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Abstract. We investigate whether Graph Convolutional Neural Net-
works (GCNNs) may benefit from incorporating information con-
veyed by a state-of-the-art graph kernel in the learning process. We
propose a GCNN architecture and a training procedure based on multi-
task learning, where we provide supervision not only from the graph
labels, but also from the kernel to each layer of the network, achiev-
ing state-of-the-art performances on many real-world datasets. We
conduct an ablation study to analyze the impact on the predictive per-
formances of each part of our proposal, including a simplified version
of our multi-task learning formulation that can, in principle, be ap-
plied with a broad family of graph embeddings. Finally, we study how
to improve the performance of a model considering graphs coming
from related datasets into the training procedure in a semi-supervised
learning fashion.

1 INTRODUCTION
State-of-the-art machine learning techniques for classification and
regression on graphs are at the moment kernel machines equipped
with specifically designed kernels for graphs (e.g, [31, 36]). Although
there are examples of kernels for structures that can be designed on the
basis of a training set [35, 3], most of the more efficient and effective
graph kernels are based on predefined structural features, i.e, features
definition is not part of the learning process. In vectorial, as well as
sequential spaces, deep learning has proven that it is actually possible
to learn very effective representations, so it is not a surprise that re-
cently many researchers have decided to attack structured domains
using (deep) neural networks (NNs), proposing several architectures
(see for example [11]), with the aim of getting better performances
with respect to graph kernels (which do not learn graph representa-
tions). Graph Neural Networks (GNNs), however, not only have to
face the well known graph isomorphism problem, i.e. produce an
internal representation of a graph that is invariant with respect to its
input representation, but unlike graph kernels have also to face the
problem of how to explicitly represent in a fixed-size representation
graphs of different sizes, i.e. with a variable number of vertices. This
last issue is where most of the network architectures proposed up to
now try to differentiate each other in order to get a more expressive
merging operation (readout) over vertices, so to get a more effective
graph representation. Actually, we believe this could be the main bot-
tleneck of the current architectures, which in a way or the other leads
to a loss of structural information which inevitably leads to a loss
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of performance with respect to graph kernels. This is especially true
for state-of-the-art graph convolutional networks (e.g. [40]), where
the first stages of the architecture (just before the readout) compute a
soft version of the Weisfeiler-Lehman (WL) Subtree Kernel [30], i.e.
one of the most efficient and effective graph kernels. So a legitimate
question is why such a soft version of WL is not always working, i.e.
sometimes it shows lower predictive performance compared to WL
kernel.

We start from two observations: (i) readout functions make dif-
ficult to propagate informative gradients to the convolution layers;
(ii) graph kernels perform well, so they can be used to improve the
training process in an unsupervised way. Based on these observations,
in this paper we propose a novel GCNN architecture, dubbed Funnel
GCNN (FGCNN), that tries to remove obstacles to gradient flow in
many ways: i) using a simple readout and LeakyReLU activation func-
tions; ii) forcing the network to reconstruct the corresponding explicit
feature space representation of the WL kernel after each convolution
layer; iii) using a measure of the WL kernel complexity to decide the
number of filters (neurons) to use at each convolution layer. While i)
is a trivial step, in order to perform ii) we exploit multi-task learning
(MTL) [5] to force the network to learn, for each convolution layer,
an approximation of the explicit feature space representation of the
WL kernel, hinging on the availability of an explicit WL embedding
for each graph. This is possible since WL embeddings are obtained
by summing up the features obtained by different WL iterations, that
correspond to different depths of the extracted features. This property
give us the possibility to split the features generated by the WL kernel
according to their complexity (i.e. the WL iteration) and define an
output target for each corresponding convolution layer. Finally, the
number of filters (neurons) at each convolution layer follows a formal
measure of the WL kernel complexity (iii)), thus increasing with the
depth of the convolution, and giving rise to the funnel shape. We
also provide a simple bound on the disagreement in classification
between the hypothesis found by an SVM using the WL kernel and
the representation learnt by our network. Thanks to this bound, we
can guarantee that the performances of the GNN trained with our
proposed approach will be (at least) close to the ones of WL kernel.
We perform an extensive ablation study in which we analyze the ef-
fects on the predictive performance of each main component of our
proposed approach.

Finally, noticing that learning the WL embeddings is unsupervised,
we explore the effect of adding to the training set unlabelled data, in a
semi-supervised fashion. The expected result is an improvement in
performances. Preliminary experimental results seem to confirm this,
opening the door to an interesting future line of investigation.
In summary, this paper delivers the following original contributions:

• the definition of a general framework, based on multi-task training,
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to embed information conveyed by graph kernels in the hidden
representation learned by GNNs;

• a bound on the performance difference between an SVM trained
with a graph kernel k and a GNN trained using our proposed
framework;

• a novel GNN architecture tailored for the proposed training frame-
work;

• a novel approach for semi-supervised learning for graphs.

2 BACKGROUND

In this section, we review all the basic components of our proposed
approach.
Definitions and notations We denote matrices, vectors and variables
with bold uppercase, uppercase, and lowercase letters, respectively.
Given a matrix M, Mi denotes the i-th row of the matrix, and mij is
the element in i-th row and j-th column. Given the vector V , vi refers
its i-th element.

Let us consider a graph g = (V g, Eg,Xg), where
V g = {v1, . . . , vn} is the set of vertices (nodes), Eg ⊆ V g × V g
is the set of edges, and Xg ∈ Rn×d is a node label matrix, where
each row is the label (a vector of size d) associated with each ver-
tex vi ∈ V g , i.e. Xg

i = [xi,1, . . . , xi,d]. Here we do not consider
edge labels. When the reference to the graph g is clear from the con-
text, for the sake of notation, we discard the superscript referring to
the specific graph. We define the adjacency matrix A ∈ Rn×n as
aij = 1 ⇐⇒ (i, j) ∈ E, 0 otherwise.

Here, we focus on the problem of graph classification. Given a
dataset composed of m pairs {(g(i), y(i))|1 ≤ i ≤ m}, the task is
then, given an unseen graph g, to predict its real target y. We will
consider, for this learning task, graph neural networks and graph
kernels, that are discussed in the next sections.
Graph kernels A kernel on X , the input space, is a symmetric
positive semi-definite function k : X × X → R computing a score
(similarity) between pairs of instances. Kernel functions compute the
dot product between two entities in a Reproducing Kernel Hilbert
Space (RKHS), i.e.: k(x, y) = 〈φ(x), φ(y)〉 where φ : X → H is a
function mapping instances fromX to the RKHS (or feature space)H.
Different kernels define different feature spaces (see supplementary
material for additional graph kernels).

The approaches proposed in Section 4.2 can, in principle, work
for any graph kernel. In this paper, we decide to focus on the WL
kernel, that counts the number of identical subtree patterns obtained
by breadth-first visits where each node can appear multiple times
[30]. The kernel depends on an hyper-parameter h, that is the a-priori
selected number of WL iterations, corresponding to the maximum
depth of the considered patterns. WL, as well as other kernels [7, 8],
allows to explicitly store the φ(g) representation of a graph g as a
sparse vector Φg . Moreover, it is also possible to compress Φg using a
hash function h : N→ {1, ..., b} (or a random projection), obtaining
a compact dense representation with a small impact on the predictive
performance [21]. We will exploit this property in Section 4.2.1.
Neural networks for graphs The core machine learning models
that we are going to adopt in this paper are neural networks for graphs.
Our proposed training method can be applied, in principle, with all
the models presented in this section. The first definition of neural
network for graphs has been proposed in [33], and more recent models
have been proposed in [17]. The latter work is based on an idea that
has been re-branded later as graph convolution or neural message
passing. The idea is to define the neural architecture following the
topology of the graph. Then a transformation is performed from

the neurons corresponding to a vertex and its neighborhood to a new
hidden representation, that is associated to the same vertex (possibly in
another layer of the network). This transformation (graph convolution)
depends on some parameters, that are shared among all the vertices.
After a certain number of transformations, a readout layer merges
all graph vertex representations into a fixed-size vector representing
the whole graph, from which a fully connected layer can be attached
to compute the output. In the following, we review these two basic
components of graph neural networks.
Graph convolutions In the following, for the sake of simplicity, we
ignore the bias terms. In [29], a recurrent graph neural network is de-
fined as a contraction mapping. In [16], this work has been extended,
removing the constraint for the recurrent system to be a contraction
mapping, and replacing the recurrent units with GRUs. In [17], the
first model resembling a convolutional network for graphs is proposed.
This model catches adaptive contextual transductions, learning the
mapping from graphs. In [13] a widely adopted formulation of graph
convolution is derived. Let us consider H0 = X. Motivated by a first-
order approximation of localized spectral filters on graphs, the graph
convolutional filter looks like: Hi+1 = f(D̃−

1
2 ÃD̃−

1
2HiWi),

where i = 0, . . . , l − 1 (and l is the number of layers), Wi is the
convolution weight matrix to learn, Ã = A + I, d̃ii =

∑
j ãi,j , and

f is any activation function applied element-wise. In [40] a similar
convolution operator derived from the random walk normalized Lapla-
cian, instead of the symmetric normalized graph Laplacian, is defined ,
while in [18] another variation inspired by the WL isomorphism test is
presented. Recently, the graph convolutional filter has been extended
with an hyper-parameter controlling the size of the convolution [34].
[23] follows a more straightforward approach to define convolutions
on graphs, that is conceptually closer to convolutions defined over
images. This approach requires the vertices of each input graph to
be in a canonical order, that is as complex as the graph isomorphism
problem (no polynomial-time algorithm is known). [2] defines a dif-
ferent graph convolution (i.e. diffusion-convolution) that incorporates
in the definition of graph convolution the diffusion operator, i.e. the
multiplication of the input representation with a power series of the
degree-normalized transition matrix.
Readout functions After stacking a number of graph convolution
layers (or graph recurrent layers), we need a mechanism to predict
the target for the whole graph, starting from the encoding of its ver-
tices. This mechanism should be applicable to graphs with a variable
number of vertices. Various approaches have been proposed in liter-
ature.The simplest formulations are linear, namely the average and
the sum of vertex representations, possibly followed by dense lay-
ers. These readouts are used, for instance, in [17, 10, 2]. In [40], the
SortPooling readout layer is proposed. The underpinning idea is to
select (or pool) a fixed number of vertex embeddings, obtaining a
fixed-size representation given by the concatenation of them. In [10],
it is proposed to use a set2set model which is a simplified Neural
Turing Machine for handling sets as inputs. The model is capable of
mapping sets to other sets in output, thus it is more powerful than
what is required for classification or regression tasks. This complexity
makes this readout hard to train, introducing unneeded complexity in
the model. In [20], a universal readout based on the sum aggregator is
presented.
Pooling layers Recently, local graph pooling operators have been
presented, e.g. [4, 39], to reduce the computational complexity of
GCNNs.
Mainstream GNN architectures Among the different GNNs pro-
posed in literature, we will consider as reference DGCNN [40], that
is one of the best performing GNN architectures to date. The network
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consists of three graph convolution layers followed by a concatena-
tion layer that merges the representations at the different levels of
graph convolution. The readout is composed of a SortPooling layer,
followed by two 1D convolutional layers and one dense layer. The ac-
tivation function for the graph convolutions is the hyperbolic tangent,
while the 1D convolutions and the dense layer use rectified linear
units (ReLU).

3 RELATED WORKS
[15] attempts to integrate in the neural network architecture the knowl-
edge acquired from the design of kernels. Our proposed FGCNN is
also inspired by graph kernels, since its key architectural feature is
to have the number of neurons for each layer to increase with depth,
mimicking the behavior of graph kernels. However, in this paper we
go beyond the simple design of neural architectures, providing a multi-
task training approach that additionally provides guarantees on the
quality of the learnt hypothesis. In [25], traditional CNNs are applied
on top of a graph embedding computed by graph kernels. Differently
from this approach, in this paper we deal with neural networks that
are able to directly process graphs as their input. We use the kernel in
our training approaches for driving the parameter learning procedure.
The most related work to the present paper is the workshop paper
[19], where the aim is to incorporate information from a graph kernel
in the learning process of a GCNN by defining a siamese network
that, given a graph kernel and a pair of graphs in input, computes an
approximation of the kernel value via a dot product unit in output.
Learning this kernel approximation constitutes a pre-training phase
that is then followed by a standard supervised learning on a single
branch of the network equipped with a dense layer for computing the
classification in output. Unfortunately, while this approach returns
improved performances, it does not scale well with the size of the
dataset, since the siamese network takes as input pairs of graphs, thus
requiring a quadratic complexity for the pre-training phase.

4 PROPOSED METHOD
While theoretically a GCNN should be able to learn features that are
comparable to the ones of WL graph kernel, we will show in Section 5
that this does not always happen in practice. Specifically, on some
datasets the WL kernel performs better than state-of-the-art GCNNs.
To tackle this problem, we propose a new GCNN architecture that,
coupled with a suited training procedure, makes it easier for the graph
convolution layers to learn a mapping similar to the one of WL. Our
contribution has two main components: a GCNN architecture suited
for learning features similar to the ones of WL kernel, and a training
procedure that enforces such features to be learned. We discuss each
component in the following subsections.

4.1 Funnel GCNN Architecture
We modify the DGCNN architecture (see Section 2) in three ways.
First, considering also the results in [20], we decide to replace the
SortPooling layer. While in [38] the sum pooling results to be the
most expressive among all pooling operations, it does not necessarily
carry the optimal inductive bias. For this reason, inspired by [4] and
after preliminary experiments, we decide to substitute the sortpool-
ing with a concatenation of max pooling, average pooling, and sum
pooling, computed globally over all the nodes in a graph, and on
a concatenation of the node representation learned by the different
graph convolutions. Then, we apply a small multi-layer perceptron to

map from the graph hidden representations to the target(s). Moreover,
we modify the activation function of graph convolution layers from
hyperbolic tangent to leaky ReLU, thus mitigating the vanishing gra-
dient problem. We also add batch normalization, that has been shown
to further help the training process. We tested differentiable graph
pooling layers [39, 4], but on all the considered datasets removing the
pooling layers actually improved the performance, so we do not con-
sider them in our architecture. However, in a future work, we plan to
search more complex architectures including pooling. Finally, we no-
tice that with DGCNN, and similarly with other graph neural network
architectures, the number of graph convolutional filters used in the
different layers is kept constant. This is in contrast with what happens
with WL kernel, where the number of different features increases with
the number of iterations. This observation holds with images as well,
where it is common practice to increase the number of filters when
increasing depth. Thus, we think it is essential to increase the number
of convolution filters when stacking multiple graph convolutional
layers. The resulting architecture (Funnel GCNN or FGCN) is simple,
but it reflects the operations performed by the WL kernel and follows
the complexity of its feature space having a number of convolution
filters per layer that grows with depth.

4.2 Training GCNNs with Kernels

When dealing with machine learning on graphs, kernel methods are
among the methods of choice, due to the theoretical guarantees they
provide, and to the many efficient and effective kernel functions pro-
posed in literature in the last years. Such kernels are known to provide
a good representation for the input graphs, showing state-of-the-art
results when coupled with linear models (in the feature space) such as
SVM. We recall that, on the one hand, kernels generally compute the
representations only implicitly (since the feature space can be very
high - or even infinite- dimensional). On the other hand, given the
relatively small size of graph datasets available online (some thousand
examples, compared to the millions of examples usually required for
training very deep neural networks), over-parametrized methods such
as graph neural networks are hard to train, providing often solutions
that do not generalize well. In this section, we present our method
to incorporate information from graph kernels in the training of GC-
NNs, in order to obtain networks with high and predictable predictive
performance. Our approach is tailored to the WL kernel. However,
we also present an alternative (that shows comparable results) that is
general in the sense that any kernel or vector embedding can be used,
possibly exploiting the techniques in [14]. We limit ourselves to the
WL kernel because: (i) finding embeddings hand-crafted by experts
is difficult; (ii) it works well on tasks involving molecules, often per-
forming better or comparably to state-of-the-art GCNN architectures;
(iii) its complexity is linear in the size of the graphs; (iv) we can have
a direct comparison to the technique proposed in [19].

4.2.1 Kernel-based Multi-Task Learning

As discussed in Section 2, the WL kernel provides an explicit graph
embedding that is not task-specific. These embeddings are usually
very high-dimensional and sparse. However, techniques for approxi-
mating these representations by hash functions have been proposed
[21, 14]. The resulting graph embedding is dense and relatively low-
dimensional. It is possible to exploit this explicit embedding to use
graph kernels to drive the learning process of GCNNs in a different
way compared to the one described in [19]. Specifically, we can resort
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Figure 1. Layer-wise Multi-task training (LMT): WL kernel features at
iteration i are provided as additional target for convolutional layers at depth i.

to multi-task learning (MTL) techniques and define a secondary out-
put for the GCNN, that will try to reconstruct the kernel embedding
in addition to the target y values of the considered task. In this way,
we drive the representation learned by the GCNN to incorporate infor-
mation about the kernel embedding. MTL is known to be beneficial
for the learning process, in which it may act both as a representation
bias, favoring representations that work well for all the considered
tasks, as well as a regularizer.

For the sake of presentation, let us first introduce a simpler multi-
task method compared to the one we adopt. Later, this method will be
tested in our ablation study. Let us define two tasks. The first task is
the original one, where the corresponding training data are T0 = D =
{(g(i), y(i)), i = 1, . . . ,m}. We define the second task using a set of
unlabeled graphs, U = {g(i) | i = 1, . . . , q}, possibly U ⊇ D. The
second task is defined as T1 = {(g(i), φ(g(i)))|g(i) ∈ U} where φ(·)
is the (possibly approximated) explicit feature representation coming
from a graph kernel, or possibly any graph embedding. To limit the
size of φ(·) when using the WL kernel, we use hashing techniques [21]
where we have an hyper-parameter controlling the resulting dimension.
For many graph kernels, including the WL kernel, the computation
of φ scales linearly in the size of the graph. In principle, training
could alternate on the two tasks, effectively providing more training
examples for the shared layers. Another option would be to jointly
train the network on the two tasks, thus reducing MTL to multi-label
learning or multi-output regression. We consider this second option
because it is more efficient. During training, we just ignore the output
of task T0 if an example is in U and not in D.

We refer to this method as Multi-Task FGCNN, or MT-FGCNN for
short, and we summarize it in Figure 2 in the supplementary material.

With many graph kernels, including WL, it is possible to group
the features in buckets according to their structural complexity. For
instance, features of WL can be split according to the WL iterations
that generated them. In this way, we obtain not one, but a number
of explicit representations equal to the number of WL iterations con-
sidered (the hyper-parameter h). The original φ(·) of WL can be
obtained simply concatenating these representation. The question is

how to split the total hash size, i.e. given that we would like to use ϕ
hash entries in total for the kernel explicit representation, how can we
define a principled way to distribute them among features of different
complexity? In [1], a complexity measure for (graph) kernels is de-
fined, and it is shown that higher WL iterations correspond to more
complex features. In fact, the number of features generated by local
graph kernels, such as WL, increases with the iteration number, i.e.
with the size of the features, as reflected by the kernel complexity. We
decided to follow an approach in which we compute the complexity
of the WL kernels at different iterations i, up to a maximum value
h, that corresponds to the number of graph convolutional layers, say
cWL
i . Then we can compute the hash size ηWL

i for features at layer i as

ηWL
i =

cWL
i∑h

j=1 c
WL
j

∗ ϕ. We propose to adopt the resulting embeddings

as secondary outputs of FGCNN, one for each graph convolution layer,
so to drive the learnt representation toward points that incorporate (or
encode) the information provided by the kernel.

We refer to this method as Layer-wise Multi-Task FGCNN, or
LMT-FGCNN for short, summarizing it in Figure 1.

More formally, let us fix the maximum value h of the WL kernel,
i.e. the number of WL iterations. Let us now define h+ 1 tasks. The
first task is the original one, where the corresponding training data are
T0 = D = {(g(i), y(i)), i = 1, . . . ,m}. We define h tasks, one for
each WL iteration, as

T1 = {(g(i), φ(1)(g(i)))|g(i) ∈ D}, . . . ,

Th+1 = {(g(i), φ(h)(g(i)))|g(i) ∈ D}

where φ(i)(·) is the (approximated) explicit feature representation
coming from a (hashed) WL kernel at iteration i.
Kernel approximation bounds With LMT and MT, the GCNN is
approximating the explicit mapping provided by the WL kernel. Thus,
the representation learned by the network can be seen as an approxi-
mated WL feature space, with the important note that the difference
in representation may actually be beneficial since it is learned via
back-propagation from the target of T0. The network is thus learning
a representation similar to the one of WL, but more aligned with
the target. It is interesting to analyze the difference in the hypothesis
hyp(·) obtained training an SVM using the original WL kernel, where
hyp(g) is the prediction for a graph g, and the one that can be obtained
training an SVM on the representation learned by a GCNN using our
approach, hyp′(·). We resort to a well-known approximation bound
for the SVM from [6]. Let K ∈ Rt×t be the Gram matrix of WL ker-
nel, and K′ the one obtained considering the representation provided
by a GCNN using our MTL approach. Let κ be the maximum value in
K and K′, andC be the SVM hyper-parameter. Then, for any graph g:

|hyp′(g)− hyp(g)| ≤
√

2κ
3
4C||K′ −K||

1
4
2

[
1 +

[
||K′−K||2

4κ

] 1
4

]
.

Since we are approximating the explicit kernel feature space by
the GCNN, we can easily compute a bound on ||K′ −K||2 (proof in
supplementary material) as follows.

Theorem 1 Let δπ(i) be the maximum approximation error for fea-
ture π ∈ {1, . . . , ϕ} in graph g(i), and let ∆̂ ≥ δπ(i), ∀π ∈
{1, . . . , ϕ}, i ∈ {1, . . . ,m}. Then ||K′ − K||2 ≤ 2m∆̂

√
κ +

mϕ∆̂2.

Proof. We can rewrite ||K′ −K||2 =
√∑m

i,j=1(k′i,j − ki,j)2

=

√√√√ m∑
i,j=1

(
〈φ(i) + δ(i), φ(j) + δ(j)〉 − 〈φ(i), φ(j)〉

)2

4

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



=

{ m∑
i,j=1

[ ϕ∑
π=1

(
φπ(i) + δπ(i)

)(
φπ(j) + δπ(j)

)
−

ϕ∑
π=1

(
φπ(i)φπ(j)

)]2}1/2

=

{ m∑
i,j=1

[ ϕ∑
d=1

(
φπ(i)φπ(j) + φπ(i)δπ(j) + φπ(j)δπ(i)+

δπ(i)δπ(j)− φπ(i)φπ(j)

)]2}1/2

,

where ϕ is the dimension of the graph embedding, and φπ(i) and
δπ(i) are the π-th components of the vectors φ(i) and δ(i), re-
spectively. Recalling that δπ(i) is the maximum approximation
error for feature π in example g(i), we can bound δπ(i) ≤
∆̂,∀π ∈ {1, . . . , ϕ}, i ∈ {1, . . . ,m}. Then ||K′ − K||2 ≤√∑m

i,j=1

(∑ϕ
π=1 (φπ(i) + φπ(j)) ∆̂ + ϕ∆̂2

)2
.We can bound the

maximum 2-norm of each sample as maxi∈{1,...,m} ||φi||2 =
√
κ.

Thus
∑ϕ
π=1 (φπ(i) + φπ(j)) ≤ 2

√
κ and:

||K′ −K||2 ≤

√√√√ m∑
i,j=1

(
2
√
κ∆̂ + ϕ∆̂2

)2
=

√
m2∆̂2(2

√
κ+ ϕ∆̂)2 = 2m∆̂

√
κ+mϕ∆̂2.

�
Being ∆̂ the reconstruction error, it can in principle be made arbitrar-
ily small by using a large enough GCNN, given its approximation
capability concerning WL kernel [38]. Moreover, a version of the the-
orem holding in probability can be given when the hashing technique
to reduce the dimensionality of the kernel’s feature space is used.
In fact, it is sufficient to incorporate in ∆̂ the approximation bound
given from the hashing, that holds in probability as a special case of a
Random Projection Kernel [21, 37]. This bound provides guarantees
on the performance of a GCNN trained with our method, since it
ensures that the network will learn a representation that is close to the
kernel’s one. However, it does not, per se, guarantee better generaliza-
tion performances. Nonetheless, if the target representation is good
(as it is for the WL kernel), hopefully the representation learnt by the
network will also be good, if not better. In fact, since the network
representation is learned from data, it is not just an approximation of
the kernel representation, but it is tailored for the task at hand, thus
possibly improving the predictive performance compared to the one
generated by the kernel. We plan to study the properties of the learned
representations in more depth in a future version of the paper.
Computational Complexity One of the strengths of our proposed
method compared to the pre-training approach based on siamese net-
works presented in [19] is that it scales linearly in the number of
examples. In fact, computing WL features (not the kernel matrix) has
O(|E|) complexity for each graph, and is linear in the number of
graphs. This is the same complexity of the graph convolution operator
adopted in GCNNs. Kernel features are computed only once before
training. During training, the use of the hashing technique allows to
define a fixed (thus constant) number of (aggregated) features, allow-
ing to keep the complexity of each forward pass constant w.r.t the
number of features. Thus, our training procedure does not increment
the asymptotic complexity of the training procedure compared to the

standard training of GCNNs. On the contrary, the approach in [19]
has quadratic complexity in the number of examples in the training
set. As for the test phase, we don’t need to consider the kernel em-
bedding output, so we don’t have to perform any additional operation
compared to the standard GCNNs test phase.

5 EXPERIMENTAL RESULTS

In this section, we describe our experimental evaluation of the pro-
posed LMT-FGCNN approach. Our source code is publicly available
at omitted for double-blind review.
Datasets We perform experiments on five bioinformatics datasets
from [40] involving node-labeled graphs, namely MUTAG, PTC,
NCI1, PROTEINS and D&D. In the first three datasets, each graph
represents a chemical compound, where nodes are labeled with the
atom type, and edges represent bonds between them. PROTEINS
and D&D consist of proteins represented as graphs in which nodes
represent amino acids and two nodes are connected by an edge if they
are less than 6Å apart.
Implementation details We adopted PyTorch [28] and PyTorch Ge-
ometric [9] for our implementation. We trained the neural networks
using stochastic gradient descent with adaptive learning rate and mo-
mentum (adam), validating the learning rate in {0.01, . . . , 0.0001}.
For our pre-training approach we used mean square error (MSE) as
loss function for the training of the siamese network (pre-training),
and cross-entropy (CE) as the loss function for the supervised phase.
For the multi-task approaches, we used MSE for the output recon-
structing the graph kernel, and CE for the primary task output. We
combined the two losses by sum. We fixed the number of pre-training
epochs to 100 for MUTAG and PTC, to 15 for NCI1 and 50 for PRO-
TEINS and D&D (due to time limitations). We then fine-tuned the
pre-trained DGCNN as usual on the training dataset. We validated
for the FGCNN architecture the number of neurons in the first GC
layer in s1 ∈ {64, 128, 256}. We then fix the number of neurons in
the following GC layers as s2 = s1 · 2 and s3 = s1 · 3. For our
experiments, we adopted a machine with 2 x Intel(R) Xeon(R) CPU
E5-2630L v3, 192GB of RAM and a Nvidia Tesla V100.
Methods We compare the performance of the DGCNN architecture
in [40] with FGCNN trained with our layer-wise multi-task based
approach (LMT-DGCNN). We employ the WL kernel with h fixed to
3 and with a feature space hashed into a vector of size 2000 or 5000
(depending on the dataset). As some related work suggests, the hash
size (after a certain value) does not influence much the performance
of the kernel [32]. In general, the larger the hash size, the closer the
kernel is to the non-hashed version, but the slower the training of the
network becomes. We did not find evidence of significant performance
changes increasing the hash sizes, so we decided to leave it relatively
small so not to impact the efficiency of training. The neural networks
are evaluated via a 10-fold cross-validation, in which we used eight
folds for training, one fold for validation and one fold for testing.
We repeat the whole experiment 10 times, and report in Table 1 the
average accuracy and the standard deviation.
Results and analysis The top section of Table 1 reports the results
of our first set of experiments. The first line reports the performance
of the graph kernel we adopted, WL with 3 iterations. The second
line of the table reports the results of DGCNN. The performance
of our proposed method, LMT-FGCNN, are reported in the third
line. We can see that our approach performs better than DGCNN in
all the considered datasets. We assess the statistical significance of
the improvements performing a 10 × 10 CV test with confidence
level 95% (and 10 degrees of freedom) for each pair of methods on
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Table 1. Summary of our experimental results. We report accuracy± standard deviation. We underline the best results for each architecture, and we report in
bold the highest performance on each dataset. Results marked with ∗ are significantly worse than the best performing method.

Method/Dataset MUTAG PTC NCI1 PROTEINS D&D

WL (h=3) 76.79∗±3.17 57.48∗±1.36 82.13±2.17 69.63∗±1.22 73.64∗±2.56

DGCNN 82.48∗±1.49 57.14∗±2.19 72.97∗±0.87 73.96∗±0.41 78.09∗±0.72

LMT-FGCNN 86.81±1.75 59.04±0.94 82.20±0.54 76.03±0.68 80.14±0.76

A
bl

at
io

n
st

ud
y

FGCNN 84.49±1.90 58.82± 1.80 81.50±0.39 74.57∗±0.80 77.47∗±0.86

LMT-DGCNN 85.00±1.15 59.39±0.51 77.02∗±0.48 74.61∗±0.89 78.11∗±0.61

MT-DGCNN 83.68±1.29 58.39±1.11 76.55∗±0.40 74.42∗±0.36 78.17∗±0.57

MT-FGCNN 85.81±1.62 59.23±2.35 81.86±0.41 75.18±0.66 79.90±0.39

PT-DGCNN 85.38±1.47 58.48±1.92 75.20∗ ±0.87 75.19±0.42 78.38∗±0.55

all datasets [12]. We find that our proposed LMT-FGCNN performs
significantly better than DGCNN on all the considered datasets.

LMT-FGCNN performs also better than the WL kernel in all the
considered datsets. The same statistical significance test shows that
the difference with WL is significant in four out of five datasets (on
NCI1, the improvement of LMT-FGCNN is not significant compared
to WL). Note that these datasets have been extensively used for more
than a decade, and obtaining this kind of results is extremely difficult.
Computational Times Training FGCNN on NCI1 for 100 epochs
takes 1m36s, while MT-FGCNN and LMT-FGCNN take 28s for the
kernel computation, and 1m45s and 2m06s for training, respectively.

5.1 Ablation Study
In this section, we study the contribution of each component of our
proposed method to the increment in performance reported in the
previous section. We start analyzing the performance of the FGCNN
architecture trained with a standard procedure. Then, we study the
effect of our training procedure. First, we apply the same LMT pro-
cedure to DGCNN. Then we compare LMT with the simpler MT
procedure, that does not incorporate layer-wise supervision. Finally,
we compare our LMT method to the approach presented in [19], that
we refer as PT (pre-training). Since its computation is very expensive,
we compute PT-DGCNN only.
Contribution of Funnel architecture In the fourth line of Table 1,
we report the results of the FGCNN architecture trained with a stan-
dard procedure (i.e. no kernel information is provided). The perfor-
mances of FGCNN are higher compared to DGCNN in four out of
five datasets. However, they are consistently lower compared to LMT-
FGCNN. The statistical test confirms that FGCNN is significantly
worse than LMT-DGCNN on two datasets, and comparable in the
other datasets. These results indicate that FGCNN is overall a better
architecture compared to DGCNN, but that our results are not solely
due to the change in architecture.
Contribution of multi-task training In order to understand if our
LMT training procedure is effective also on other neural architectures,
we apply it to the DGCNN network, obtaining LMT-DGCNN that is
reported in the fifth line of Table 1. Comparing LMT-DGCNN with
DGCNN, we see that the performances of the former are always higher
compared to those of the latter. The significativity test shows that the
difference is significant in MUTAG and NCI1 datasets. Since LMT-
DGCNN incorporates information from the WL kernel, we should
compare its results with WL as well. In four out of five datasets, LMT-

DGCNN improves over the WL kernel. A notable exception is NCI1,
where the WL kernel performs significantly better compared to LMT-
DGCNN. Let us now try to understand what prevents LMT-DGCNN
to reach the WL performance as happens with LMT-FGCNN. We in-
vestigate how much multi-task training and pre-training affect the rep-
resentation learnt by the lower graph convolution layers of DGCNN.
We extract an intermediate hidden representation of DGCNN, ob-
tained after the GC layers. We then sum the representations of all
the nodes, and we run an SVM classifier on this representation. If
the training procedure alters the representation learned by the graph
convolution layers, we expect the SVMs trained on the intermediate
representations extracted from DGCNN and (L)MT or PT-DGCNN
to exhibit different predictive performances. We omit these results
for lack of space. Surprisingly, for the majority of the datasets, we
find out that the performance of the intermediate representations of
DGCNN with and without kernel supervision are really close. This
actually follows the intuition that in DGCNN it is difficult for the
gradient to pass through the sortpooling operation in the readout and
the tanh nonlinearities in the graph convolutional layers.
Contribution of Layer-wise embeddings in Multi-Task training
Let us analyze the effects of the layer-wise supervision in LMT, com-
paring it with the more straightforward MT (see Section 4.2.1). Rows
six and seven of Table 1 report the performance of MT-DGCNN and
MT-FGCNN, respectively. While the MT method improves over the
standard training approach, MT-FGCNN has almost always slightly
lower performance compared to LMT-FGCNN (with the exception
of PTC, where the two methods are comparable). Similar considera-
tions apply to MT-DGCNN when comparing to LMT-DCNN. Overall,
when comparing LMT with MT, we see a slight advantage for the
former. However, the MT method is more general, not requiring to
assign a feature to a specific layer of the GCNN. This result suggests
that, in principle, the MT variant of our multi-task training procedure
can be effective also when a single embedding is given for each graph.

5.2 Comparing LMT vs Other Strategies
In this section, we compare our LMT method with the related pre-
training approach from [19], that we refer as PT. Since PT has a very
high computational complexity, we computed it on DGCNN only.
The last row of Table 1 reports the results of PT-DGCNN. Comparing
it to LMT-DGCNN, we see that the two approaches are in general
comparable. Not surprisingly, the bigger difference between the two
methods is on the challenging NCI1 dataset, where it looks like incor-
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Table 2. Comparison of our proposed FGCNN and LMT-FGCNN with graph kernels and different GCNNs architectures. We report accuracy± standard
deviation of ten runs of 10-fold CV. †: results are obtained with the same model selection procedure used for the other models, that is different compared to [38].

Method/Dataset MUTAG PTC NCI1 PROTEINS D&D

RW 79.17±2.07 55.91±0.32 >3 days 59.57±0.09 >3 days

PK 76.00±2.69 59.50±2.44 82.54±0.47 73.68±0.68 78.25±0.51

WL 84.11±1.91 57.97±2.49 84.46±0.45 74.68±0.49 78.34±0.62

PSCN - - 76.34±1.68 75.00±2.51 76.27±2.64

GIN† 84.68±1.82 57.80±0.86 71.14±1.71 71.89±1.41 72.60±2.14

DGCNN 82.48±1.49 57.14±2.19 72.97±0.92 73.96±0.41 78.09±0.72

LMT-FGCNN 86.81±1.75 59.04±0.94 82.20±0.54 76.03±0.68 80.14±0.76

porating kernel information during training is more beneficial than
using it in a pre-training phase. While the predictive performnce of
LMT and PT are in general comparable, their running times are not,
with LMT not significantly increasing the computational complexity
of the training stage compared to standard approaches.

5.3 Comparison with state-of-the-art graph kernels
and graph neural networks

For a baseline comparison, we report from [40] the performance of
four state-of-the-art graph kernels: the graphlet kernel (GK) [31], the
random walk kernel (RW) [36], the propagation kernel (PK) [22],
and the Weisfeiler-Lehman subtree kernel (WL) [30]. The hyper-
parameters’ values of different kernels are selected as follows: the
height of WL and PK in {0, 1, 2, 3, 4, 5}, the bin width of PK to
0.001, the size of the graphlets in GK to 3 and the decay of RW
to the largest power of 10 that is smaller than the reciprocal of the
squared maximum node degree. We report also the results of the other
recent GCNN architectures: PSCN [24], and Graph Isomorphism
Network (GIN) [38]. For GIN, we re-run the experiments following
our experimental setting. We considered the hyperparameter values
reported in the original paper, and validated the number of neurons in
{16, 32} and the learning rate in {0.01, 0.001}. In Table 2 we report
the results of our experiments. Our method (LMT-FGCNN) shows
higher performance when compared to other GNNs in all the datasets.
Considering graph kernels, it shows better (on MUTAG, PROTEINS
and D&D datasets ) or competitive performance (comparable accuracy
with respect to PK on PTC, and third best accuracy on NCI1).

6 SEMI-SUPERVISED LEARNING
In this section, we show how it is possible to use our proposed pre-
training method to incorporate information from unlabeled examples
in the training procedure. We consider other datasets compared to
the first set of experiments since it is reasonable to have the data in
U coming from approximately the same distribution of D. For this
reason, we consider three datasets from the National Cancer Institute:
NCI1B, NCI33B, NCI41B [26, 27]. Each dataset consists of a set of
chemical compounds tested for their activity against a specific type of
tumor. Note that NCI1B is slightly different from NCI1 adopted in the
previous experiments. Inputs are thus drug-like chemical compounds
in all cases. In Table 3 we report our results. As expected FGCNN
performs significantly better than DGCNN. In addition, on these
datasets, whenU = D (+0, 3rd column) LMT-FGCNN improves over
FGCNN. In the 4th column (+1), we report the performances when U

Table 3. Performance improvements when considering additional unlabeled
data during training.

Dataset/
DGCNN FGCNN

LMT-FGCNN

Method +0 +1 +2

NCI1B 72.92 79.27 81.01 81.19 82.07
±0.56 ±0.70 ±0.56 ±0.46 ±0.21

NCI33B 75.00 81.75 81.81 82.60 82.69
±0.42 ±0.67 ±0.20 ±0.39 ±0.56

NCI41B 70.94 78.30 79.02 79.10 79.54
±0.53 ±0.67 ±0.17 ±0.40 ±0.15

is composed by the graphs in 2 datasets. E.g., in the 4th column of the
1st row, U = NCI1B ∪ NCI33B, and obviously D = NCI1B. In the
last column, +2, U is the merge of 3 datasets. We can see a consistent
trend for the performances to improve when we add more datasets to
the training procedure. Notice also that the learnt models are more
stable, since the standard deviations tend to decrease when adding
more unlabeled data. We think that these experiments can pave the
way for future approaches that exploit unlabeled data in the training
procedure to improve the performance of learning algorithms.

7 CONCLUSIONS AND FUTURE WORKS
In this paper, we presented an architecture and a training procedure
designed to incorporate information conveyed by a graph kernel in
the learning process of graph convolutional networks. Our method
exploits the explicit representation available for some widely adopted
graph kernels. We experiment our proposal on five real-world graph
classification tasks, obtaining state-of-the-art performance. We con-
duct an ablation study to understand the contribution of each compo-
nent of our method to the final results. The strength of our approach
is that it does not rely on external (labeled or unlabeled) data to im-
prove the performance of GCNNs. Nonetheless, it makes possible to
incorporate additional unlabelled data to the training set, in a semi-
supervised fashion. Preliminary results show that this approach can
further improve the predictive performance of GCNNs, opening the
door to future works in this direction.
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