover, our
model still performs very well when generalising to unseen configu-
rations (overall score: 0.863) compared to the score when all data is
given (overall score: 0.884).

This seems promising — that from roughly 70 tested configurations
in the Preposition Selection Task we can generate a model which
outperforms other cognitive models.

To assess whether the improvement shown by our model over others
is significant, we assume a null hypothesis that both the models are
equally likely to perform better than the other (with respect to the
overall score) for a given random fold, as described above. Over 200
repetitions, for any given model in a minimum of 155 repetitions our
Prototype model performs better. Assuming the null hypothesis, the
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Figure 5. Scores with 100 repetitions of 2-fold cross validation

probability of one model outperforming the other on at least 155 of
the repetitions is minuscule (P(≥ 155) = ∑

200
k≥155

200Ck0.5200 = 1.2×
10−15). We may therefore conclude that our model does genuinely
outperform the others.

5.5 Functional Features

As previously discussed, we have included features representing the
functional notions of support and location control in the models. As
these are novel and unexplored in computational models of spatial
prepositions, in this section we briefly analyse their usefulness in the
semantic model.

We will do this in two ways, firstly by considering the weights
and values given to features by our model when trained on all avail-
able data. Secondly, by comparing performance of our model when
functional features are removed.

5.5.1 Model Parameters

Firstly, support correlates strongly with ‘on’ (weight = 0.32) while
location control correlates strongly with ‘in’ (weight = 0.06). Though
not as strong as the case with support and ‘on’, location control is
the second highest weighted feature for ‘in’. This indicates that the
way we have quantified these notions is appropriate.

In general, geometric features are weighted higher and have a more
extreme value for the geometric counterparts. This can be seen with
‘on’ and ‘on top of’ where ‘on top of’ has a higher weight and value for
above proportion. Similarly for containment with ‘in’ and ‘inside’.
Also, comparing ‘above’ with ‘over’ and ‘below’ with ‘under’, above
proportion and below proportion are both given higher weights for
the former while f covers g and g covers f are given higher weights
for the latter.

It is not the case, however, that the functional features are more
exaggerated for the more functional prepositions. In fact, it is the
opposite — support is higher for ‘on top of’ than ‘on’ and location
control is higher for ‘inside’ than ‘in’. This is unsurprising, however,
as it is very often the case that being geometrically ‘on’ or ‘in’ implies
being functionally ‘on’ or ‘in’ e.g. containment often implies location
control.

5.5.2 Removing Features

In order to assess how the inclusion of these functional features affects
model performance, we compared performance of our model with
no features removed against our model with support removed and
with location control removed. Similarly to how we compared each
model earlier, we ran 100 repetitions of k-fold cross-validation with
k = 2. The results are shown in Figure 6.
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Figure 6. Scores with 100 repetitions of 2-fold cross validation, with
changing feature set

As we can see in most cases our model performs better with the
functional features included. In 169 of the tests the score is higher
for the model with no features removed compared to when location
control is removed, likewise for support this number is 175. Again,
this is significant in both cases (P(≥ 169) = ∑

200
k≥169

200Ck0.5200 =

1.7× 10−24). Our model does therefore perform better with these
features included. In particular, note that ‘in’ is significantly affected
when removing location control and ‘on’ is affected when removing
support.

6 Discussion
We believe that the improvement shown by our model over the Con-
ceptual Space and Exemplar approaches is mostly due to these models
being reliant on having very good exemplars in the data; which is not
always practical, in particular when modelling abstract concepts with
idealised meanings.

Consider the spatial preposition ‘in’. Suppose that we do not know
what ‘in’ means but have some data representing instances of ‘in’ and
would like to generate a typicality measure for ‘in’. ‘in’ is generally
understood to have an ideal meaning represented by the notion of
containment [17], where the more containment being expressed in an
instance the more typical it is of ‘in’. However, as can be seen in our
data, full containment is not always present for typical instances of ‘in’.
Therefore, the most typical instance in the Exemplar and Conceptual
Space models is likely to display less than full containment.

As discussed in [28], many features can influence the usage of
spatial prepositions and should be accounted for in the computational
model. For example, ‘over’ is often characterised by the figure being
located higher than the ground and within some region of influence.
However, as discussed in [32], ‘over’ may also indicate contact be-
tween figure and ground. For this reason we wanted to explore models
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which go beyond expressing spatial prepositions with one or two
hand-picked features. Moreover, in doing so we show the potential
applicability of our method to concepts which do not have small set
of known salient features.

We have shown that it is possible to generate a model of typicality
which (1) includes limited prior knowledge of the semantics of the
concepts and (2) includes a greater range of features than ‘Simple
Relation’ models and outperforms them in doing so.

7 Future Work
Using the semantic model and data collection environment that we
have developed there are a number of further issues related to spatial
language use that we are interested in exploring. Firstly, we would like
to explore how polysemes can be automatically identified in grounded
settings and how polysemy can be appropriately accounted for in our
model.

Secondly, we have been considering typicality judgements related
to spatial language where the ground object is fixed and relational
features are used to determine how well a figure object fits the given
preposition-ground pair. However, in many pragmatic strategies for
REG, e.g. [9], it is considered important to be able to assess how
appropriate or acceptable a preposition is for a given figure-ground
pair. Though related, this is a different challenge and provides extra
information on the possible utterances that a speaker could make. Un-
like what we have considered so far, this is often reliant on particular
properties of ground objects (e.g. for ‘in’ whether or not the ground is
a type of container [29]). This issue is also related to polysemy and is
something we intend to explore further.

Finally, we would like to explore pragmatic issues related to spatial
language use and how our model can provide semantic input for
pragmatic strategies. To explore the pragmatic issues we intend to
collect data using a similar environment to the current work where
participants will have to communicate with a prototype dialogue
system in order to complete a simple task, e.g. collecting objects in a
scene.
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A Conceptual Spaces Approach’, Journal of Philosophical Logic, 42(1),
137–160, (2013).

[7] Henrietta Eyre and Jonathan Lawry, ‘Language games with vague cate-
gories and negations’, Adaptive Behavior, 22(5), 289–303, (2014).

[8] Michele I Feist and Derdre Gentner, ‘On plates, bowls, and dishes:
Factors in the use of English IN and ON’, in Proc 20th annual meeting
of the cognitive science society, pp. 345–349, (1998).

[9] M. C. Frank and N. D. Goodman, ‘Predicting Pragmatic Reasoning in
Language Games’, Science, 336(6084), 998–998, (2012).

[10] Simon Garrod, Gillian Ferrier, and Siobhan Campbell, ‘In and on: in-
vestigating the functional geometry of spatial prepositions’, Cognition,
72(2), 167–189, (1999).

[11] Dave Golland, Percy Liang, and Dan Klein, ‘A Game-Theoretic Ap-
proach to Generating Spatial Descriptions’, in Proc EMNLP, p. 10,
(2010).

[12] Peter Gorniak and Deb Roy, ‘Grounded semantic composition for visual
scenes’, Journal of Artificial Intelligence Research, 21, 429–470, (2004).

[13] H. Paul Grice, ‘Logic and conversation’, in Syntax and Semantics, Vol.
3, Speech Acts, 41–58, Academic Press, New York, (1975).

[14] Peter Gärdenfors, ‘Conceptual spaces as a framework for knowledge
representation’, Mind and Matter, 2(2), 9–27, (2004).

[15] Maria M. Hedblom, Oliver Kutz, Till Mossakowski, and Fabian Neuhaus,
‘Between Contact and Support: Introducing a Logic for Image Schemas
and Directed Movement’, in Proc IAAI, volume 10640, pp. 256–268.
Springer, (2017).

[16] Annette Herskovits, ‘Semantics and pragmatics of locative expressions’,
Cognitive Science, 9(3), 341–378, (1985).

[17] Annette Herskovits, Language and spatial cognition, Cambridge Uni-
versity Press, 1987.

[18] Jugal K Kalita and Norman I Badler, ‘Interpreting prepositions physi-
cally’, in AAAI, pp. 105–110, (1991).

[19] John D. Kelleher and Fintan J. Costello, ‘Applying computational mod-
els of spatial prepositions to visually situated dialog’, Computational
Linguistics, 35(2), 271–306, (2009).

[20] Driss Kettani and Bernard Moulin, ‘A Spatial Model Based on the
Notions of Spatial Conceptual Map and of Object’s Influence Areas’, in
Proc COSIT, pp. 401–416. Springer, (1999).

[21] Antonio Lieto, Antonio Chella, and Marcello Frixione, ‘Conceptual
Spaces for Cognitive Architectures: A lingua franca for different levels
of representation’, Biologically Inspired Cognitive Architectures, 19,
1–9, (2017).

[22] Vivien Mast, Zoe Falomir, and Diedrich Wolter, ‘Probabilistic refer-
ence and grounding with PRAGR for dialogues with robots’, Journal
of Experimental & Theoretical Artificial Intelligence, 28(5), 889–911,
(2016).

[23] Robert M Nosofsky, ‘Exemplar-based accounts of relations between
classification, recognition, and typicality.’, Journal of Experimental
Psychology: learning, memory, and cognition, 14(4), 700, (1988).
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