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Abstract. Today’s AI landscape is permeated by plentiful data and
dominated by powerful data-centric methods with the potential to
impact a wide range of human sectors. Yet, in some settings this po-
tential is hindered by these data-centric AI methods being mostly
opaque. Considerable efforts are currently being devoted to defin-
ing methods for explaining black-box techniques in some settings,
while the use of transparent methods is being advocated in others,
especially when high-stake decisions are involved, as in healthcare
and the practice of law. In this paper we advocate a novel transpar-
ent paradigm of Data-Empowered Argumentation (DEAr in short)
for dialectically explainable predictions. DEAr relies upon the ex-
traction of argumentation debates from data, so that the dialectical
outcomes of these debates amount to predictions (e.g. classifications)
that can be explained dialectically. The argumentation debates con-
sist of (data) arguments which may not be linguistic in general but
may nonetheless be deemed to be ‘arguments’ in that they are di-
alectically related, for instance by disagreeing on data labels. We il-
lustrate and experiment with the DEAr paradigm in three settings,
making use, respectively, of categorical data, (annotated) images and
text. We show empirically that DEAr is competitive with another
transparent model, namely decision trees (DTs), while also naturally
providing a form of dialectical explanations.

1 INTRODUCTION

Data-centric AI is receiving a great deal of attention nowadays,
thanks to its ability to produce high-performing predictive models
on real-world data. However, data-centric methods and models are
often opaque in nature, making their decisions hard to understand.
Moreover, they may sometimes leverage on biases in the data to give
fatal or unfair decisions, raising inevitably some ethical dilemma es-
pecially in critical domains such as healthcare and the practise of law.
Overall, explanainability of data-centric methods has been identified
as a crucial challenge in AI [19].

Considerable efforts are currently being devoted to defining surro-
gate (mostly linear) models for explaining black-box models, aiming
to overcome their lack of transparency [19, 1, 12], with some of the
most popular being model-agnostic [37, 36, 30]. Alternatively, ex-
isting transparent models can be coupled with black-box models to
give hybrid (high-performing and explainable) systems. For exam-
ple, Case-Based Reasoning (CBR) and Artificial Neural Networks
(ANNs) have recently been combined to give a twin-system provid-
ing post-hoc explanations by-example, using the former to explain
the predictions of the latter [23]. The most widespread hybrid sys-
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tems though use Decision Trees (DTs) for explaining other (black-
box) methods (e.g. for prediction from tabular data [9, 27, 6, 22]).

At the same time, there is an open discussion on whether making
black-box methods explainable can establish a trustworthy relation-
ship between users and systems [38]. The use of transparent reason-
ing methods is being advocated in alternative to surrogates and twin-
ning models as is explanation by design, whereby models concur-
rently produce predictions and naturally induced explanations such
as DTs and k-nearest neighbours (kNNs).

In AI, as in Psychology and Philosophy, there is no agreed defi-
nition for the notion of “explanation” [40]. However, within the so-
cial science literature on explanation [33], conversation-based mod-
els have been advocated and proved to be very useful models for
explanation in AI, including some where statements in explanations
are argumentative [4]. In this paper we propose the Data-Empowered
Argumentation (DEAr) paradigm as a transparent method for pre-
diction from which a form of dialectical explanations can be drawn
naturally.

DEAr relies upon the fundamental tenet that argumentation de-
bates extracted from data can be the basis for predictions from the
data (as well as explanations thereof). The predictions result from
analysing the argumentation debates by means of semantics, as con-
ventional in the field of computational argumentation in AI (for a
recent overview of this field see [5]). The explanations are fragments
of the argumentation debates tailored to the predictions, including
arguments for and against them, in a manner that is leaning towards
accepting the prediction. In this paper, we choose as argumentation
debates abstract argumentation frameworks [13]. In general, these
provide abstractions of reasoning problems of various kinds in terms
of directed graphs whose nodes are interpreted as arguments and
whose edges represent a binary relation of “attack” between argu-
ments. Reasoning then amounts to identifying attack-free sets of
arguments that can self-defend against attacks, e.g. by forming the
grounded extension [13].

In DEAr, argumentation debates in the form of abstract argumen-
tation frameworks are mined from data, generalising the approach
advocated in [10, 11] as a form of case-based reasoning in legal set-
tings. In this paper we evaluate empirically the usefulness of DEAr,
in comparison with DTs and for some experiments with kNNs, in
various settings and applications to support the use of DEAr as a
solution (at least in some settings) to the explainable AI problem.

The paper is organised as follows. Section 2 gives essential
background on abstract argumentation. Section 3 defines the DEAr
paradigm and Section 4 gives the pipeline for deploying DEAr ex-
perimentally, paving the way towards the experiments in three data
settings: categorical data (Section 5), (annotated) images (Section 6)
and text (Section 7). These three sections have a similar structure,
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each of them providing a description of datasets used, the choices
of DEAr’s parameters and the methods deployed to obtain argumen-
tation debates in DEAr followed by an empirical evaluation and a
discussion of the output results, in comparison, amongst others, with
DTs as our benchmark alternative transparent model. Section 8 com-
pares DEAr with the closest related work and Section 9 concludes
and considers future directions.

2 BACKGROUND
An abstract argumentation framework [13] is a pair (Args,;),
where Args is a set (of arguments) and ; is a binary relation on
Args (where, for a, b ∈ Args , if a ; b, then we say that a attacks
b and that a is an attacker of b). For a set of arguments E ⊆ Args
and an argument a ∈ Args , E defends a if for all b ; a there
exists c ∈ E such that c ; b. Then, the grounded extension of
(Args,;) can be constructed as G =

⋃
i>0Gi, where G0 is the set

of all unattacked arguments, and ∀i > 0,Gi+1 is the set of arguments
that Gi defends. For any (Args,;), the grounded extension G al-
ways exists and is unique and, if (Args,;) is well-founded [13], ex-
tensions under other semantics (e.g. under the stable semantics [13])
are equal to G.

Explanations for abstract argumentation outcomes can be defined
in the form of dispute trees [10, 11], where a dispute tree for a ∈
Args is a tree T such that:
1. every node of T is of the form [L : x], with L ∈ {P,O}, x ∈

Args: the node is labelled by argument x and assigned the status
of either proponent (P) or opponent (O);

2. the root of T is a P node labelled by a;
3. for every P node n, labelled by some b ∈ Args , and for every

c ∈ Args such that c ; b, there exists a child of n, which is an O
node labelled by c;

4. for every O node n, labelled by some b ∈ Args , there exists at
most one child of n which is a P node labelled by some c ∈ Args
such that c ; b;

5. there are no other nodes in T except those given by 1–4.
A dispute tree T is an admissible dispute tree iff (i) every O node

in T has a child, and (ii) no argument in T labels both P and O
nodes.

A dispute tree T is a maximal dispute tree iff for all opponent
nodes [O : x] which are leaves in T there is no y ∈ Args such that
y ; x.

3 DATA-EMPOWERED ARGUMENTATION
Formally, consider a training dataset D consisting of a finite (but
possibly large) set of datapoints, each labelled with an outcome from
a set O. In this paper, for simplicity, we assume that O = {δ, δ},
namely datapoints can be labelled by one of two (distinct) outcomes,
and the prediction task is binary classification. Specifically, the pre-
diction task amounts to determining which amongst δ or δ should be
the legitimate outcome for an unlabelled datapoint dpU .

DEAr relies upon the assumption that one of the outcomes is iden-
tified as the default outcome, which is intuitively the outcome drawn
in the absence of any useful information. In the remainder of the pa-
per we will assume without loss of generality that δ indicates the
default outcome inO. We will see that the choice of default outcome
δ is context-dependent and heuristic: this choice amounts to instanti-
ating a core parameter in the deployment of DEAr.

DEAr makes the further assumption that D ∪ {dpU} is equipped
with a partial order < (namely a reflexive, antisymmetric, and tran-

sitive relation), so that, for datapoints dpX , dpY ∈ D ∪ {dpU},
dpX < dpY means intuitively that dpX is more informative than
or as informative as dpY ; we will use dpX � dpY to indicate that
dpX < dpY and dpX 6= dpY , namely that dpX is strictly more
informative than dpY .

Consider, for illustration, the specific setting where (labelled and
unlabelled) datapoints are characterised by binary features from a
given set F. Then, < may amount to the ⊇ relation between sets.
With this choice of <, dpX � dpY if the set of features of dpX is
a strict superset of the set of features of dpY . In general, datapoints
may be formulated in other terms: in the remainder of this section
we will assume that (labelled and unlabelled) datapoints are given in
terms of generic characterisations, and that a labelled datapoint is of
the form (C, o) for C the characterisation and o ∈ O.

In this paper, argumentation debates amount to abstract argumen-
tation frameworks mined from datasets and unlabelled datapoints as
given above. These argumentation debates are deterministically ob-
tained from the choices detailed earlier as well as two additional
choices, one for each of two additional parameters that need to be
instantiated when DEAr is deployed. The first choice amounts to
a synthetic datapoint associated with the default outcome (referred
to as the default argument), whose characterisation expresses condi-
tions under which the default outcome can be argued for. A possible
choice for this datapoint is the least element of <, i.e. the least infor-
mative possible datapoint. The second choice amounts to a notion of
irrelevance� between unlabelled datapoints and labelled datapoints:
for dpX ∈ D, dpU � dpX stands for “dpX is irrelevant to dpU”.
As an illustration, if datapoints are characterised by binary features,
a possible choice for � is 6⊇, namely dpU � dpX if dpX has fea-
tures that dpU lacks. Whichever the definition of �, we will assume
that it satisfies the property that C � (C, o) never holds, for C any
characterisation (thus, � satisfies a form of anti-reflexivity).

Intuitively, the rationale behind these assumptions is as follows.
Predictions result from debates about the “dialectical goodness” of
the default argument. Within debates, more informative arguments
(i.e. labelled datapoints) can attack less informative ones, but not vice
versa. Moreover, the unlabelled datapoints, seen as arguments, attack
irrelevant labelled datapoints/arguments.

Formally, given choices for all parameters, the argumentation de-
bate mined from data for the purposes of binary classification is as
follows:

Definition 3.1. Let D be a finite dataset, consisting of labelled dat-
apoints dpi, each of the form (Ci, oi) with Ci a characterisation of
the datapoint and oi ∈ O, O = {δ, δ} with δ the default outcome.
Let dpU be an unlabelled datapoint, of the form CU with CU a char-
acterisation. Finally, let < be a partial order over D ∪ {dpU} and �
a notion of irrelevance. Then, an argumentation debate mined from
D ∪ {dpU} is an abstract argumentation framework (Args,;) with
• Args = D ∪ {(Cδ, δ)} ∪ {dpU}, for Cδ a characterisation of the

default argument (Cδ, δ);
• for (X, oX), (Y, oY ) ∈ D ∪ {(Cδ, δ)}, it holds that (X, oX) ;

(Y, oY ) iff
1. oX 6= oY , and
2. either X�Y and @(Z, oX) ∈ D∪{(Cδ, δ)} with X�Z�Y
3. or X = Y ;

• for (Y, oY ) ∈ D ∪ {(Cδ, δ)}, it holds that dpU ; (Y, oY ) iff
dpU � (Y, oY ).

In the second bullet, condition 1 amounts to (X, oX) and (Y, oY )
having different outcomes, case 2 amounts to (X, oX) being strictly
more informative than (Y, oY ) and imposes a form of informational
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minimality on the attacking argument, whereas case 3 deals with
noise (datapoints with the same characterisation but conflicting out-
comes attack one another). In the third bullet, the unlabelled data-
point/argument attacks any datapoints/arguments that are irrelevant
to it. The mined argumentation debate can be seen as including a
“model” of the dataset, identifying conflicts between datapoints that
need to be resolved every time a prediction is to be made.

Note that if D is coherent, namely @dpX , dpY ∈ D such that
dpX = (C, oX) and dpY = (C, oY ) for oX 6= oY , then case 3 in
the definition of attack never applies.

The following properties hold of mined argumentation debates:

Theorem 3.1. Let (Args,;) be an argumentation debate mined
from D ∪ {dpU}, and let G be its grounded extension.
i) G is non-empty and contains dpU .

ii) If D is coherent then (Args,;) is acyclic.
iii) If D is coherent then either (Cδ, δ) belongs to G or there exists

some dp such that dp attacks (Cδ, δ) and dp belongs to G.

DEAr relies upon membership of the default argument in the
grounded extension of the argumentation debate mined from a
dataset/unlabelled datapoint combination to determine a prediction
for the unlabelled datapoint:

Definition 3.2. Let (Args,;) be an argumentation debate mined
fromD∪{dpU}, and letG be the grounded extension of (Args,;).
The DEAr prediction for dpU is δ if (Cδ, δ) ∈ G, and δ otherwise.

As standard for abstract argumentation, the argumentation debate
mined from a dataset and an unlabelled datapoint can be visualised
as a graph (the arguments being the nodes, and the attack relation
the edges of the graph). Then DEAr predictions can be naturally ex-
plained in terms of sub-graphs of the argumentation debate including
the default argument and all its descendants. As a refinement, dis-
putes between fictional proponent and opponent players, in the form
of admissible dispute trees or, if none exists, maximal dispute trees,
can be extracted from these sub-graphs to explain the predictions,
generalising the approach of [10] to the setting of DEAr.

4 THE DEAr PIPELINE
In the remainder of the paper we will present a number of experi-
ments with DEAr. These require specific choices of parameters for a
variety of datasets and characterisations, within the pipeline depicted
in Figure 1.

The characterisation extractor may be designed to obtain a coher-
ent dataset or not. In either case, it may identify and/or select features
in datapoints. These features may take continuous values, and the set
of features may be very large in general. All deployments of DEAr
in this paper make use of a relatively small set F of binary features
(these are the salient features for classification) and of a variety of
methods for obtaining these features from larger sets FL of (possibly
continuous) features, for structured and unstructured data.

In the remainder of this section we give a toy illustration of the
DEAr pipeline, for specific choices of parameters, corresponding to
the choices in the AA-CBR paradigm [10, 11].

Let examples in L be characterised by 5 attributes a1, . . . , a5
and an outcome in O = {o1, o2}. Suppose each attribute may
take one of 4 distinct, discrete values, say v1ai ,. . . ,v

4
ai for ai,

i = 1, . . . , 5. Then FL = {a1 = v1a1 ,. . . ,a5 = v4a5} consists
of 20 features (binary attribute-value pairs). Suppose that we se-
lect 4 features, namely F consists of 4 elements. Concretely, say

Figure 1: The DEAr pipeline. Each experiment with DEAr requires
instantiating the parameters ((Cδ, δ), <, �), as well as engineering
suitable characterisations by a ‘characterisation extractor’ that ob-
tains D from a possibly much larger dataset L and dpU from a pos-
sibly larger unlabelled input ldpU for which prediction is sought.
The ‘argumentation debate miner’ implements Definition 3.1, and the
‘predictor’ implements Definition 3.2. The ‘explainer’ returns dialec-
tical explanations in the form of disputes between a proponent and
an opponent (the disputes are admissible or maximal dispute trees).

F = {a1 = v1a1 ,a2 = v4a2 ,a3 = v2a3 ,a4 = v4a4} = {a, b, c, d}. If
L={({a, a2=v2a2 , a5=v

1
a5}, o2),({a, a3=v

3
a3}, o2), ({a, b}, o1)}

then D = {({a}, o2), ({a, b}, o1)} is the result of the ‘characteri-
sation extractor’2. Also, if ldpU is {a, d}, then the ‘characterisation
extractor’ would return dpU = ldpU .

Consider the following choice of parameters:
• <=⊇ (and thus �=⊃);
• (Cδ, δ) = ({}, δ), for δ=o1 (and δ = o2);
• �= 6<=6⊇.

Then the ‘argumentation debate miner’ gives (Args,;)
with ;= {(({a}, o2), ({}, o1)), (({a, b}, o1), ({a}, o2)), (dpU =
{a, d}, ({a, b}, o1))}. Since G = {({a}, o2), dpU = {a, d}} and
({}, o1) 6∈ G, the ‘predictor’ returns o2 (i.e. the non-default) as the
prediction for dpU .

A possible explanation for the prediction o2 for dpU is given by
the following (maximal) dispute tree:

[P : ({}, o1)]

[O : ({a}, o2)]

[P : ({a, b}, o1)]

[O : dpU = {a, d}]

Presented dialectically, this dispute between proponent and
opponent unfolds with the following arguments:

P : ‘o1’;
O: ({a}, o2) attacks the outcome ‘o1’;
P : ({a, b}, o1) attacks the previous argument;
O: b is irrelevant (as absent from dpU ).

2 Note that if L had also included e.g. ({a, a5 = v1a5}, o1), then re-
stricting attention to F would have resulted in an incoherent D =
{({a}, o1), ({a}, o2), ({a, b}, o1)} as output of the ‘characterisation ex-
tractor’.
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Basically, P starts by arguing for o1 saying that, in the absence
of any information, the outcome should be o1. O then argues against
this outcome by putting forward an argument with o2. P then puts
forward a more informative example that gives outcome o1 with
some features that are in dpU (i.e. a). However, the unlabelled dat-
apoint attacks this argument, thus this argument is discarded from
having an influence on the prediction. Hence, the prediction is o2.

Here, the explanation for the prediction being o2 relies upon the
opponent using dpU to defeat the proponent who is trying to defend
the default argument. The ‘explainer’ could produce this dispute as a
dialectical explanation, in any of the formats above, but it could also
use the dispute to unearth counterfactual explanations such as “If
dpU contained b instead of d, then the outcome would have been o1”.
Indeed, consider now dp′U = {a, b} (thus dp′U is dpU with b instead
of d), then ({}, o1) ∈ G where G = {({}, o1), ({a, b}, o1), dp′U =
{a, b}} and the outcome for dp′U is o1. In this case, the dialectical
explanation may be drawn from the admissible dispute tree:

[P : ({}, o1)]

[O : ({a}, o2)]

[P : ({a, b}, o1)]

We leave the fleshing out of the ’explainer’ including in partic-
ular the definition of counterfactual explanation in the general case
as future work, and focus instead in the remainder of the paper on
predictive performances of DEAr in several empirical settings.

5 DEAr FOR CATEGORICAL DATA
The first empirical evaluation3 uses the pipeline in Figure 1 to
provide predictions (and explanations thereof) from a categorical
dataset. We choose the mushroom dataset4 from the UCI Machine
Learning Repository. This dataset contains 8124 examples of gilled
mushrooms classified as edible or poisonous. Each example is char-
acterised by 22 categorical attributes that can take a number of dif-
ferent values, leading to 126 binary features. Our starting point L
consists of (subsets of) the 8124 examples as datapoints, each char-
acterised by a subset of the 126 binary features (FL).

5.1 Characterisation Extractor
As our characterisations we use sets of features from a reduced set
F ⊆ FL. Thus, in this empirical setting, the first stage in the DEAr
pipeline is concerned with dimensionality reduction. To obtain F we
use an autoencoder, a type of Artificial Neural Network (ANN), as
our characterisation extractor. ANNs have been widely applied both
in classification tasks and in dimensionality reduction, e.g. as in [41].
ANN-based feature selection methods use multilayer perceptrons to
determine which features are redundant [18] as well as autoencoders
[20, 21, 42]. These are unsupervised learning models based on ANNs
which take a set of features as input and aim, through training, to
reconstruct the inputs [21, 14].

Our proposed autoencoder is shown in Figure 2. The autoencoder
has one hidden layer with (for X ⊆ FL):
1. an encoder function f(X) = σ(XW (1))

3 This is adapted from [8].
4 archive.ics.uci.edu/ml/datasets/Mushroom

2. a decoder function σ(f(X)W (2))
where W (1),W (2) are the weight parameters in the encoder and de-
coder, respectively.

Figure 2: Autoencoder architecture: |FL| binary features are used to
train the autoencoder to obtain a code (hidden layer h of size H <
|FL|) that best captures the input |FL| features.

In order to select F, we average the weights in W (1) for each in-
put and select the top F factors. F can be chosen in many alternative
ways, either iteratively (starting from a small number of features, un-
til a coherent D is obtained) or empirically (as in the experiments in
Section 5.3, where by construction D is guaranteed to be coherent).

Once selected F, the inputs D and dpU for DEAr are automati-
cally obtained from L and ldpU by restriction to the features in F.
Formally, D = {(Y, o)|(X, o) ∈ L, Y = X ∩ F}.

5.2 Choices of Parameters
For this empirical evaluation, we choose
• <=⊇ (and thus �=⊃);
• (Cδ, δ) = ({}, δ), for O = {edible, poisonous} and δ=edible,
δ=poisonous;

• �= 6<=6⊇.
Thus, the default argument is characterised by the empty set of fea-

tures (i.e. the least element of <). The default is chosen empirically
(to obtain best performances, as given in Section 5.3)5. The choice
means that in the absence of any information (i.e. features) about a
mushroom, it can be deemed edible, as represented by (Cδ, δ). How-
ever, within the argumentation debate mined by DEAr, as soon as a
mushroom with any features is found, it being edible has to be justi-
fied by countering all relevant examples of poisonous mushrooms.

5.3 Empirical Evaluation
We deploy DEAr’s predictor as given in Section 3 and verify that it
predicts well against DTs (the explainable method we have selected
as a measure for comparison with DEAr). Given that this first ex-
periment uses ANNs for characterisation extraction (i.e. feature se-
lection), we first compare the DEAr predictor with ANNs. Overall,
we show that our method significantly outperforms DTs as well as
ANNs, while being less sensitive to the size of the training dataset.

In Table 1 we report 5-fold cross-validation results, using weighted
averages for each metric, for a stand-alone ANN (with a single
hidden layer of size 22/30), a combination Autoencoder+ANN and
DEAr.
5 Note that we always choose the least element of < as characterisation in the

default argument whenever it gives competitive performances empirically.

4

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

http://archive.ics.uci.edu/ml/datasets/Mushroom


Table 1: 5-fold cross-validation results for the mushroom dataset.

Hidden layer size 22 Precision Recall F1

DEAr 0.97 0.96 0.958
Autoencoder + ANN 0.938 0.894 0.878
ANN 0.934 0.888 0.87
Hidden layer size 30
DEAr 0.97 0.962 0.962
Autoencoder + ANN 0.932 0.886 0.86
ANN 0.936 0.896 0.88

In the autoencoder we use sigmoid as activation function and bi-
nary cross entropy as loss function. We experiment with different
sizes (10, 22, 30, 50, as these were less than the original number
of features, i.e. 126) for the hidden layer in the autoencoder/number
of features in F but report only best results for H ∈ {22, 30} (see
Figure 2). We also experimented with tanh and ReLU as activations
functions and with various optimizers, but report results for the best
performing combinations of choices obtained using grid search.

The chosen ANN has one hidden layer and uses sigmoid as activa-
tion function and softmax to make predictions. The hyper-parameters
were optimised using the Adam method [24] with learning rate
0.001. For Autoencoder+ANN, we use the learnt weightsW (1) from
the encoder, which we do not optimise during training, and softmax
for classification. In both cases, we trained for 50 epochs or until the
performance on the development set stopped improving.

As shown in Table 1, DEAr performs better than the two ANN
approaches with differences in F1 up to 8% when using a hidden
layer size of 22, and up to 10% when using a hidden layer size of 30.

We also conducted experiments to test whether our method can
better cope with smaller datasets than Autoencoder+ANN (arguably
the better performing of the two end-to-end ANN methods). Hence
we run experiments on 6000 randomly drawn examples and 5000
randomly drawn examples, respectively, from the original mushroom
dataset, and tested on the remaining examples in the starting dataset.
We repeated the experiments 5 times and report the average perfor-
mances in Table 2. Here as well we use the learnt weightsW (1) from
the encoder in Autoencoder+ANN and softmax for prediction.

Table 2 finally compares our method with DTs. For DTs and DEAr
alike, we use the learnt weights from the encoder to select the top
22 features as F and give D as discussed in Section 5.1. We used
information gain for DTs.

The experiments on reduced datasets show that Autoen-
coder+ANN is less performing than our method and DTs. Our ap-
proach performs better than DTs throughout all experiments, with
improvements in F1 up to 20% with training set size of 6000 exam-
ples, and up to 12% with training set size of 5000 examples.

6 DEAr FOR (ANNOTATED) IMAGES

The second empirical evaluation uses the pipeline in Figure 1 to pro-
vide predictions (and explanations thereof) for two publicly available
datasets of images, namely the CelebFaces Attributes (celebA) [29]
and the Objects with Attributes (OwA) [15]. Both datasets are man-
ually annotated with semantic features. CelebA is a large-scale col-
lection of more than 200K celebrity images, providing 40 binary at-
tributes for each image. OwA consists of the aPascal dataset (from
the PASCAL VOC2008 challenge [15]) and amounts to 6340 train-
ing images with 64 attribute labels for each image. The images are
divided in 20 classes. Figure 3 shows some examples of attribute an-
notated images from each dataset.

Table 2: Average of 5 runs of training on a reduced dataset and testing
on the remaining examples.

Training set size: 6000, Testing set size: 2124
Hidden layer size 22 Precision Recall F1

DEAr 0.978 0.976 0.976
Autoencoder + ANN 0.802 0.642 0.61
DTs 0.858 0.774 0.762
Hidden layer size 30
DEAr 0.966 0.964 0.966
Autoencoder + ANN 0.802 0.638 0.604
DTs 0.852 0.772 0.766

Training set size: 5000, Testing set size: 3124
Hidden layer size 22 Precision Recall F1

DEAr 0.954 0.954 0.954
Autoencoder + ANN 0.84 0.76 0.75
DTs 0.876 0.828 0.826
Hidden layer size 30
DEAr 0.97 0.97 0.97
Autoencoder + ANN 0.84 0.756 0.748
DTs 0.886 0.844 0.844

(a)

(b)

Figure 3: Examples of semantically annotated images from (a)
celebA and (b) OwA datasets.

6.1 Characterisation Extractor
We use all attribute annotations in the two datasets as characterisa-
tions. Due to replications, this reduces the size of CelebA to 110K
and of the OwA dataset to 2.2K. Both resulting datasets happen to be
coherent. Since we have defined DEAr for binary classification only,
we follow a one-vs-all strategy, labelling the images from celebA and
OwA as Male/Female and person/non-person, respectively.

6.2 Choices of Parameters
We use the same choices of < and � as in Section 5.2. However,
the choice of the default argument (Cδ, δ) requires a careful selec-
tion as it is crucial in the model’s predictive performance. The ex-
periments show that in this setting the best performing choice is a
synthetic datapoint which is sufficiently informative while contain-
ing the minimum number of annotated features. We thus choose as
characterisation of the default argument a singleton set consisting of
a singular attribute with the highest importance. We used univariate
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chi-squared statistic as our feature selection algorithm, returning the
attributes “Wearing Lipstick” and “Skin” to be the features with the
most significant impact on the predictive label for the two datasets.
Hence, the default arguments are:
• (Cδ, δ) = ({“Wearing Lipstick”}, female)
• (Cδ, δ) = ({“Skin”}, person)
for celebA and OwA, respectively. Here, again the default arguments
are chosen because of competitive performaces in the experiments.

6.3 Empirical Evaluation
A comparison of the outcomes provided by DEAr and DTs is shown
in Table 3, alongside a comparison with kNNs (k=3). Here we choose
kNNs as a further measure of comparison as it naturally lends it-
self to prediction with these two datasets. For celebA, we split the
110K dataset into 5 batches and then perform 5-fold cross-validation
for each batch, taking then the average over the outputs across the
5 batches. For OwA, we perform 5-fold cross-validation on the en-
tire 2.2K dataset. Table 3 shows the results of the experiments. Here
DEAr has respectable but lower precision than both DTs and kNNs
for both datasets, but higher than or same recall as both methods,
more so for celebA. Furthermore, DEAr has comparable prediction
accuracy as DTs and kNNs for both celebA and OwA.

Table 3: 5-fold cross validation results using DEAr, DTs and kNNs
(k=3) on celebA and OwA.

celebA Precision Recall F1 Accuracy
DEAr 0.79 1.00 0.88 0.89
DTs 0.93 0.87 0.90 0.90
kNNs 0.87 0.83 0.85 0.86
OwA
DEAr 0.85 1.0 0.92 0.94
DTs 0.98 1.0 0.99 0.99
kNNs 0.97 0.99 0.98 0.99

7 DEAr FOR TEXT
The final empirical evaluation uses the pipeline in Figure 1 in a Nat-
ural Language Processing (NLP) task, namely Sentiment Analysis.
This aims to analyse people’s opinions or sentiments towards topics,
items, etc. and their attributes [28, 44].

We select the texts6 used in the evaluation in [26], which extracted
and manually labeled 1000 sentences from Amazon reviews about
the cell phones and accessories category used in [32] and 1000 sen-
tences from the IMDB movie review sentiment dataset used in [31].
These datasets consist of short sentences that can be clearly distin-
guished by humans as being positive or negative.

For each of the two websites, there are 500 positive and 500 nega-
tive sentences, selected so that they have a clear positive or negative
polarity. Below are some examples from the dataset:
Amazon negative: I advise EVERYONE DO NOT BE FOOLED!
Amazon positive: So Far So Good!
Amazon negative: The commercials are the most misleading.
IMDb positive: This is definitely a cult classic well worth viewing
and sharing with others.

7.1 Characterisation Extractor
As we now operate with text, instead of having categorical features
as in the two previous empirical settings, we represent FL, i.e. the
6 archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences

vocabulary obtained from the lemmas in each of the datasets L,
by means of a one-hot-encoding, where 1 indicates the presence of
words in the text, and 0 the absence. Since each dataset L is quite
small, an autoencoder is not fit to be used to select the most rele-
vant features: we use instead an ensemble technique, namely Ran-
dom Forests (RFs). We experiment with RFs directly on the data-
points as well as after a pre-processing stage to cluster related terms.
For example, “nice” and “beautiful” can be clustered and replaced
by a single word, e.g. “nice”. We use semantic similarity for cluster-
ing as follows: for two words to be deemed semantically similar they
need to have the same sentiment polarity (e.g. “good” will be tested
against “great” which has a positive polarity but not against “bad”
which has a negative polarity) and the same part of speech (POS) tag
(e.g. “good” will be tested against “amazing” which is an adjective
but not against “work” which can be a verb or a noun depending on
context). We use the semantic network ConceptNet7 and select the
pairs that have relatedness score above 0.3. Table 4 shows examples
of pairs of words and their similarity. Using our imposed threshold,
we obtain a single cluster {great, amazing, terrific} and replace each
of these words encountered in texts with the word great. Thus, we
reduce the number of features from |FL| = 9 to |F| = 7.

Table 4: Examples of word similarity.

Word 1 Word 2 Similarity score
great funny -0.01
great interesting 0.115
great good 0.184
great superb 0.487
great terrific 0.653
art work 0.132
art treasure 0.084

Whether we have clusters or not, we use RFs (with 150 random
trees on various sub-samples of the dataset and averaging to improve
the predictive accuracy and to control overfitting) with TF-IDF fea-
tures of the training dataset. In the remainer, TF-IDFi stands for word
i in the given set of “documents” (i.e. texts).

As an alternative, we also experiment with the following score for
word i which represents a combination of TF-IDF and the polarity of
synsets based on the POS tag (for Si = synsets(i)):

TF-IDF-SYNi = TF-IDFi ∗max(pos, neg)

pos =

∑
j∈Si

pos valj
|Si|

; neg =

∑
j∈Si

neg valj
|Si|

In the remainder, we will refer to the weight of word i computed
using TF-IDF as w1i = TF-IDFi and to the weight of word i com-
puted using TF-IDF and synsets as w2i = TF-IDF-SYNi. Also, w
will stand for any of w1i and w2i when either can be used.

7.2 Choices of Parameters
We experimented with several alternative choices of parameters:
• <=⊇ as in the previous two empirical settings as well as a new

partial order (referred to as upgraded later) defined as
(X, o) < (Y, o′) iff

∑
xi∈X w(xi) >

∑
yi∈Y w(yi)∧|X| > |Y |;

• (Cδ, δ) = ({}, δ) for δ ∈ O = {+,−} (we will see that different
choices are best for the different datasets);

• �= 6⊇.

7 conceptnet.io
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Thus, our choice of < replaces ⊇ in the two previous empirical
settings. We use this new notion of < on the basis that features are
equipped with a weight (w) indicating their importance in classifi-
cation. Intuitively, a datapoint is more informative than another with
fewer and weaker features as it provides more information describing
the sentiment polarity. For example, assuming the selected features
are adjectives, the (positive) sentence The movie was amazing, with
a very good story and a great cast is more informative than the (neg-
ative) sentence Awful film as the former has more information.

7.3 Empirical Evaluation
We experiment with various configurations and report the best re-
sults using 5 fold cross-validation in Table 5. For DTs, we used gini
impurity criterion and TF-IDF features. For DEAr, we experimented
with various numbers of selected features as well as other parameters
such as the default used (0 for negative polarity and 1 for positive po-
larity), whether we used synsets when selecting features, clusters to
group similar features, and the upgraded version of DEAr.

The average F1 results with DEAr using all features for IMDB
is 72% and for Amazon 76.2%. For IMDB, DTs and DEAr trained
on the selected features do not generally perform better, but the best
results using DEAr are better by 1.8%. For Amazon, DTs with se-
lected features does not improve the results when using all features,
but DEAr performs better than DTs with all features, with improve-
ments of up to 3.6%. In all cases when using selected features, DEAr
performs better than DTs with improvements of 3% for IMDB (500
features) and 4.3% for Amazon (500 features). The best results are
obtained with the upgraded version of DEAr, thus considering the
weight of feature importance when constructing the framework, no
synsets when selecting features, and using clusters. The difference
with respect to parameters is given by the default selected: negative
in the case of IMDB and positive in the case of Amazon. Using the
upgraded DEAr generally performs better than the original version
for both datasets. Synsets are an important aspect for Amazon, and a
similar pattern can be seen for clusters.

Table 5: F1 results for DTs and DEAr using 5-fold cross valida-
tion, varying |F|, choice of default δ, use of S(ynsets), C(lusters),
U(pgraded) <.

|F| S δ C U DTs DEAr

IM
D

B

200 Y 1 N N 69.4 70.7
200 Y 0 N Y 69.4 71.9
200 N 0 N Y 70.7 71.9
200 N 0 Y Y 72.5 73.8
500 Y 0 N N 67.1 69.4
500 Y 0 N Y 67.1 70.1
800 Y 0 N Y 67 69.8

A
m

az
on

200 N 1 Y N 75.8 77.1
200 N 0 N Y 74.1 77
200 N 1 N Y 74.1 77.6
200 N 1 Y Y 77 79.8
500 N 1 Y N 75.3 76.9
500 N 1 Y Y 75.4 79.7
800 N 1 Y Y 76 79.7

8 RELATED WORK
Recently, several works have suggested a hybrid approach aiming
to provide human-interpretable explanations for a complex (black-
box) model predictions using a transparent (white-box) counterpart

model. A hybrid classifier is proposed in [34, 39] that combines
kNNs with CNNs, while DTs [16, 43], decision forests [25] are used
as the transparent counterpart. Closest to DEAr is the proposal of
[23], suggesting a “twin” system that uses CBR to provide plausible
explanations to ANN’s predictions. Rather than using CBR, we use
an argumentative abstraction thereof. Also, rather than using this to
explain other methods, we use it as a stand-alone explainable model.

Argumentation has been used extensively to generate explanations
in AI, e.g. for explaining decisions [2, 46, 45] and recommendations
[7, 35], in some cases using dispute trees as we envisage [17, 45]. We
use argumentation to explain predictions that are also generated by
argumentation. Two works are closest to ours: [3], using argumenta-
tion to perform concept learning and AA-CBR [10, 11], mining argu-
mentation frameworks for Case-Based Reasoning. Differently from
us, [3] uses both datapoints and hypotheses as arguments, and bases
attack only on classification disagreement (with the use of prefer-
ences over hypotheses). AA-CBR is a special case of our approach.
Neither approach has been validated experimentally as we do8.

Dispute trees have been used in explanations for example in
[17, 45]. In particular, [17] formalised dialectical explanations for
argument-based reasoning whereas [45] used argumentation to ex-
plain multi-criteria decision making obtained from dispute trees in
a legal setting and [46] used dispute trees for explaining human-
generated decisions (over the outcome of bills through the UK par-
liament). We suggested the use of dispute trees as a step towards a
variety of explanations, to be developed as part of future work.

9 CONCLUSION

We have presented DEAr, a method inspired by AA-CBR [10, 11], to
obtain argumentation debates as abstractions of the prediction prob-
lem from labelled datasets, including categorical, annotated images
and text. Reasoning with these abstractions, as standard in argumen-
tation in AI, gives competitive predictions which are also naturally
explainable dialectically. We have shown experimentally that our
method is competitive with (and sometimes outperforms) Decision
Trees which are also explainable, using a variety of configurations
for DEAr (that go well beyond AA-CBR).

The deployment of DEAr requires the combination of methods
from argumentation in (symbolic) AI with components of stan-
dard data-centric approaches (e.g. feature selection and dimension-
ality reduction using autoencoders, statistical methods and Random
Forests). We have focused on DEAr’s predictive ability, and future
work is needed to explore its explainability in full. The argumenta-
tion debates that it produces can be used as an explainable model
per se, but can also serve as the starting point for various forms of
explanation. We have illustrated preliminary notions of dialectical
explanations based on dispute trees. We plan to study other types of
explanations extracted from dispute trees, e.g. counterfactual expla-
nations.

We plan to conduct further experiments, e.g. with raw images and
continuous features, as well as experimental evaluations with human
users as to the amenability of our explanations in general and com-
paratively with Decision Trees. Indeed, in the presence of tens of
arguments in our case or features in rules in the case of Decision
Trees, the explanations may become complicated and hence affect
interpretability and thus not be amenable to human consumption.

8 AA-CBR has been validated experimentally in [8], a precursor to Section 5.
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