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Abstract. In this paper we describe a reasoning framework for
knowledge invention and creative problem solving that can integrate
and extend the knowledge level mechanism of diverse cognitive ar-
chitectures (CAs). This framework exploits an extension of a De-
scription Logic (DL) of typicality able to combine prototypical (com-
monsense) descriptions of concepts. It works as follows: given a goal
expressed as a set of properties, in case an intelligent agent cannot
find a concept in its knowledge base (KB) able to fulfill these prop-
erties, our framework is able to dynamically recombine, in a goal-
oriented perspective, the concepts in the KB in order to find a suitable
creative combination able to satisfy the goal. The KB of the agent is
then extended via a mechanism of commonsense concept combina-
tion where the resulting combined concept represents the solution
for the initial goal. Here we discuss how such framework is compli-
ant with the general tenets of the Standard Model of Mind and can
extend the knowledge level capabilities of diverse CAs.

1 INTRODUCTION
A challenging problem in AI concerns the capability of an intelligent
agent to achieve its goals when its knowledge base does not con-
tain enough information to do that. Currently, existing goal-directed
systems usually implement a re-planning strategy in order to tackle
such problem. Such strategy is usually performed via either an exter-
nal injection of novel knowledge or as the result of a communication
with another intelligent agent. Here, we describe an alternative ap-
proach introduced in [6]: namely a framework for the dynamic and
automatic generation of novel knowledge obtained through a process
of commonsense reasoning based on typicality-based concept com-
bination. We exploit a recently introduced extension of a Description
Logic of typicality able to combine prototypical descriptions of con-
cepts in order to generate new prototypical concepts. Intuitively, in
the context of our application of this logic, given a goal expressed as
a set of properties, if the knowledge base does not contain a concept
able to fulfill all these properties, then our system looks for at least
two concepts to recombine in order to extend the original knowledge
base and satisfy the goal.

2 A DL FOR CONCEPT COMBINATION
We adopt a nonmonotonic extension of DLs called TCL (typicality-
based compositional logic) able to reason about typicality [7, 8]. This
logic combines three main ingredients. The first one relies on the DL
of typicality ALC +TR [1], which allows to describe the prototype
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of a concept. In this logic, “typical” properties can be directly speci-
fied by means of a “typicality” operator T enriching the underlying
DL, and a TBox can contain inclusions of the form T(C) v D to
represent that “typical Cs are also Ds”. The semantics of T is char-
acterized by the properties of rational logic, recognized as the core
properties of nonmonotonic reasoning.

As a second ingredient, the logic TCL exploits a distributed seman-
tics similar to the one of probabilistic DLs known as DISPONTE
[10], allowing to label inclusions T(C) v D with a real number be-
tween 0.5 and 1, representing its degree of belief/probability, assum-
ing that each axiom is independent from each others. As an example,
we can formalize that we believe that a typical athlete is fit with de-
gree 0.9, whereas we believe that, normally, athletes are young, but
with degree 0.75, with the inclusions 0.9 :: T(Athlete) v Fit
and 0.75 :: T(Athlete) v Young , respectively. Degrees of belief
in typicality inclusions allow to define a probability distribution over
scenarios: roughly speaking, a scenario is obtained by choosing, for
each typicality inclusion, whether it is considered as true or false.

Finally, TCL employs a method inspired by cognitive semantics [3]
for the identification of a dominance effect between the concepts to
be combined: for every combination, we distinguish a HEAD, repre-
senting the stronger element of the combination, and a MODIFIER.
The basic idea is: given a KB and two concepts CH (HEAD) and CM

(MODIFIER) occurring in it, we consider only some scenarios in or-
der to define a revised knowledge base, enriched by typical properties
of the combined concept C v CH u CM .

Given a KB K = 〈R, T ,A〉 and given two concepts CH and
CM occurring in K, the logic TCL allows defining a prototype of
the compound concept C as the combination of the HEAD CH

and the MODIFIER CM , where the typical properties of the form
T(C) v D (or, equivalently, T(CH u CM ) v D) to ascribe to
the concept C are obtained by considering blocks of scenarios with
the same probability, in decreasing order starting from the highest
one. We first discard all the inconsistent scenarios, then: (1) we dis-
card those scenarios considered as trivial, consistently inheriting all
the properties from the HEAD from the starting concepts to be com-
bined; (2) among the remaining ones, we discard those inheriting
properties from the MODIFIER in conflict with properties that could
be consistently inherited from the HEAD; (3) if the set of scenarios
of the current block is empty, i.e. all the scenarios have been dis-
carded either because trivial or because preferring the MODIFIER,
we repeat the procedure by considering the block of scenarios, hav-
ing the immediately lower probability. Remaining scenarios are those
selected by TCL. The ultimate output is a KB in TCL whose set of
typicality properties is enriched by those of the combined concept
C. Given a scenario w satisfying the above properties, the prototype
of C is defined as the set of inclusions p :: T(C) v D, for all
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T(C) v D that are entailed from w in the logic TCL.

3 DYNAMIC KNOWLEDGE GENERATION
We developed a system implementing TCL able to dynamically gen-
erate novel knowledge in the cases in which the original goal can-
not be directly satisfied. The overall pipeline of the system can
be described as follows: the system receives in input a certain goal
to achieve. The goal is expressed in terms of tuples representing
the desired final state. For example: a goal can be expressed as
{Object ,Cutting ,Graspable} to identify the scope of retrieving,
from the inventory of the available knowledge in the agent declar-
ative memory, an element that is a graspable object able to cut
some surfaces. Once processed the input, the system verifies, via a
searching process in the hybrid, probabilistic, knowledge base as-
sumed in TCL, whether there is some element that can directly sat-
isfy the desired conditions. If so, the element(s) (if any) satisfying
the request are returned and ranked in descending order of proba-
bility. If not, the system tries to perform, via WordNet (https:
//wordnet.princeton.edu/), a task of semantic-driven goal-
reformulation by looking for synonyms and hyperonyms of the terms
specified in input (in order to find at least a minimal set of can-
didate concepts sharing, if considered jointly, all the required goal
desiderata). Once this process is executed, and the minimal set of
candidate concepts is reached, the system adopts the typicality-based
reasoning procedure of concept combination of TCL. As an ex-
ample, suppose to have: G = {Object ,Cutting ,Graspable}, and
suppose that the knowledge base contains Spoon v Graspable ,
0.85 :: T(Spoon) v ¬Cutting , 0.9 :: T(Vase) v Graspable ,
Vase v Object . Both Vase and Spoon are included in the list of
candidate concepts to be combined (along with other concepts satis-
fying, for example other properties of the goal such as, for example,
being able to cut some surface). As a second step, for each item in
the list of candidate concepts to be combined, the system computes
a rank of the concept as the sum of the probabilities of the proper-
ties also belonging to the goal, assuming a score of 1 in case of a
rigid property. In the example, Vase is ranked as 0.9 + 1 = 1.9,
since both Graspable and Object are properties belonging to the
goal: for the former we take the probability 0.9 of the typicality in-
clusion T(Vase) v Graspable , for the latter we provide a score of
1 since the property Vase v Object is rigid. Concerning the concept
Spoon , the system computes a rank of 1: indeed, the only inclusion
matching the goal is Spoon v Graspable . Finally, the system checks
whether the concept obtained by combining the candidate concepts
with the highest ranks, (e.g. C1 and C2 in case of only 2 concepts), is
able to satisfy the initial goal. The system computes a double attempt,
by considering first C1 as the HEAD and C2 as the MODIFIER and,
in case of failure, C2 as the HEAD and C1 as the MODIFIER.

4 EVALUATION AND CONCLUSIONS
We tested our system in the task of object invention via conceptual
composition. This task is considered an important proxy of natu-
ral intelligence [6] since such ability is found, in nature, only in
primates (humans and great apes) and in ravens. As an example
of the obtained results: given the above mentioned goal of look-
ing for a graspable object able to cut, the system proposed the
combination Stone u Shelf as a solution, thus suggesting a com-
bined concept having the characteristics resembling a rudimentary
KnifeWithAWoodHandle . The obtained results reached state of the
art when compared with OROC [9] the only available system able to

Figure 1. System Integration with the Standard Model of Mind.

perform the same task and, in addition, we also extended our eval-
uation to human subjects showing a good level of compliance with
human responses [6]. An additional element of interest concerns the
possibility of integrating the proposed framework in different cog-
nitive architectures due to its compliance, shown in Fig. 1, with the
mechanisms of knowledge retrieval of the Standard Model of Mind
(SMM) [4]. In particular, our system can easily communicate with
any of the Declarative Memory formats proposed in the SMM (i.e.
symbolic chunks or probabilistic based symbolic expressions) since
the process of bi-directional translation between a chunk-like rep-
resentation and the language of TCL can be provided as presented in
[2]. This compliance represents an important aspect to point out since
it enables the adoption of such a dynamic management of the mem-
ory systems to a variety of cognitive architectures, by extending, de
facto, their knowledge level capabilities [5].
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