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Abstract. Peer learning companions such as interactive tablets and
social robots have shown great promise in supporting language de-
velopment in young children. However, studies have shown that the
perceived credibility of a robot as an educator and peer companion is
contingent on how socially it behaves. We specifically focus on two
roles of a peer learning companion- as an engaging storyteller and
active listener. To this end, we develop models to predict whether
the listener will lose attention (Listener Disengagement Prediction,
LDP) and whether the robot should generate listener backchannels
with high probability (Backchanneling Extent Prediction, BEP) dur-
ing a specific time window. We formulate LDP and BEP as Time Se-
ries Classification problems and through extensive evaluation in mul-
tiple experimental settings, demonstrate our models’ promising re-
sults. Inspired by prior work, we also investigate socio-demographic
and developmental features, which may give rise to variations in
children’s backchanneling responses. Moreover, we examine criti-
cal features responsible for the predictive utility of our models using
Permutation Feature Importance and Partial Dependency Plots. Our
findings suggest that features such as pupil dilation, blink rate, accel-
eration of head, gaze direction, and some facial action units which
have not been considered in prior work, are in fact, critical in pre-
dicting backchanneling extent and listener disengagement.

1 Introduction
Studies such as [31] have shown that children who are encouraged
to spend more time in narrative conversations display a significant
growth of vocabulary and an overall increase in narrative skill. For
young children, effective narration can be used to promote school
readiness and is an essential prerequisite to successful communica-
tion [9]. Conversational activities such as storytelling, that hone nar-
rative skills, thus play a pivotal role in children’s early language de-
velopment. However, delivering engaging narratives requires a suc-
cessful back-and-forth process involving speaker cues and listener
backchannels (BC). Listener backchannels are non-verbal signals
which indicate that the communication is working, and the speaker
must continue speaking [38].

Peer learning companions such as interactive tablets, computer ap-
plications, and social robots have the potential to support early lan-
guage learning in children. Through adequate support and scaffold-
ing, peer tutors steer the learning process to remain in the “Zone
of Proximal Development”. Topping and Ehly [37] provided a the-
oretical model to explain the cognitive benefits of peer tutoring and

∗All authors contributed equally, and wish that they be regarded as joint
First Authors.

† Department of Computer Science & Engineering, Delhi Technologi-
cal University, India, Email: rajnijindal@dce.ac.in, {maitreeleekha, minkush-
manuja, mononito} bt2k16@dtu.ac.in

suggested that peer tutors act as co-learners and minimize their com-
panion’s frustration as a result of challenges and impasses. Our work
is a first step towards developing engaging personal learning com-
panions, which can promote early language development in children
by leveraging the benefits of technology. Prior research has shown
that young children may not only consider robots as emotional and
trustworthy social beings [21] but also willingly learn new infor-
mation from them [26]. Therefore, given the practical benefits of
peer tutoring and the ability of robots to act as reliable social be-
ings, recent studies have attempted to harness the potential of robots
as peer learning companions to foster the development of early lan-
guage skills in children [29]. However, the credibility of robots as
peer learning companions depends on how socially-contingent they
behave [4].

In this paper, we focus on two roles of a social peer learning com-
panion; as an engaging storyteller and active listener. An engaging
storyteller must be able to predict if the listener will lose attention, to
initiate an action that precludes listener disengagement. On the other
hand, a listener must also actively communicate with the storyteller
through backchannels. However, predicting when a listener should
generate a backchannel response is a hard problem. To this end, we
develop two models to predict (i) whether the listener will lose atten-
tion (Listener Disengagement Prediction, ‘LDP’ model), and (ii) the
extent to which a listener should generate backchannel responses in
the next few (3) seconds (Backchanneling Extent Prediction, ‘BEP’
model).

Most research papers in the past have utilized a limited set of
features to predict listener engagement and backchanneling oppor-
tunities, i.e. predicting the exact time at which a listener should
backchannel. To model listener attention, Lee et al. [23] used a com-
bination of manually annotated categorical features like pitch, en-
ergy, gaze, etc. Furthermore, in their work [29], Park et al. analyzed
the speaker cues which were useful in eliciting positive responses
from listeners, and found that categorical prosodic cues like chil-
dren’s speech being too wordy, their pitch, energy, and long pauses,
were useful in predicting backchanneling opportunities. However, we
believe that these manually annotated categorical features limit our
understanding of backchanneling behaviors and engagement states,
especially when analyzing the narratives of young children. In this re-
gard, we investigate whether incorporating additional features such
as pupil dilation, blink rate and acceleration of head automatically,
and considering their dynamics improves the prediction capability of
our LDP and BEP models. Although we only predict the extent of
backchanneling (‘high’ or ‘low’) in the next time window instead of
the specific time at which listeners should backchannel, we believe
that our model can be easily deployed as an opportunity prediction
model due to the small size (3 seconds) of the windows fed into our
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models. We also explore whether socio-demographic factors such as
gender, mother’s highest education, and household income of the sto-
ryteller and listener influence the extent of backchanneling generated
by the listener. To further understand our findings, we also examine
the most critical features responsible for the predictive capability of
our models using Permutation Feature Importance [1] and Partial De-
pendency Plots (PDPs) [16].

The rest of the paper is organized as follows. The next section ex-
plores prior literature and its relation to the present work. Section 3
discusses the dataset used in this paper, feature engineering, and the
LDP and BEP models. Section 4 describes the experimental settings
and the results of our detailed experiments. Finally, Section 5 con-
cludes our work and discusses avenues of future work.

2 Relation to Prior Work
Effective communication is a collective activity of the first order.
Both speakers and listeners must transcend beyond merely issuing ut-
terances and, listening and understanding, respectively. Instead, they
must coordinate on the content of the conversation and make sure
that they have established a mutual understanding on the subject of
the discussion. The speaker and listener must also coordinate the pro-
cess, i.e. the speaker must talk only when the listener appears to be
hearing and trying to understand, and the listener should communi-
cate the same to the speaker [8].

Listeners communicate through backchannel responses in the
form of gestures such as gaze locking, nodding, and short verbal ex-
pressions (yeah, oh). These backchanneling responses serve multi-
ple cognitive functions, such as indicating the state of engagement,
understanding, and sentence completion [8]. While there has been
substantial research on adult speaking and listening, there is surpris-
ingly little work investigating the same for young children, especially
in the context of dyadic interactions [23]. Most prior work has fo-
cused on adult-child pairs and has demonstrated the influence of age
on backchanneling responses [19, 12]. Lee et al. [23] were amongst
the first to identify attention-related listener backchannels, and show
that both the listener’s and speaker’s behaviors must be taken into
account to best infer the attentive state of the listener. Drawing in-
spiration from their work, we use features from both the speaker and
listener to predict the attentive state of the latter.

The timing of backchanneling responses presents another signif-
icant technical challenge. Most of the previous approaches have
been able to successfully detect backchanneling opportunities us-
ing prosodic features such energy and pitch [25, 28]. Morency et
al. [25] presented a real-time backchanneling prediction model us-
ing vocal prosodic features and speaker gaze. They demonstrated
how sequential probabilistic models such as Hidden Markov Mod-
els (HMMs) and Conditional Random Fields can automatically learn
from human-to-human interactions to predict listener backchannels.
Poppe et al. [33] also utilized features from the speaker’s speech
and gaze, and some rule-based strategies to predict the placement of
backchannels. However, most of these models learned from adult be-
haviour and were trained on adult voices. To this end, Park et al. [29]
pioneered the development of a backchanneling opportunity predic-
tion model for young children. They identified the speaker cues use-
ful in eliciting backchanneling responses from the listener, and using
these features predicted the backchanneling opportunities. Specifi-
cally, they found four prosodic cues of the speaker useful- pitch, long
pauses in between the speech, energy, and the speech being too ver-
bose (wordy).

Our work differs from prior literature in the following ways. First,
unlike most work on backchanneling and listener engagement using

categorical vocal features, we use rich, continuous-valued prosodic
features like pitch, Mel-Frequency Cepstral Coefficients (MFCC)
and RMS Energy. We also incorporate features such as Facial Ac-
tion Units (FAUs), pupil dilation, blink rate, velocity and acceleration
of the head and eye gaze to predict listener disengagement and the
extent of listener’s backchannel responses. Facial action units [34]
have been widely used to detect prototypical facial expressions and
infer emotions. Moreover, some studies [17, 13, 3] have also shown
that changes in gross body movements such as the velocity of head
characterize cognitive states and depression severity. Eye aspect ra-
tio [18] and the size of the pupil [22] have also been shown to be
reliable indicators of the alertness, as well as the ability of the speak-
ers to elicit backchannel responses, respectively. Furthermore, most
of the approaches so far have utilized features aggregated across time
windows to predict backchanneling opportunities or infer the atten-
tive state of the listener [23]. However, we hypothesize that the dy-
namics of features present useful information that can be utilized to
better predict the attentive state of the listener and backchanneling
responses. Thus, we also experiment with ResNet [15], which can
learn useful patterns from multivariate time series, to predict listener
disengagement and extent of backchanneling responses.

3 Methodology
3.1 Dataset
Datasets capturing social interaction are pivotal to understanding
social interactions and subsequently designing human-like social
technologies. However, most existing datasets such as ALICO [24]
and MultiLis [10] have emerged from attempts at studying inter-
actions between adults. Social interactions of children have been
analysed through child–adult pairs only. Thus, while prior literature
has closely studied adult-adult and adult-child interactions, there has
been little work on analysing the dynamics of child–child interac-
tions.

Since our work aims to develop peer learning companions to
support the early language development in children, we use the
P2PSTORY dataset [35], which is one of the first attempts at in-
vestigating the social and emotional behaviors of children through
storytelling exercises amongst peers. For their study, the authors re-
cruited eighteen kindergarten participants from diverse cultural back-
grounds, with an average age of 5.22 years and varying levels of so-
cial and emotional development. In the storytelling exercises, each
child participated in at least three rounds of storytelling with differ-
ent partners, and building stories with the help of proctors based on
text-less storybooks. In a particular dyad session, a pair of children
took turns to narrate stories to their partner, with each turn generat-
ing a storytelling episode. The dataset comprises of 58 storytelling
episodes with an average length of 1 minute 17 seconds.

For each episode, three time-synchronized cameras captured the
front-views of each participant and the bird’s eye view of the dyad.
In addition to these videos, the authors also provided high-quality
audio recordings for the sessions. Using the video recordings and
ELAN [7] (a video annotation software), the dataset creators also an-
notated several nonverbal behavioral features‡: gaze (0.89), posture
(0.40), nod (0.89), eyebrow movement (0.51), mouth (0.34), utter-
ances (0.81), voicing (0.83), on/off task (0.05), attentive state (0.45).
To analyze the influence of socio-demographic and developmental
features on the acquisition of speaker cues and listener responses,
the authors also released the results of the Ages and Stages Question-

‡Inter-rater reliability was measured using Fleiss’ kappa κ and has been
reported in parenthesis.
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naire (ASQ) for all the participants. ASQ is a standardized measure
to evaluate the social and emotional development of children. The
interested reader may refer their paper [35] for more details on the
data and study procedure.

3.2 Feature Engineering
As discussed in Section 2, in addition to the annotations provided in
the dataset, we also extracted several features along the visual and
audio channels. We used OpenFace [2] at a sampling frequency of
30 Hz to extract Facial Action Units (FAUs), head and eye gaze ori-
entations. We used the eye-landmarks extracted using OpenFace as
shown in Figure 2(ii), to determine blink rate and the pupil dilation.
We computed the derivatives of the visual features with the exception
of FAUs, to obtain velocity and acceleration of eye gaze and head. To
this end, we used NumPy’s§ gradient function which approximates
the gradient of an array using second-order accurate central differ-
ences in the interior points and second-order accurate one sides in
the endpoints. For each storytelling episode, we also used OpenSmile
[14] to extract several vocal prosodic features from the audio record-
ings of the speaker at a frequency of 30 Hz. Jiang et. al [20] had
established the utility of both audio and visual features in increas-
ing emotion recognition accuracy. Inspired by their work, we too
extracted the fundamental frequency, Mel-Frequency cepstral coeffi-
cients (MFCC) together with their first and second order derivatives,
and Root-mean-square energy for our prediction tasks. Tables 1 and 2
summarize all the visual and prosodic features used in our study.

3.3 Listener Disengagement Prediction
A peer learning companion must be an engaging speaker. To this
end, we attempt to predict the attentive state of the listener after a
specific time window. Such a capability would be very useful for
artificial speakers, as they may be able to initiate an engaging action
or utterance to preclude listener disengagement.

In this work, we model the listener’s attentive state as a time series
classification problem. We first divide all the storytelling episodes
into non-overlapping windows of 3 seconds each. The choice of win-
dow size is inspired by the recent study carried out by Park et. al [30].
Moreover, a 3 second window having 90 time steps¶ is short enough
to be stationary (long time series capturing behavioural data tend to
be non-stationary [27]), but still has enough information to allow
ResNet to model the dynamics of its features. In the classification
task, for each window we use the prosodic cues of the speaker, and
visual and behavioral cues of both the partners, for the first 89 time
steps to predict the listener’s attentive state at the 90th time step.
However, the OpenFace and OpenSmile features were extracted at a
higher sampling frequency (30 Hz) than the behavioural annotations
(5 Hz) available with the dataset. To resolve this mismatch, we aggre-
gated the behavioural annotations into window-level features. Thus,
each window had two sets of features: dynamic visual and prosodic
features in the form of a multivariate time series with 89 time steps,
and a vector of aggregated behavioural features. In order to aggregate
behavioural features which were categorical in nature, we introduced
dummy binary variables and reported the ratio of time steps that each
of variables were True. For example, at each time step the speakers
and listeners can either gaze towards their partners, the picture (sto-
ryboard) or away. Therefore, we introduced three dummy variables
as a substitute for gaze: gaze partner, gaze picture and gaze away.
We then computed the ratio of time steps that each of these dummy
binary variables were True, to the total number of time steps in a

§https://numpy.org/
¶Features are sampled every 30 ms (Section 3.2).

Figure 1. ResNet model for LDP using dynamic time series and
window-level behavioral features.

window i.e. 89 time steps. We did not up-sample the behavioural
features and use them as time series features instead, because we
found that the behavioural features rarely changed values in a 3 sec-
ond time window, and therefore the dynamics of behavioural features
must contain little additional information. Moreover, by reducing the
number of time series features we also reduced the training and test-
ing time of our models.

We mathematically formulate the LDP task as follows. Let, Wi be
the ith window, and Tj represent the time series visual and prosodic
features of the listener and the speaker for the jth time step in
the window. Therefore, [T1,T2, ...,T89]i represents the dynamic fea-
tures for the first 89 time steps in Wi. Also, let Bi be the combined
window-level representation of the behavioral features for Wi. Then,
for the speaker to predict the attentive state, Ai, of the listener at the
90th time step of the window Wi, we need to learn the following
mapping function F ,

F([T1,T2, ...,T89]i,Bi) 7→ Ai (1)

We experimented with two learning algorithms that have been
extensively used for time series classification: Random Forests and
ResNet [15]. To train Random Forests, we aggregated the OpenFace
features by taking their arithmetic mean and combined them with the
window-level behavioral features. To model the dynamic visual and
prosodic features, we also used ResNet, which is a state-of-the-art
deep learning-based time series classification model, and has been
shown to perform comparably to HIVE-COTE [15]. In addition to
these dynamic features, we also use the window-level behavioral fea-
tures, by concatenating them with the latent feature representation of
the dynamic features learned by ResNet, and then feeding them all
to the softmax layer, as shown in Figure 1.

3.4 Backchanneling Extent Prediction
Backchannel responses are essential to effective communication as
they serve as feedback to speakers, enabling them to recognize the
extent to which their listeners understand them [11]. In an interven-
tion study, Carole et al. [32] had found that backchanneling while
talking to children had a signicant impact on their overall narrative
skills. Therefore, an active artificial listener must learn to backchan-
nel appropriately. The timing of backchannel response is a challeng-
ing technical problem and has been solved in prior work [30]. Our
BEP model differs from prior literature since it does not specify a
time to produce listener backchannels. Instead, using our model we
take a deeper look at the speaker cues which prompt high and low
levels of backchanneling from listeners.

Like listener disengagement prediction, we use time series clas-
sification to predict backchanneling opportunities using 3 second
windows and features sampled at a frequency of 30 Hz. Using the
speaker’s vocal prosodic and visual features extracted for a window
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Features Description Derivation from OpenFace features
FAUs Indicate the presence or absence of 18 Fa-

cial Action Units
AU01 c, AU02 c, AU04 c, AU05 c, AU06 c, AU07 c,
AU09 c, AU10 c, AU12 c, AU14 c, AU15 c, AU17 c,
AU20 c, AU23 c, AU25 c, AU26 c, AU28 c, AU45 c

gaze vel Velocity of eye gaze
√

(gaze angle x)′2 + (gaze angle y)′2 + (gaze angle z)′2

gaze acc Acceleration of eye gaze
√

(gaze angle x)′′2 + (gaze angle y)′′2 + (gaze angle z)′′2

head vel T Translational velocity of head
√

(pose Tx)′2 + (pose Ty)′2 + (pose Tz)′2

head vel R Rotational velocity of head
√

(pose Rx)′2 + (pose Ry)′2 + (pose Rz)′2

head acc T Translational acceleration of head
√

(pose Tx)′′2 + (pose Ty)′′2 + (pose Tz)′′2

head acc R Rotational acceleration of head
√

(pose Rx)′′2 + (pose Ry)′′2 + (pose Rz)′′2

blink rate First order differential of Eye Aspect Ra-
tion (averaged for both the eyes) [36]

[(||e18 − e10||+||e16 − e12||)/(2 ∗ ||e14 − e8||)]′

pupil dilation Size of pupil (averaged for both the eyes) (||e25 − e21||+ ||e27 − e23||)/(||e14 − e8||+ ||e17 − e11||)

Table 1. Visual features extracted for both the speaker and listener. X is the returned by OpenFace. (X)′ and (X)′′ are its first and second order derivatives.

Feature Description
F0 The fundamental frequency computed from the Cep-

strum
mfcc′, mfcc′′ First and Second order derivatives of Mel-Frequency

Cepstral Coefficients 1-12
pcm RMSenergy′,
pcm RMSenergy′′

First and Second order derivatives of Root-mean-
square signal frame energy

Table 2. Prosodic features for the speaker. X is the feature returned by
OpenSmile. (X)′ and (X)′′ are its first and second order derivatives.

Wi, we predict the extent of listener’s backchannel response in the
window Wi+1. Inspired by the research carried out by Dennis et. al
[11], we consider both verbal (listener utterances such as “hmm”,
“ooh”, etc.) and non-verbal (smile, nod, onset of partner gaze, lean
towards, raising brows) backchannels in our model. To classify a
window as being indicative of ‘high’ or ‘low’ backchanneling, we
first find the proportion (p) of time steps in the window, where the
listener generates at least one backchannel response. Then to convert
these continuous proportions associated with the windows to a binary
label (high backchanneling or low backchanneling), we use a thresh-
old τ such that if p > τ , the window indicates high backchanneling.
Instead, if p ≤ τ , we label the window as low backchanneling. The
threshold τ controls the length of time (τ × 3 seconds) that qualifies
as high backchanneling. In this work, we experiment with τ = 0.25
and τ = 0.5. A higher threshold τ includes backchannels that last
longer, whereas a lower value includes subtle as well as long-lasting
ones.

We now formally frame the problem of backchanneling extent pre-
diction. Let Wi be any 3 second window, and let [T1,T2, ...,T90]i
represent the dynamic prosodic and visual features of the speaker for
Wi. Furthermore, let Pi+1 ∈ {high backchanneling, low backchan-
neling} be the target variable capturing the extent of backchanneling
in the next window, Wi+1. Therefore, the BEP task involves learning
the following function G,

G([T1,T2, ...,T90]i) 7→ Pi+1 (2)

Like listener disengagement prediction, we used both Random
Forests and Resnet to predict the extent of backchanneling. The
window-level arithmetic mean of the speaker’s prosodic and visual
features were used as featurization for Random Forests, whereas
Resnet used the dynamic time series features.

(i) (ii)

Figure 2. (i) Distribution of backchanneling proportion across sessions
(ii) Eye landmarks extracted using OpenFace and used to calculate Eye

Aspect Ratio and Pupil Dilation Rate.

3.5 Socio-demographic factors influencing
backchanneling

Prior studies [19, 12] have shown that young children demonstrate
significant variation in terms of their backchanneling responses. To
shed more light on the factors giving rise to these variations, we ex-
amine how socio-demographic features such as household-income
and mother’s education influence the extent of backchanneling. We
quantify the extent of backchanneling in a storytelling session in
terms of the backchanneling proportion or the ratio of time steps
which were annotated as having some form of backchanneling to the
total number of annotated time steps in a session. The distribution
of backchanneling ratio across different sessions is illustrated in Fig-
ure 2(i).

We hypothesize that the socio-demographic features shown in Ta-
ble 6 lead to significant differences in the distribution of backchan-
neling proportions in different storytelling sessions. To test our
hypothesis, we conducted two-sample Kolmogorov-Smirnov (K-S)
tests which compare the empirical cumulative distributions (ECDFs)
of two samples to see whether they differ significantly. The null hy-
pothesis of K-S test is that the two samples are drawn from the same
underlying distribution. A notable exclusion from the set of socio-
demographic features tested for difference, is the age of the children.
We did not include age as a factor since most of the children were
of the same age, and most prior studies [19, 12] have already studied
its effect on the extent of backchanneling responses. Furthermore,
to analyse the influence of developmental factors in detail, we car-
ried out K-S tests on the responses to some questions of the ASQ
questionnaire too (Table 6). The two samples for the K-S tests were
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either two values of the features or the two most frequently occur-
ring values. For example, to see whether the storyteller’s gender
has any influence on the backchanneling proportion, the two sam-
ples belonged to male and female storytellers, respectively. How-
ever, features such as Mother’s highest educational qualification had
more than two values such as Graduate or professional
training, College Graduate, Some high school etc.,
and therefore we used the two most frequently occurring qualifi-
cations as our two samples‖. In order to test the impact of house-
hold income on backchanneling responses, we divided the house-
hold incomes into categories: high-income (Over $100,000) and low-
income ($30,000 to $75,000), respectively. Similarly, we also catego-
rized children as having low or high ASQ scores based on multiple
thresholds (20, 25 and 30), such that children having ASQ scores less
than the threshold have low scores and the other children have high
scores. Consequently, children having high and low scores belong
to the two samples. We also carried out a randomization test (1000
runs) and computed the K-S statistics (D) by randomly permuting the
feature values. Our findings are discussed in detail in Section 4.3.

4 Results
To evaluate our models we conducted three kinds of experiments
given the hierarchical nature of our data: two children (subjects) form
a dyad and participate in two turns of storytelling (episodes), where
each child narrates a story once, and listens the other time. The first
type of experiment (“Random stratified”) makes a stratified 5-fold
train and test split across all the windows based on the predicted la-
bels. In the second kind of experiment (“Leave-One-Episode-Out”
or LOEO) we set a particular episode and all the windows associated
with it aside as the test set, and used remaining data to train our mod-
els. In the final (“Leave-One-Subject-Out” or LOSO) experiment, we
set aside all the windows corresponding to a particular child as the
test set, and use the remaining data as the train set.

We expect the performance of our models to degrade from strat-
ified random sampling to the LOSO experiments due to the extent
of information sharing between the training and testing sets. In ran-
dom stratified experiments, both the train and test sets comprise of
information about a subject and episodes. In contrast, in the LOEO
experiments the model might have seen the subject in the training set,
but it does not have any information about the episode it is being val-
idated on. Thus, LOEO experiments represent a “warm-start” situa-
tion, since the model has some knowledge about the subjects, but has
no information about the current episode. The LOSO experiments
represent cold-start since the model does not have any information
about the subject (the subject may either be the speaker or listener).

Besides developing effective classifiers, it is also important to an-
alyze critical features which influence the classification models. To
this end, we examined the importance of features fed into the Ran-
dom Forests using two measures: Mean Decrease Impurity and Per-
mutation Feature Importance.

Random Forests use the gini criterion to split on a variable∗∗. At
every step of the tree construction, one of the n variables is chosen
to form a split conditioned on its values, which results in a decrease
in node impurity (gini). Consequently, mean decrease in impurity
(MDI) computes the significance of a variable by measuring the total
decrease in gini as a result of splitting on it, weighted by the num-
ber of samples and averaged over all the trees. Therefore, important

‖We observed that most of the mothers were either College
Graduates (44%) or Professionally trained graduates
(38%).
∗∗Note that we used the term variable and feature interchangeably.

features have high values of MDI [6]. However, MDI tends to mag-
nify the importance of continuous and categorical variables with high
cardinality. Therefore, we supplement our analysis using permutation
feature importance [5] or mean decrease in accuracy (MDA) which
is not only impartial to both continuous and high-cardinality categor-
ical variables, but also tells us whether Random Forests have over fit.
They may have over fit to the training data, if ‘important’ features
returned by MDI and MDA are significantly different.

Permutation feature importance relies on the principle that if a fea-
ture is important, the model relies on its values for the prediction, and
thus randomly shuffling its values must decrease the model’s accu-
racy (or increase the error). On the other hand, values (or samples) of
an unimportant feature should have negligible effect on the model’s
accuracy. Permutation importance for a featureX is calculated by re-
peatedly permuting (s times) its values and averaging the difference
in the error computed before and after the permutation, over all the
trees. MDA can be computed on both the training and testing sets,
which have as yet undiscovered yet slightly different implications.
However, in this study, MDA is computed on the test set to rule out
the possibility of classifying unimportant features as important ones.
Overfit Random Forests may return spurious features as important if
MDA is computed on the training set.

In order to analyse the relationship of important features with the
outcome variable, we generated partial dependency plots for the two
most important features for all Random Forest models. Partial De-
pendency plots (PDPs) demonstrate the marginal effect of a subset
of features on the outcome of a machine learning model, and are use-
ful in examining whether the relationship between the target and the
feature is linear, monotonic or complex [16].

4.1 Predicting Listener Disengagement
Detailed results of predicting the attentive state of the listener using
Random Forests and ResNet are shown in Table 3(i). In the table, we
only report metrics for the “not-listening” (negative) class because
we are interested in predicting disengagement accurately. Moreover,
we had very few samples for “not-listening” in comparison to the
“listening” class and therefore even weighted metrics would have
been biased in favour of “listening”. We found that both our mod-
els had limited predictive utility due to the fuzzy nature of the tar-
get variable. Even trained annotators only had moderate agreement
(Fleiss’ κ = 0.45) while identifying the attentive states. Neverthe-
less, we noticed an interesting phenomenon in Table 3(i); ResNet
which takes into account the dynamics of OpenFace time series fea-
tures performed better than Random Forests trained on aggregated
features, for the most part. Since it is more important to predict “not
listening” accurately, we must focus on improving the recall of the
“not listening” (negative) class. In all the experiments, ResNet con-
sistently has a better recall than Random Forests, and therefore it
classifies “not-listening” more accurately. This is desirable for en-
gaging peer learning companions as they will be able to better predict
when the listener is going to lose attention.

To identify features essential for predicting the listener’s engage-
ment state, we calculated feature importance using MDI and MDA
for the experiments (random, LOEO and LOSO). Although all the
experiments identified the same set of features as important, we
found some minor variations in their rankings across the experi-
ments. In the remainder of the paper, we only report feature im-
portance results for LOSO experiments since they capture the most
general view of the problem at hand. Moreover, important features
derived from LOSO experiments do not over fit on the peculiarities
of individual subjects.
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Table 3(ii) illustrates the 5 most important ( ), and the 5 least im-
portant ( ) features derived using MDI. We found that the listener’s
gaze-away and gaze-picture had the highest importance values for
predicting listener disengagement. This is probably because children
gazing away may be perceived as being distracted and not paying
attention [23]. Moreover, features derived using OpenFace such as
pupil dilation, blink rate and gaze angular acceleration also proved
to be important. To the best of our knowledge, these features have
not been used to analyze peer-to-peer social interactions in the liter-
ature so far. The MDI values also show that most of the behavioral
features such as eyebrows, nod and posture are less useful in pre-
dicting listener disengagement. This may be because of noise in the
features††.

Figure 4(i) shows the box and whisker plot of the 10 most im-
portant features for predicting the listener disengagement obtained
using MDA (s = 50). Both MDI and MDA agree on the most impor-
tant features for predicting listener’s loss of attention. Figures 3(ii)
and 3(iii) illustrate the marginal impact of listener’s gaze-away and
gaze-picture on his attentive state using PDPs. We can clearly see
that listeners are considered to be more inattentive when they look
(gaze) away from the storyteller. In contrast, gazing at the picture
(storyboard) has an incremental effect on the listener’s attention.

Model P R F1 AUC
Random split

Random Forest 0.75 0.58 0.65 0.91
ResNet 0.70 0.67 0.71 0.82

Leave one episode out (LOEO)
Random Forest 0.56 0.75 0.62 0.85
ResNet 0.66 0.78 0.68 0.91

Leave one subject out (LOSO)
Random Forest 0.63 0.78 0.67 0.85
ResNet 0.67 0.79 0.70 0.89

(i)

5 most important features
Gaze-Away (L)
Gaze-Picture (L)
Pupil dilation (L)
Blink rate (L)
Gaze angular acceleration (L)

5 least important features
Mouth-Laugh (L)
Posture-Rocky (L)
Mouth-Frown (L)
Eyebrows-Furrow (L)
Nod-Yes (S)

(ii)

Table 3. (i) Listener Disengagement Prediction (LDP): we report the
P, R, F1 and AUC for the “not listening” class. (ii) Mean Decrease in

Impurity: 5 most and least important features for Random Forests for LDP
(L: Listener, S: Speaker.)

τ Model P R F1 AUC
Random split

0.25
Random Forest 0.91 0.48 0.63 0.86
ResNet 0.68 0.92 0.71 0.88

0.50
Random Forest 0.68 0.99 0.80 0.86
ResNet 0.65 0.79 0.70 0.83
Leave one episode out (LOEO)

0.25
Random Forest 0.90 0.49 0.60 0.86
ResNet 0.69 0.93 0.73 0.89

0.50
Random Forest 0.70 0.97 0.80 0.86
ResNet 0.68 0.78 0.70 0.77
Leave one subject out (LOSO)

0.25
Random Forest 0.90 0.57 0.68 0.87
ResNet 0.71 0.91 0.73 0.90

0.50
Random Forest 0.66 0.98 0.78 0.86
ResNet 0.66 0.85 0.76 0.78

(i)

5 most important features
F0
Pupil dilation
AU14, AU10
mfcc[5]’
Translational acceleration of head

5 least important features
AU28, AU07, AU09
mfcc[12]’’
mfcc[1]’
AU20, AU15
AU45

(ii)

Table 4. (i) Backchanelling Extent Prediction (BEP): we report metrics
for the “high backchanneling” class. (ii) Mean Decrease in Impurity: 5 most

and least important features for Random Forests for BEP.

4.2 Predicting the Extent of Backchanneling
We trained ResNet and Random Forests to predict the extent of
backchanneling in the next window wi+1 for two values of τ , 0.25
and 0.5. For the same reasons as LDP, we only report metrics for
the “high backchanneling” or positive class. We gained several inter-
esting insights from the BEP results summarized in Table 4(i). First,

††Trained annotators only agreed moderately while annotating these fea-
tures. Refer to [35] for more details.

the performance of ResNet in terms of F1, remains roughly the same
for all experimental settings including τ = 0.25 and 0.50. Further-
more, Random Forests is able to predict the extent of backchanneling
better than the ResNet for τ = 0.50 i.e., for long-lasting backchan-
nels. However, when we introduce subtle and shorter backchannels
in the training data by setting τ = 0.25, the performance of Random
Forests drops, which is evident from the sharp decrease in recall.
When we reduce the threshold τ from 0.5 to 0.25, the recall drops
from an average of 0.98 to 0.51, computed across all the experimen-
tal settings (random, LOEO and LOSO). A plausible reason for the
sharp drop for τ = 0.25, is the loss of information due to aggrega-
tion which causes Random Forests to be unable to predict short and
subtle backchannel responses. However, feature aggregation does not
impact the performance of our model in case of τ = 0.50, possibly
because it is able to clearly distinguish “high backchannelling” from
“low backchanneling”. It must be noted that the difference between
“high” and “low” backchanneling becomes fuzzier as the threshold
drops from τ = 0.5 to 0.25. In summary, we believe that ResNet
predicts short and subtle backchannels better than Random Forest
because it uses dynamic time series features.

Table 4(ii) summarizes the 5 most ( ) and least important ( )
features used for predicting the extent of backchanneling, computed
using MDI for τ = 0.50. As shown in prior work, the pitch (F0) of
the speaker is one of the most important factors influencing listener
backchannels. Besides, we also observe that the speaker’s pupil di-
lation, AU10 (upper lip raiser), AU14 (dimpler), and translational
head acceleration also help in eliciting backchannel responses from
the listener. The derivatives of mel-frequency cepstral coefficients
(mfcc’), which represent the envelop of time power spectrum of
speech signals are also of high importance. In contrast, features such
as AU20 (lip stretcher), AU15 (lip corner depressor) are relatively
less important.

Figure 4 illustrates the 10 most important features to predict
backchanneling using 50 rounds of MDA (s = 50). As per our ex-
pectations the speaker’s F0 (pitch), pupil dilation and AU14 (dim-
pler) are the most important factors according to MDA. To further
analyze the combined influence of F0 and pupil dilation on the extent
of backchanneling, we plotted a 3-dimensional PDP shown in Fig-
ure 3(i). It is evident that both these features have a positive impact
in seeking backchannel responses. It is interesting to note that around
the range of 0.20− 0.22, the speaker’s pupil dilation causes a sharp
increase in the listener’s backchanneling response. In summary, our
results emphasize the importance of features such as the speaker’s
pupil dilation and previously used features like the speaker’s pitch
(F0) in predicting backchannel reponses from young listeners.

4.3 Socio-Demographic Analysis
The results of the K-S and randomization tests are summarized in Ta-
ble 6. It can be clearly seen that, amongst all the socio-demographic
and developmental factors considered, whether listeners look at their
parents while talking to them (D = 0.569) and the listeners’ moth-
ers’ education (D = 0.591) influence the distribution of BC propor-
tion the most. In order to examine the direction of difference, we plot-
ted Empirical Cumulative Distribution Functions (ECDFs) for each
of the factors which yielded significant differences. For example, on
analysing the ECDFs in Figure 2(i), we concluded that for a given
BC proportionP , it is much more likely to observe values less thanP
if listeners’ look at their parents when talking and when their mothers
are College graduates. Factors such as whether the listener
is friendly with strangers, and both the storyteller and listener use
words to describe feels also led to significant differences in the distri-
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: High, : Low
(i)

(ii) (iii)

Figure 3. Partial Dependence Plots: (i) Combined effect of speaker’s F0
and Pupil Dilation on backchanneling signals (ii), (iii) Impact of the

proportion of time when the listener is gazing towards the picture
(Gaze-Picture) and away (Gaze-Away) on listener’s disengagement.

(i)

(ii)
Figure 4. Permutation Feature Importance (MDA): Top 10 important

features for (i) LDP and (ii) BEP.

bution of BC proportion. Overall, the socio-emotional development
of the storyteller and listener in terms of their ASQ score also led to
significant differences in the distribution of BC proportion. Further-
more, the fact that the gender of the storyteller influences the extent
of BC probably implies that listeners respond differently to male and
female storytellers. We also note that whether the storyteller and lis-
tener were of the same sex, or have siblings, had insignificant effect
on the distribution of BC proportion.

Having established that some socio-demographic and develop-
mental factors indeed influence backchanneling, we proceeded to
investigate whether these features are also predictive of the extent
of backchanneling. To this end, we used the socio-demographic and
developmental features of the storyteller and listener and a random
forest classifier to predict whether an episode will have high or low
backchanneling. We labelled episodes with a BC proportion greater
than median BC proportion (τ = 0.23) as having high backchan-
neling. The detailed classification results averaged over 5-folds of

(i) (ii)

Figure 5. (i) Empirical CDFs corresponding to the listeners’ mothers’
education and (ii) whether they look at their parents when talking to them.

cross validation are summarized in Table 5 (i). It must be noted that
our model was able to perform well (AUC = 0.84, F-1 ≈ 0.67) in
spite of having access to only limited socio-demographic and devel-
opmental features. The most important features for the Random For-
est are shown in Table 5 (ii). Highest education of listener’s mother
is the most important feature in predicting the extent of backchannel
responses. This makes sense because mothers generally have a pro-
found influence on a child’s overall development including language
and communication skills. Our results also reveal that backchannel
responses depend on the gender of both the participants. ASQ score
and household income of the Listener are some other features that
affect backchanneling.

5-Fold Average Metrics
Metric Low BC High BC
P 0.66 0.73
R 0.75 0.72
F1 0.66 0.69
AUC 0.84

(i)

Top 5 important features
Mother’s highest education (L)
Gender (S)
ASQ Score (L)
Gender (L)
House income (L)

(ii)

Table 5. (i) Predicting the extent of Backchanneling using Random
Forests and socio-demographic features. (ii) Top 5 most important features

for random forest model ((L): Listener, (S): Speaker).

Features 2-sample KS Test Statistic
Storyteller Listener

Gender 0.404 * 0.202
Storyteller & Listener have same gender 0.133 0.133

Mothers’ Highest education 0.2129 0.569 *
ASQ Score (Thresh = 20) – 0.320 *
ASQ Score (Thresh = 25) 0.320 –
ASQ Score (Thresh = 30) 0.274 * 0.283 *

Child uses words to describe feelings 0.341 * 0.318 *
Child friendly with strangers 0.146 0.283 *

Child talks or plays with adults (s)he
knows well

0.218 0.198

Child looks at parent when talking 0.273 0.591 *
Has siblings 0.238 0.226

Total household income 0.180 0.268 *

Table 6. Kolmogorov-Smirnov statistics. Values marked with a * indicate
significant differences at 5% significance levels. The distribution of

backchanneling proportion differs significantly in terms of the storyteller’s
gender, ASQ score, and the listener’s mother’s highest education etc.

5 Discussion and Conclusion
In this work, we focused on two roles of peer learning companions,
as active storytellers and listeners, by developing models to predict
listener disengagement and the extent of backchanneling. We used
state-of-the-art time series classification techniques like ResNet and
Random Forests to establish promising results for both the tasks. We
also analyzed our results using MDI, MDA and PDPs to examine
how different features impact the attentive states and backchanneling
responses. Specifically, we found that for LDP the proportion of time
when the listener was gazing away and towards the picture played an
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important role besides other visual features such as the blink rate of
his eyes. While modeling BEP, we observed that in addition to the
speakers’ pitch, their pupil dilation also had a positive correlation
with their ability to elicit backchannel responses from the listener.
Furthermore, using statistical tests and Random Forests, we found
that the listeners’ mothers’ education and the gender of both the lis-
tener and speaker strongly influence the extent of backchanneling.

Although we aim to eventually develop engaging peer learning
companions, we admit that our experiments did not include a social
robot or interactive tablets. However, prior research has shown that
children consider robots as social beings [21], and therefore we be-
lieve that our findings from studying peer-to-peer interactions will
also apply to child-robot interactions. We also believe that further
experimental validation is crucial to corroborate the effectiveness of
our models.

References
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[2] Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency,
‘Openface: an open source facial behavior analysis toolkit’, in 2016
IEEE Winter Conference on Applications of Computer Vision (WACV),
pp. 1–10. IEEE, (2016).

[3] Shalini Bhatia, Roland Goecke, Zakia Hammal, and Jeffrey F Cohn,
‘Automated measurement of head movement synchrony during dyadic
depression severity interviews’, in 2019 14th IEEE International Con-
ference on Automatic Face & Gesture Recognition (FG 2019), pp. 1–8.
IEEE, (2019).

[4] Cynthia Breazeal, Kerstin Dautenhahn, and Takayuki Kanda, ‘Social
robotics’, in Springer handbook of robotics, 1935–1972, Springer,
(2016).

[5] Leo Breiman, ‘Random forests’, Machine learning, 45(1), 5–32,
(2001).

[6] Leo Breiman, ‘Manual on setting up, using, and understanding random
forests v3. 1’, Statistics Department University of California Berkeley,
CA, USA, 1, 58, (2002).

[7] Hennie Brugman and Albert Russel, ‘Annotating multi-media/multi-
modal resources with ELAN’, in Proceedings of the Fourth Interna-
tional Conference on Language Resources and Evaluation (LREC’04),
Lisbon, Portugal, (May 2004). European Language Resources Associ-
ation (ELRA).

[8] Herbert H Clark, Susan E Brennan, et al., ‘Grounding in communica-
tion’, Perspectives on socially shared cognition, 13(1991), 127–149,
(1991).

[9] Stephanie M Curenton, ‘Narratives as learning tools to promote school
readiness’, (2010).

[10] Iwan de Kok and Dirk Heylen, ‘The multilis corpus–dealing with in-
dividual differences in nonverbal listening behavior’, in Toward Au-
tonomous, Adaptive, and Context-Aware Multimodal Interfaces. The-
oretical and Practical Issues, 362–375, Springer, (2011).

[11] Alan R Dennis and Susan T Kinney, ‘Testing media richness theory in
the new media: The effects of cues, feedback, and task equivocality’,
Information systems research, 9(3), 256–274, (1998).

[12] Allen T Dittmann, ‘Developmental factors in conversational behavior’,
Journal of Communication, 22(4), 404–423, (1972).

[13] Sidney D’Mello, Rick Dale, and Art Graesser, ‘Disequilibrium in the
mind, disharmony in the body’, Cognition & emotion, 26(2), 362–374,
(2012).
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