
Lifting Queries for Lifted Inference (Abstract)1

Tanya Braun and Ralf Möller 2

Abstract. Lifted algorithms use representatives for groups of indis-
tinguishable objects to efficiently perform inference. Standard lifted
algorithms like first-order variable elimination or first-order knowl-
edge compilation, compute answers to marginal queries of single ran-
dom variables or events in a lifted way using representatives. But,
queries containing a set of indistinguishable random variables may
lead to groundings, something that lifting tries to avoid. This paper
presents parameterised queries as a means to avoid groundings, ap-
plying the lifting idea to queries. Parameterised queries enable lifted
algorithms to compute answers faster, while compactly representing
queries and answers.

1 Introduction
AI areas such as natural language understanding and machine learn-
ing need efficient inference algorithms. Modeling realistic scenarios
yields large probabilistic models, requiring reasoning about sets of
individuals. Lifting uses symmetries in a model to speed up reason-
ing with known domain objects. We study reasoning in large mod-
els that exhibit symmetries. Our inputs are a model and queries for
probability distributions of random variables (randvars) given evi-
dence. Inference tasks reduce to computing marginal distributions.
Lifted variable elimination (LVE) allows for computing an answer to
a query, lifting as many computations as possible [4].

LVE realises lifted inference using logical variables (logvars) as
parameters to represent sets of interchangeable randvars, called pa-
rameterised randvars (PRVs). Consider an epidemic with many peo-
ple possibly being sick, which we could model using a randvar E
for “epidemic” and a PRV S(X) for “sick”, with logvar X repre-
senting a group of people. A parametric factor (parfactor) describes
a function with PRVs as arguments that maps argument values to real
values (potentials), identical for all argument groundings. An exam-
ple parfactor is φ(E,S(X)) describing the influence between E and
S(X). Still, queries concern single randvars, e.g., S(eve) with eve
being one of the people. A first step to answering a query is to pre-
emptively shatter the model on the query, i.e., to split the logvars
w.r.t. the randvars in the query [2]. Thus, a conjunctive query over
a set of interchangeable objects such as S(alice), S(eve), S(bob)
leads to a grounding of the affected logvars, here, X .

To avoid groundings, we present parameterised queries, allowing
logvars in query terms, and adapt LVE to them. With parameterised
queries, we compute answers more efficiently and provide compact
representations for queries and answers, possibly without any blow
up. Parameterised queries come in handy in various scenarios: Dur-
ing an epidemic or a network attack, queries occur for how many
people are likely sick or network components compromised. Let us
look at an example showcasing the grounding problem.

1 This paper is an abstract of a paper presented at IJCAI 2018 [1]
2 University of Lübeck, Germany, email: <surname>@ifis.uni-luebeck.de

Example 1. Assume that the domain of X is {alice, eve, bob}.
Given a parfactor φ(E,S(X), T (X)) with another PRV T (X) for
people travelling and a query P (S(alice), S(eve), S(bob)), LVE
shatters φ, which leads to effectively grounding X , with φ appearing
in three versions, one for each domain value. Next, LVE eliminates
the Travel randvars, each elimination a copy of the other. To elim-
inate E, LVE multiplies the remaining parfactors into one parfac-
tor with arguments E, S(alice), S(eve), and S(bob), which means
a size of 24 = 16. LVE eliminates E from this product and nor-
malises the result. The result parfactor φ′(S(alice), S(eve), S(bob))
has 23 = 8 mappings, which is exponential in the number of query
terms. Table 1a shows the mappings, without explicit potentials as
they depend on the concrete potentials in φ:

Table 1: Potential encodings

(a) Enumeration

S(alice) S(eve) S(bob) φ′

false false false v0
false false true v1

false true false v1

false true true v2
true false false v1

true false true v2
true true false v2
true true true v3

(b) Histogram

#X [S(X)] φ′′

[0, 3] v0
[1,2] v1

[2, 1] v2
[3, 0] v3

The potentials in Table 1a exhibit a symmetry: Two times a false
value and one time a true value map to v1. It is irrelevant whether
alice, eve, or bob is the one being sick, as long as one has the value
true assigned. The same holds for false assigned once and true as-
signed twice mapping to v2. This symmetry is well-known in LVE: It
has been used for counting [3]. A so-called counting randvar (CRV)
encodes for n interchangeable randvars how many have a certain
value. With a CRV #X [S(X)] as input and histograms as values that
specify for each value of Sick(X) how many of the n randvars have
this value, φ′′(#X [S(X)]) carries the same information as φ′ (first
position S(X) = true, second S(X) = false), shown in Table 1b.

The example illustrates three issues, (i) a large set of interchange-
able query terms, (ii) inefficiencies during LVE, leading to (partial)
groundings w.r.t. the referenced constants, to identical eliminations,
and to large intermediate results, and (iii) a large result representa-
tion with symmetries. The example also shows that counting might
help to counteract these issues. Specifically, we parameterise a query,
which avoids shattering parfactors to ground instances and allows
for using existing lifting techniques to enable a lifted calculation of
queries over interchangeable query terms. As a corollary of lifted cal-
culations, i.e., calculating a parameterised query without groundings,
the result is compactly encoded using CRVs.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



2 Compact Queries and Answers
To provide compact representations for queries as well as answers,
we introduce parameterised queries, which also avoid groundings. A
parameterised query may contain PRVs with logvars as query terms,
achieving a compact query representation.

Definition 1. We denote parameterised query terms by Q|C , a con-
straint C denoting the groundings that are part of the query for the
logvars in Q, still allowing for grounding a PRV with a single do-
main value. To refer to complete domains, > is used.

Given parameterised queries, shattering no longer necessarily in-
volves a grounding w.r.t. domain values appearing in a query. Instead,
with a constraint that restricts the query PRVs to a subset of the in-
stances in the model, shattering incurs a split for each query PRV
in every parfactor that contains the query PRV. Of course, shattering
may still result in a fine granularity in the model given multiple query
PRVs and logvars appearing in various parfactors.

Example 2. P (S(X)|>) is an equivalent parameterised query
for P (S(alice), S(eve), S(bob)). To ask for P (S(alice), S(eve))
without the grounding of bob, P (S(X)|C) contains a constraint C
referencing alice and eve. Given P (S(X)|>), shattering does not
change φ(E,S(X), T (X)). Given P (S(X)|C)), shattering leads to
two versions instead of three.

With CRVs, we also have a concept that allows for representing the
result in a compact way as shown in Example 1. LVE has an operator
count-convert that produces a CRV under certain preconditions [4].

3 Lifted Query Answering
LVE for a parameterised query has the same workflow as before with
model G, query terms Q, and evidence E as inputs: After shattering
G on E and Q,G absorbs E and LVE eliminates all non-query rand-
vars in G. Then, count conversions for the remaining logvars in G
provide a compact result representation. If the logvars are not count-
convertible, i.e., do not fulfil the preconditions of count-convert, LVE
transforms G with further operators [4] to enable count-convert. The
final step is normalising the result to produce probabilities. For nor-
malisation, LVE cannot simply divide the potentials by the sum of all
potentials if CRVs are involved. A histogram h stands for Mul(h)
assignments, with Mul(h) referring to a multinomial coefficient.
Normalising a potential wi in a mapping hi 7→ wi with m overall
mappings results in a normalised potential vi as follows

vi =
wi∑m−1

i=0 Mul(hi)wi

(1)

The resulting vi only add up to 1 if multiplying Mul(hi) with vi ∀i.

Example 3. For the query P (S(X)|>) and parfactor
φ(E,S(X), T (X)), the result after eliminating T (X) is a parfactor
φ(E,S(X)) (one elimination instead of three). To eliminate E, we
count-convert S(X), leading to a parfactor φ(E,#X [S(X)]) with
2 cot 4 = 8 mappings (instead of 24 = 16). Eliminating E yields a
parfactor φ(#X [S(X)]), containing 4 mappings instead of 23 = 8,

[0, 3] 7→ w0, [1, 2] 7→ w1, [2, 1] 7→ w2, [3, 0] 7→ w3,

in which [1, 2] and [2, 1] stand for (1+2)!
1!·2! = (2+1)!

2!·1! = 3 assignments.
The other two histograms represent one assignment. The normalised
potentials are given by wi

(w0+3·w1+3·w2+w3)
, which is equal to the

vi in Example 1. Without E, S(X) is still count-convertible in a
parfactor φ(S(X)) to create a compact representation.

A parameterised query does not necessarily yield a result contain-
ing CRVs for exactly the PRVs and their constraints in the query.
The query constraint holds the instances of the query PRVs not to
eliminate. While eliminating all non-query PRVs, the query PRVs in
the model may be affected by operators rewriting constraints (splits,
groundings). They may appear fully grounded in the result simply
through the application of operators to compute a correct result.

Example 4. Consider T (eve) = true as evidence. After evidence
absorption, there are two parfactors: φ′(E,S(eve)), having absorbed
the evidence, and φ′′(E,S(X ′), T (X ′)), now constrained to alice
and bob. When answering P (S(X)|>), LVE produces a parfactor
φ(#X′ [S(X ′)], S(eve)). With more than three domain values ofX ,
the result may look like φ(#X′ [S(X ′)],#X′′ [S(X ′′)]).

PRVs appearing split in the result allow for identifying groups
within a PRV, appearing through evidence, as described above, or
other dynamics in the model. Such a result easily supports continued
processing, e.g., regarding most likely assignments to query PRVs or
further eliminations to compute probabilities for a group of interest.

4 Outlook on Further Results
Parameterised queries facilitate a reduced runtime if they do not re-
quire a grounding of its logvars as a first LVE operation. With imme-
diate groundings, runtimes are nearly identical, depending slightly
on evidence. In any other case, parameterised queries allow for faster
runtimes, saving operations during shattering and as a result during
query answering. Even with groundings, as many operations as pos-
sible are lifted before reverting to propositional calculations for af-
fected logvars. Additional count conversions at the end are necessary
to induce a joint distribution over all instances in the query.

A query may still induce groundings by blocking a reasonable
elimination order. The reason lies in a precondition for lifted sum-
ming out of a PRV A: A has to contain all logvars in a parfactor.
If PRVs to eliminate contain fewer logvars than a query PRV and
no count conversion applies, grounding a logvar is necessary. The
result of a query that induces groundings is still correct. Only, the
query PRV may be grounded in the result. We have identified con-
ditions for grounding and liftable queries. If the underlying model is
liftable, the following holds:

Theorem 1 (Completeness). Parameterised query terms with only
one logvar per term and one set of constants per domain are liftable.

Theorem 2 (Complexity). The complexity of LVE for liftable pa-
rameterised queries is polynomial in domain sizes.

Corollary 1. CRVs compactly represent the result of liftable queries.

The full paper can be found at [1].

REFERENCES
[1] Tanya Braun and Ralf Möller, ‘Parameterised Queries and Lifted Query

Answering’, in IJCAI-18 Proc. of the 27th International Joint Confer-
ence on AI, pp. 4980–4986. IJCAI Organization, (2018).

[2] Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth, ‘Lifted First-order
Probabilistic Inference’, in IJCAI-05 Proc. of the 19th International Joint
Conference on AI, pp. 1319–1325. IJCAI Organization, (2005).

[3] Brian Milch, Luke S. Zettelmoyer, Kristian Kersting, Michael Haimes,
and Leslie Pack Kaelbling, ‘Lifted Probabilistic Inference with Counting
Formulas’, in AAAI-08 Proc. of the 23rd AAAI Conference on AI, pp.
1062–1068. AAAI Press, (2008).

[4] Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik Blockeel,
‘Lifted Variable Elimination: Decoupling the Operators from the Con-
straint Language’, Journal of AI Research, 47(1), 393–439, (2013).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain


	Introduction
	Compact Queries and Answers
	Lifted Query Answering
	Outlook on Further Results

