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Abstract. In order for robots to interact with humans on real-world
scenarios or objects, these robots need to construct a representa-
tion (‘state of mind’) of these scenarios that a) are grounded in the
robots’ perception and b) ideally should match human understand-
ing and concepts. Using table-top settings as scenario, we propose
a framework that generates a robot’s ’‘state of mind’ by extracting
the objects on the table along with their properties (color, shape and
texture) and spatial relations to each other. The scene as perceived
by the robot is represented in a dynamic graph in which object at-
tributes are encoded as fuzzy linguistic variables that match human
spatial concepts. In particular, this paper details the construction of
such graph representations by combining low-level neural network-
based feature recognition and a high-level fuzzy inference system.
Using fuzzy representations allows for easily adapting the robot’s
original scene representation to deviations in properties or relations
that emerge in language descriptions given by humans viewing the
same scene. The framework is implemented on a Pepper humanoid
robot and has been evaluated using a data set collected in-house.

1 INTRODUCTION
Creating a ’robot state of mind’, i.e., an internal representation about
the perceived outer world, is an important step in capturing a robot’s
understanding of this outer world [18]. A robot state of mind can
be based on different sensory inputs, such as audio, infrared/laser,
or vision. Vision is one of the primary sensors for most humanoid
robots. It is useful in SLAM, navigation, object recognition, or ob-
stacle avoidance, among others. Vision is also the primary sense for
us humans; thus, it seems advantageous to ground the robot’s state
of mind in visual perception for human-robot interaction. Ideally, this
state of mind should match human concepts to facilitate interaction.

Our work is set in the context of human-robot interaction. It is the
robot’s task to identify objects in its visual perception that have been
mentioned by a human user in natural language requests. Specifically
in this paper, we propose a framework that captures object properties,
including color, shape, and texture, and their spatial relationships in
a dynamic graph, in which edges are labeled using fuzzy linguistic
variables that match human concepts of these relationships. These
properties are helpful in identifying an object in the presence of am-
biguity or false positives produced by the robot’s recognition system.
False positives occur where a robot mistakes an object for one of a
different (incorrect) type. For example, if the robot recognizes an
apple for a sports ball, then in interaction with the robot addition-
ally specifying the shape, color or texture of the apple may help the
robot to still identify the correct (intended) object despite having rec-
ognized the wrong type. Furthermore, spatial relationships between
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objects, or of an object to the overall scene, may help resolving such
recognition issues, for example, talking about ‘the apple next to the
cup’ or ‘the apple in the top-right corner of the table.’. However, of-
ten people do not agree on the applicability of specific values for the
properties or spatial relations. For example, while some may call an
apple ‘red’, others may name it ‘orange,’ or some may describe the
apple to be next to the cup, while others may say ‘the apple to the
right of the cup.’ Thus, there is ambiguity and impreciseness in these
properties and relations, and in their linguistic labels (cf. [14]). That
is why we propose a fuzzy inference system to deal with these issues.

We use artificial neural networks (ANN) to extract object prop-
erties from the perceived scene [12, 16]. The probabilities at the
networks’ output layers are then translated into fuzzy membership
values. For example, the color property is represented by the fuzzy
set object color; all color categories are assigned to this set with
their membership value derived from the network’s output layer. This
allows coping with discrepancies between a color perceived by the
robot—say a ‘yellow’ banana—and what the human seems to see—
e.g., a ‘green’ banana. Similar fuzzy membership functions are con-
structed for shape and texture as well as for spatial relations.

In constructing the knowledge graph that represents the robot’s
‘state of mind’, for every attribute (the different object properties and
spatial relations) we select the highest membership value of the cor-
responding fuzzy sets; these are taken to be the most likely, or most
applicable, attributes to hold for each object in the scene. Figure 1
provides an overview of our framework2. The graph is grounded in a
robot’s visual perception of tabletop scenes, which we use as setting
here. The graph is produced dynamically and changes as the robot
shifts visual attention. The nodes of the graph represent the different
objects of the scene while their attributes are captured by the edges.

The proposed system not only allows for identifying objects under
ambiguity and imprecision, but can also be used to provide feedback
to human users if the robot cannot resolve mismatches between its
perception and the human request. Mismatches may occur because of
some failed visual recognition or because the request is ambiguous,
among others. Examples of mismatches are shown in Figure 2. Here,
the robot generates natural language requests for clarification using
the properties and relationships it has previously extracted.

An empirical evaluation estimates the differences between the
system-generated visual grounding and human-given language
grounding for several different scenes. Differences are measured in
terms of graph mismatch. The main contributions of the paper are:

1. A combination of low-level neural network-based feature extrac-
tion from a robot’s camera image and a high-level fuzzy inference
system that allows handling of ambiguity in and mismatches be-

2 A larger image of the scene can be seen in Figure 3.
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Figure 1. Overview of the visual grounding / fuzzy inference framework proposed in this paper. The edges of the graph (right) represent the most likely
spatial relations. For readability reasons we symbolize object properties as an RGB vector indicating color, shape, and texture properties instead of showing

actual values and edges for these attributes.

tween human natural language requests and the robot’s visually
grounded ‘state of mind.’

2. the generation of targeted natural language clarification requests
that allow a robot to resolve said ambiguities in interaction with a
human user.

The paper is structured as follows. Section 2 discusses related
work. Section 3 provides details on visually grounding object prop-
erties; Section 4 introduces the fuzzy inference system and ground-
ing of spatial relations. Section 5 explains how natural language in-
teraction between human and robot is realized in our system, while
Section 6 presents an evaluation of the combined feature extraction /
fuzzy inference system. Finally, Section 7 concludes the paper.

2 RELATED WORK
Visual grounding of a scene is fundamental in being able to interact-
ing on it. It provides a representation of the different objects present,

Figure 2. Examples of mismatches and the robot’s clarification requests
(bottom: human request; top: robot answer). Red boxes mark the most likely

object shown as feedback response; green boxes the identified object.

their properties, and location with respect to each other. Most re-
search (e.g., [8, 18, 21]) has used convolutional neural network or
Long-Short Term Memory (LSTM)-based deep neural network ar-
chitectures for visual grounding, even if there is some research using
statistical modelling (e.g., [3, 11]).

Vavrecka et al. [21] presented an unsupervised learning algorithm
for spatial grounding, which extracts shape, color and spatial rela-
tions of objects in a scene. Self-organizing maps and a neural gas al-
gorithm are used for grounding, using scene descriptions and object
features as input. Kittler et al. [11] introduced unsupervised phys-
ical symbol grounding using a visual bootstrapping method. They
employ a recursive clustering approach where each domain, such as
color or shape, are clustered and mapped to achieve the final goal.
A data driven approach is proposed by Grollman et al. [5] where an
infrared sensor is used as an additional sensor to capture depth infor-
mation. Bayesian clustering and ISOmap as a dimension reduction
method are used to classify categories. The authors tested their sys-
tem in indoor and outdoor environments.

Golland et al. [3] proposed a game theoretic model for grounding
that aims at identifying spatial relations between objects. Guadar-
rama et al. [6] mitigated the constraints setup in [3] by using a prob-
abilistic approach. The main object of a visual scene and its spa-
tial relationships with other objects are extracted. This information is
combined with semantic parsing of sentences using template match-
ing and a probabilistic approach. The authors used explainable AI
concepts for visual grounding [8]. The features obtained from each
module are fed into a LSTM network to obtain the final score of
grounding. Some researchers (e.g., [9, 10, 20]) have used fuzzy sys-
tems to ground visual understanding of objects. However, they have
not fully exploited object properties, such as color, shape, or texture.

Mast et al. [14] developed a system that can handle vagueness
in understanding and producing object descriptions in visual scenes.
Vagueness, or graded category membership, is computed using a ex-
ponentially decaying similarity function (following [2]). Similar to
our work, they used color, shape, size, and spatial relations as fea-
tures in the object descriptions. Their work differs in how these fea-
tures are identified and represented, and only uses configurations of
simple 2D geometric shapes in the visual scenes.
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3 VISUALLY GROUNDING OBJECT
ATTRIBUTES

We extract the relevant properties of all objects from an image taken
by the robot’s cameras. We use shape, texture, and color as they de-
fine an object visually (to a large extent). Determining spatial rela-
tions between objects is further detailed in the next section. Taken
together, these attributes provide a visual grounding of a scene’s ob-
jects and their relationship to each other.

3.1 Object recognition

In order to extract their properties we need to first detect the ob-
jects in the image. We use Mask-RCNN [7] for object recognition
(i.e., identifying the type of object) and segmentation. Mask-RCNN
is pre-trained on the COCO dataset [13], which has 12 main cat-
egories, such as ‘sports’, ‘food’, ‘electronic’, ‘kitchen’, ‘furniture’,
or ‘indoor.’ These categories cover 80 different objects of which we
use the following 21 in our experiments: ‘dining table’, ‘laptop’,
‘mouse’, ‘keyboard’, ‘cell phone’, ‘banana’, ‘apple’, ‘orange’, ‘broc-
coli’, ‘carrot’, ‘cake’, ‘bottle’, ‘wine glass’, ‘cup’, ‘fork’, ‘knife’,
‘spoon’, ‘bowl’, ‘book’, ‘scissors’, ‘teddy bear.’ An example object
recognition and segmentation is shown in Figure 3.

Figure 3. An example scene from our experiments showing the bounding
boxes of the recognized objects, as well as the labels and probabilities for the

specific object types.

3.2 Estimating object shape

Mask-RCNN [7] provides bounding boxes for each region contain-
ing the pixels of each object. In order to extract the actual shape of an
object, we convert these bounding boxes into dummy images where
all points (pixels) belonging to the object are ‘black’ and all others
‘white.’ From this black and white image we easily get the boundary
points of the object as shown in Figure 4; these define the shape of
the object as perceived by the robot. We distinguish five categories of
shapes, namely ‘triangle’, ‘rectangle’, ‘square’, ‘circle’, and ‘cylin-
der.’ Due to occlusions shapes may be distorted, thus, we use the
convex hull rather than the actual extracted boundary. We represent
the shape of an object using a 5-dimensional vector (Oi ∈ R5), rep-
resenting the shape features listed below. We train a multi layer per-
ceptron [16] with 2 hidden layers and 10 neurons in each layer with
a softmax activation function to classify these shapes, using labeled
data of table-top scenes (see Section 6 for details on the data).

1. Aspect Ratio: states the ratio between the width and height of an
object’s boundary. This feature discriminates triangle and circle
from rectangle and square.

AspectRatio =
width

height
(1)

2. Extent: is the ratio between the object area and area of its bound-
ing box.

Extent =
ObjectArea

hBB ∗ wBB
(2)

3. Solidity: is the ratio between the object area and the area of its
convex hull.

Solidity =
ContourArea

ConvexHullArea
(3)

4. Equivalent Diameter: is the diameter of the circle whose area is
the same as the contour area. This helps in discriminating circular
shapes from other shapes.

EquivalentDiameter =
4 ∗ ContourArea

π
(4)

5. Degree of Polynomial: helps to predict a shape, e.g., a degree of
3 likely indicates a triangle. We first estimate the convex hull of an
object and then approximate this polygon with another polygon of
lesser degree.

3.3 Determining object texture
We use Local Binary Pattern (LBP) [15] to estimate the texture of an
object. LBP codes each texture pixel based on its neighbors (Equa-
tion 5). If the intensity (ic) of the center pixel (xc, yc) is less than the
intensity (ip) of its neighbor (xp, yp), then the pixel value of (xp, yp)
is set to 1 else to 0. We use a radius R of 3 and 24 neighbors P.

LBPP,R =

P−1∑
i=0

2i ∗ S(ip − ic)

where S(x) =

{
0, if x >= 0

1, otherwise

(5)

Further, we use the intensity histogram of an object as a feature,
represented as a vector R256. Examples of some objects, their tex-
ture, and histogram are depicted in Figure 5. We use the three texture
classes ‘shiny’, ‘smooth’ and ‘rough’ and train another multi-layer
perceptron (2 hidden layers with 100 neurons) to classify the texture
of objects.

Figure 4. Examples of segmented objects and their extracted shape.
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Figure 5. Examples of objects, their LBP image and intensity histogram
(x-axis: intensities in the range [0-255]; y-axis: frequency). The first row
shows a ‘shiny’, the second a ‘smooth’, and the third a ‘rough’ texture.

3.4 Determining object color
We use a convolutional neural network (CNN) for classifying ob-
jects according to nine predefined color categories: ‘black’, ‘blue’,
‘orange’, ‘purple’, ‘red’, ‘white’, ‘yellow’, ‘green’, ‘pink.’ An
AlexNet [12] with five convolution layers, three max pooling layers,
and two fully connected layers with dropout is trained on 128x128
pixel images downloaded from Google image searches on specific
color names. Sample images are shown in Figure 6. 500 images per
color category are used, with a 60:40 ratio between training and vali-
dation set. Clearly, human users may use other colors as well in their
verbal requests, such as ‘gray’ or ‘maroon’, but these can be cov-
ered under the nine color categories (e.g., ‘maroon’ under ‘red’) as
explained in the next section.

Figure 6. Sample images of the 9 color categories used in training the
color classification network.

4 A FUZZY INFERENCE SYSTEM
This section details the high-level fuzzy inference system used to
match a robot’s state of mind to the object(s) mentioned in a human
request. Both an object’s shape, texture, and color properties, and
spatial relations between objects are represented using fuzzy sets.

4.1 Fuzzy object features
As discussed in Section 3 three different neural networks are trained
to recognize object properties. At the output layer of these networks

Figure 7. Fuzzy set representation of the ‘yellow’ color category.

we use a softmax classifier [4]. Softmax is an exponential averaging
function (Equation 6) with values between 0 and 1. Here i represents
one class and j represents all other classes.

Softmax(xi) =
exp(xi)∑
j exp(xj)

(6)

Values of the softmax function can be directly mapped to fuzzy mem-
bership values, which makes it straightforward to define fuzzy mem-
bership functions for the different object features (Equation 7).

U(µx) = Softmax(xi) (7)

Here, U is the fuzzy membership function for ‘color’, ‘shape’ and
‘texture’, respectively, while µx denotes the membership value of the
property category x belonging to the fuzzy set U for a given object.

For each color category (e.g., ‘yellow’ or ‘blue’) we specifically
define aliases that may be used in verbal requests instead of the cate-
gory names, for example ‘gold’ instead of ‘yellow.’ These aliases are
mapped to the respective color categories again using fuzzy member-
ship functions; Figure 7 illustrates this for ‘yellow.’

4.2 Fuzzy spatial relations
In the object segmentation step (Section 3.1), we determine the coor-
dinate (x, y, z) of each object’s center point [19]. With these coordi-
nates we can compute spatial relations between the different objects.
However, the applicability of their corresponding linguistic labels are
inherently fuzzy, i.e., the degree to which a certain relational term is
appropriate may vary. And different people may use relations dif-
ferently. For example, all other objects depicted in Figure 3 are to
the right of the bowl, but for some using the relation ‘right of’ seems
more appropriate than for others. This varying degree of applicability
can be easily represented using fuzzy membership functions.

We distinguish three kinds of spatial relations: 1) topological rela-
tions, 2) directional relations, 3) distance relations. Topological rela-
tions are defined with respect to the image plane rather than to other
objects. Directional relations are further divided into 2D and 3D rela-
tions and rely on the angle formed between two objects. Distance re-
lations are based on the distance between objects in the image plane.

1. Grounding topological relations: Topological relations are
image-centric. We divide the image in 9 equal-sized regions ‘top
left’, ‘top right’, ‘top center’, ‘middle left”, ‘middle right”, ‘mid-
dle center’, ‘bottom left’, ‘bottom right’, ‘bottom center.’ These
regions are crisp for now; there is no fuzzy membership defined
for them. Each object is assigned to one of these regions based on
largest overlap with its bounding box.
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2. Grounding directional relations: 2D directional relations do not
rely on depth information (e.g., ‘left’, ‘next to’) whereas 3D rela-
tions use depth information (e.g’, ‘in front of’, ‘on’).

(a) Grounding 2D relations: we consider ‘left’, ‘right’ and ‘next
to’ as 2D relations. We use Equation 8 to estimate them; ‘next
to’ is taken to be a generalization (or unspecified version) of
the relations ‘left’ and ‘right.’ There is no specific membership
function for it. The two fuzzy sets ‘left’ and ‘right’ are defined
based on the difference in x coordinate between the referring
object and the reference object. If the difference is negative,
then we assign the referring object to the set ‘right’, else ‘left.’

µ(U)(y) =


0, if y <= a
y−a
m−a

, a < y <= m
b−y
b−m

, m < y < b

0, y >= b

(8)

(b) Grounding 3D relations: We use ‘in front’, ‘behind’, ‘in’, and
‘on’ as 3D directional relations. These relations are dependent
on depth perception; accordingly we use the robot’s depth sen-
sor to estimate these relations.
Grounding ‘in front’ and ‘behind’ relations: These two re-
lations express opposites similar to ‘left’ and ‘right.’ We use
the distance between objects to estimate whether an object is
‘in front’ or ‘behind’ the other one. As objects consist of a set
of points, just using one coordinate would not be adequate. We
select 50 random points of each object and calculate distances
between them. The average distance is then considered the ac-
tual distance between the two objects. If the distance is positive
then the referring object is ‘behind’ the reference object else
‘in front’ (e.g., the banana is ‘in front’ the cup in Figure 3). In
other words, computing these relations is similar to computing
‘left’ and ‘right’, just using the y axis instead.
Grounding ‘in’ and ‘on’ relation For ‘in’ and ‘on’ to hold,
the reference object should (partly) cover the referring object.
This coverage can be expressed by a fuzzy membership value
stated in Equation 9. Here Oj represents the referring object
and Oi the reference object. This relation holds if Oj’s area is
less thanOi’s otherwise we treatOj as reference object andOi

as referring (similarly for object height). We use a triangular
membership function to represent membership values.

µratio =
Oj(area)

Oi(area)
∗ Oj(height)

Oi(height)
(9)

3. Grounding distance relations: We use ‘near’, ‘close’ and ‘be-
tween’ as distance relations. We take ‘close’ to express shorter dis-
tances between two objects than ‘near’, while both express near-
ness of course. The relation ‘between’ is used to cover cases where
an object’s location is described using two (or more) reference ob-
jects. Figure 8 depicts the membership distribution of ‘close’ and
‘near.’ The inner dark-blue ring represents ‘close’; the outer blue
ring ‘near.’ To determine membership values we map the image to
a 1:1 coordinate system and then use thresholds to define ‘close’
(distance < 0.2) and ‘near’ (distance between 0.2 and 0.5). We
again use a triangular membership function.

Having determined fuzzy membership functions of all object at-
tributes, we have defined a fuzzy inference system for the robot’s
state of mind. For example, the fuzzy set representations for the two
cups ‘cup-1’ and ‘cup-2’ of Figure 3 are as follows:
Cup-1{cylinder, red, smooth}

Figure 8. Visualization of the ‘close’ and ‘near’ membership functions
relative to the reference object’s center.

Right = {0.4/cup}
Behind = {0.8/orange}
Cup-2{cylinder, black, smooth}
Left = {0.2/orange, 0.6/cup}
Right = {0.6/orange}
Behind = {0.9/banana}
Given a verbal request “Give me the cup behind the banana,” we se-
lect all instances of the category cup and their fuzzy sets. We then
check whether the reference object (the banana) is present in these
sets. If it appears in the sets of multiple objects, preference is given
to the object associated with the highest membership value. Here, the
inference system would select ‘cup-2’ (see Section 5).

4.3 Constructing the knowledge graph

Based on the fuzzy membership functions for all object attributes
(shape, color, texture, spatial relations), we construct a knowledge
graph that reflects the robot’s ‘state of mind’ of the perceived scene.
This graph is dynamic as it needs to capture changes induced by
changed perception (e.g., due to robot movement). The vertices of
the graph represent the detected objects. Object features are repre-
sented by edges pointing to the object itself, while spatial relations
are represented by edges between two objects. In case of multiple oc-
currences of objects of the same type, we name these objects object-
1, object-2, ’, object-n (e.g., cup-1, cup-2, cup-3), which results in a
unique identifier for each object (vertex). Since we use a fuzzy rep-
resentation, multiple values may hold for object attributes to varying
degrees. Only the value with highest membership is represented di-
rectly in the graph, i.e., as an edge. All other values are stored in a
secondary look-up table, which may be queried if some attribute in a
human request does not match with the graph representation.

Representing just the ’best fit’ in the graph as a direct edge is ben-
eficial in terms of computational complexity. We use graph matching
to map a human verbal statement to the robot’s state of mind (see
Section 5). Reducing the number of edges in the graph drastically
reduces the effort in graph matching. A complete graph for a given
scene has complexity O(n(n-1)), where n is the number of objects in
the scene. In our proposed system graph complexity is as follows:

Complexity =

{
O(n(n− 1), 1 < n < 5

O(4n), 4 < n
(10)

In other words, with more than five objects present in a scene com-
plexity is linear. Additionally, we believe that representing only the
attributes with the highest applicability reflects those statements hu-
mans are most likely to make about the objects in the scene.
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5 NATURAL LANGUAGE INTERACTION
As stated in the introduction, our work is set in the context of human-
robot interaction on table-top settings. A Pepper robot is to receive a
user’s natural language request for an object on the table, and to iden-
tify this object. The robot can also generate natural language clarifi-
cation requests. We use Google’s speech engine3 for converting spo-
ken language into text. We then apply language parsing to extract the
referring and reference objects, and any of their properties and spatial
relations included in the verbal description; see [1] for more details
on language parsing. Figure 9 shows an example parse tree of the
statement “Give me the black cup behind the banana.” Here, ‘cup’ is
the referring object and ‘banana’ the reference object. A color prop-
erty (‘black’) and a spatial relation (‘behind’) are mentioned. While
there is explicit handling of color name aliases (Section 3.4), ‘aliases’
for commands (or intents) of the user are hand-coded for now; there
is no intent recognition in the system at this point.

Figure 9. Parse tree of the request “Give me the cup behind the banana.”

From this, we construct a scene representation of the human re-
quest that is matched to the previously constructed knowledge graph.
The representation corresponding to above statement is as follows:

Language Parsing
{
"rel_obj": "cup",
"ref_obj": "banana",
"rel_pro": {
"colour": "black",
"shape": "nil",
"texture": "nil"
},

"ref_pro": {
"colour": "nil",
"shape": "nil",
"texture": "nil"
}

}

Parts of the robot’s ‘state of mind’ for the scene in Figure 3 is as
follows (this is just for illustration purposes and, hence, incomplete):

Visual Grounding
{
"apple-1": [
{
"colour": "red",
"shape": "circle",
"texture": "smooth",
"left": [’bowl’],

3 https://cloud.google.com/speech-to-text/

"right": [’cup-2’,’orange’],
"infront": [’cup-1’],
"behind": [’banana’],

},
],
"cup-2": [

{
"colour": "black",
"shape": "cylinder",
"texture": "smooth",
"left": [’apple’,’cup-1’],
"right": [’orange’],
"behind": [’banana’],

},
]
...

To match natural language requests to the visual grounding, we
search the referring object—here ‘cup’—in the knowledge graph,
using object type and its properties. If the object type leads to an
unambiguous match, e.g., there is only one cup, or if the object type
in combination with its mentioned properties can be unambiguously
identified in the visual scene, matching has been successful and any
further spatial relations are ignored. Otherwise (e.g., if there is a sec-
ond black cup in the setting), these relations are used for further dis-
ambiguation. The interaction scenario is further illustrated in Fig-
ure 10.4

The robot displays the identified objects on the tablet attached to
its chest, which provides some feedback about what the robot actu-
ally understands. Users can also ask to receive a natural language
scene description. Further, in case the robot is unable to match a hu-
man request to its knowledge graph, it can generate a clarification
request based on object features and spatial relations. To that end
we use a simple template-based approach (see below). It uses a set
of question prefixes followed by those attributes most relevant for
object disambiguation. All tags in the <> expressions are optional
except for the question tag. For example, the robot may request the
color of the intended object (“Could you tell me the color?”), or sug-
gest the object it considers most likely (“Do you mean the cup behind
the apple?”).

Feedback question template
<question tag><color|shape|texture><rel object>
<relation><color|shape|texture><ref object>
<question tag>={’Do you mean the’,’Is this the’, ’Could
you tell me the’, ’Is it’}
Example feedback statements
1. Do you mean the red cup ?
2. Do you mean the cup behind the apple ?
3. Is this the cup ?
4. Could you tell me the color ?
5. Could you tell me the relation to the orange ?
6. Is it circular ?
7. Is it left of the white bowl ?
8. Is it center left ?

4 see also the video at https://rb.gy/0ziwjm. This video is for illustrative pur-
poses, it is not part of the evaluation.
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Figure 10. An example scene of interacting with a Pepper robot on a
table-top setting, including a visualization of the robot’s ‘state of mind.’

6 EVALUATION

We have created a data set of table-top scenes, i.e., objects placed in
some arrangement on a table. The data set consists of 128 images
using 21 different object types. We manually labeled the ‘shape’,
‘color’, ‘texture’ and ‘spatial relations’ of these objects in order to
have ‘ground truth’ for the training of the different classifiers and
to be able to evaluate system performance. The distribution of these
attributes are shown in Figure 11. We can see that the ‘simple’ di-
rectional relations (‘left’, ‘right’, ‘in front of’, ‘behind’) and distance
relations (‘close to’, ‘near’) are used much more frequently than the
topological (image-centric) relations. And while the different shape
and texture categories are relatively evenly distributed, there is a large
variation in color frequency in the data.

Figure 11. Object features, spatial relations and their frequency as they
appear in the evaluation dataset.

This data set was used to train and test the ANNs for classify-
ing the ‘shape’ and ‘texture’ properties; the network for the ‘color’
property was trained and tested on the Google images (Section 3.4).
We evaluated different combinations of hidden layers and number
of neurons for shape and texture networks. For shape, a configura-
tion of 2 hidden layers with 10 neurons each results in a misclassi-
fication of only 4.8%. As the texture property vectors have a much
higher dimensionality (R256), more neurons (100) are needed to han-
dle non-linearity. We also explored different parameter settings for

Figure 12. Average case-1 (blue) and case-2 (green) mismatches (‘errors’)
between human description and the robot’s visual grounding for attributes
color, shape, texture, and spatial relation, over all 128 scenes (in percent).

LBP [15]. With a radius of 3 and 24 neighbors, and the adapted ANN
we achieve a validation error of 5.6%. Training the ‘color’ network,
we divide the data into training and validation using a 60:40 ratio and
use a batch size of 256. This results in a classification error of 6.2%.

Classifying color is more challenging as there is a high inter- and
intra-class variance in the images. Non-linearity in the inherent color
distribution further contributes to these challenges. Occlusions be-
tween objects provide challenges to the shape classifier. However,
these challenges are (to a large part) captured by the fuzzy set rep-
resentations. Neural networks use maximum likelihoods, which we
take to be the best linguistic description for a given attribute. But in
case this does not match with human understanding of this attribute,
the fuzzy membership functions give access to other likely possibili-
ties, which allows for a natural way of adapting these likelihoods.

As explained in Section 4, the knowledge graph only represents
the attributes with highest membership value. For example, for the
scene in Figure 3 the apple may be seen to be ‘right’ or ‘behind’ the
bowl. However, ‘right’ has a higher membership value and, thus, gets
represented in the graph. Still, all other attributes are stored in a sec-
ondary lookup table. That is, if the apple is described to be ‘behind’
the bowl by a user, we can still retrieve this relation. We treat the
graph as case-1 matching and the lookup table as case-2 matching.

We evaluated the whole system from object recognition to the
knowledge graph and the accompanying fuzzy inference system, us-
ing the labeled ground-truth data set to that end. Four different peo-
ple (including one of the authors) generated example questions for
the 128 scenes (see [1]). These questions were fed into the system
and then compared how well this linguistic input matches with the
knowledge graph, and look-up table, constructed from visual input.
Figure 12 summarizes these results, showing average classification
error over all categories of a given attribute. Case-1 matches record
direct matches, for example, if the system extracted a ‘square’ shape
and the object is also described as ‘square’ by the human labeler. If
the human described the shape as, e.g., ‘rectangular’, we get a case-1
mismatch, but may still achieve a case-2 match, i.e., find ‘rectangle’
in the object’s fuzzy shape function. As we can see, classification
errors are generally low, with the highest being 12.9% case-1 color
mismatches over the 128 scenes. Using fuzzy membership functions
(case-2 matches) further reduces these low numbers of mismatches
significantly. Hence, we conclude that our proposed combination
of low-level neural network-based feature extraction and high-level
fuzzy inference system captures human understanding of the table-
top scenes, but also human imprecision and variation, very well.
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7 CONCLUSIONS

The second order theory of mind suggests that if a human can pre-
dict a robot’s state of mind, and if the robot in turn can reflect the
human’s state of mind in its representation of the world, and if this
second order modeling is correct (concepts and relations match),
then human and robot will understand each other correctly [17].
In this paper we aim to construct such a robot’s state of mind for
restricted scenarios—tabletop scenes of typical household objects.
We presented a framework that combines low-level neural network-
based visual processing (feature extraction) with a high-level fuzzy
inference system that captures possible ambiguity and extraction er-
rors to construct a knowledge graph that reflects the robot’s visually
grounded scene understanding. We detailed how this graph and the
fuzzy inference system can be used in natural language interaction
between human and robot. Our evaluation on a large variety of table-
top scenes shows that the system is robust, i.e., very well captures
human understanding of these scenes, but also human imprecision
and ambiguity. Future work will extend evaluation to dynamic sce-
narios of human and robot actually interacting on table-top settings.
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gray-scale and rotation invariant texture classification with local binary
patterns’, IEEE Transactions on Pattern Analysis & Machine Intelli-
gence, (7), 971–987, (2002).

[16] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al.,
‘Learning representations by back-propagating errors’, Cognitive Mod-
eling, 5(3), 1, (1988).

[17] Brian Scassellati, ‘Theory of mind for a humanoid robot’, Autonomous
Robots, 12(1), 13–24, (2002).

[18] Mohit Shridhar and David Hsu, ‘Interactive visual grounding of re-
ferring expressions for human-robot interaction’, in Proceedings of
Robotics: Science and Systems, (2018).

[19] Avinash Kumar Singh, Neha Baranwal, and Kai-Florian Richter, ‘An
empirical review of calibration techniques for the Pepper humanoid
robots RGB and depth camera’, in Proceedings of SAI Intelligent Sys-
tems Conference, pp. 1026–1038. Springer, (2019).

[20] Jiacheng Tan, Zhaojie Ju, and Honghai Liu, ‘Grounding spatial rela-
tions in natural language by fuzzy representation for human-robot in-
teraction’, in 2014 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), pp. 1743–1750. IEEE, (2014).
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