

Temporal Web Service QoS Prediction via Kalman Filter-
Incorporated Latent Factor Analysis

Ye Yuan
1, 2

 and Mingsheng Shang
1
 and Xin Luo

1, 3

Abstract.1With the rapid development of services computing in the
past decade, automatic selection of QoS-aware Web service out
from numerous candidates with similar functions is becoming a hot
yet thorny issue. Conducting warming up tests on numerous
candidate services for quality evaluation is extremely time-
consuming and expensive, making it vital to generate highly
accurate predictions for missing QoS data based on known ones.
Since QoS data are time-dependent, it is vital to consider the
temporal dynamic patterns hidden in historical ones when building
a QoS-estimator. For addressing this issue, this study invents a
Kalman filter-incorporated Latent Factor Analysis (KLFA)-based
QoS-estimator, which precisely models the temporal patterns
hidden in dynamic QoS data. Experimental results based on large-
scale and real-world Web service QoS data demonstrate that
compared with state-of-the-art temporal-aware QoS-estimators, a
KLFA-based one achieves significantly higher prediction accuracy
for missing QoS data.

1 INTRODUCTION

Cloud computing facilities are indispensable for big data-related

industrial applications [1], with web services being fundamental

components for implementing service-oriented architecture-based

systems and softwares. They are so desired by most industrial Web

applications, that numerous Web-services with similar functions

are available online. Consequently, how to implement efficient

service selection from a large candidate set becomes a major yet

thorny issue in the area of cloud computing [2, 3].

Most non-functionality of a Web-service is reflected by its

Quality-of-service (QoS), making efficient QoS-based approaches

for service selection [4, 5] highly feasible, which take QoS data as

the fundamental data source. Commonly, QoS data are retrieved

from both servers and users. Server-side data like price and

invoking protocol are provided by service providers. On the other

hand, user-side data like response-time and throughput are highly

related to many user-dependent factors. Although user-side QoS

data can be obtained by real-world service invocations, but it

1 Chongqing Engineering Research Center of Big Data Application for

Smart Cities, and Chongqing Key Laboratory of Big Data and Intelligent
Computing, Chongqing Institute of Green and Intelligent Technology,
Chinese Academy of Sciences, Chongqing 400714, China, e-mail:
{yuanye, msshang, luoxin21}@cigit.ac.cn (X. Luo is the corresponding
author)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Hengrui (Chongqing) Artificial Intelligence Research Center, Department

of Big Data Analyses Techniques, Cloudwalk, Chongqing 401331, China

suffers the following defects: a) such ‘warming up’ tests lead to

high expenses because most online services are not free to invoke;

and b) with a drastically increasing number of candidate services, it

costs long to evaluate all of them. Due to these defects mentioned

above, it becomes infeasible to acquire all QoS data through real

invocations, yielding the critical problem of missing QoS data

estimation, i.e., how to predict unknown QoS data precisely based

on historical QoS invocations?

Various approaches are proposed to address this issue, where

latent factor analysis (LFA)-based approaches [6-9, 13, 14] are

getting increasingly attractive. An LFA-based QoS estimator takes

a user-service QoS matrix as the fundamental data source, where

each row denotes a specified user, each column denotes a specified

service, and each element denotes the QoS record of a certain type

experienced by a specified user on a specified service. Obviously, a

user cannot invoke all candidate services or a service cannot be

touched by all users, making this matrix highly sparse with

numerous unknown yet desired data. Hence, an LFA-based

estimator tries to handle this user-service matrix, extracting its

essential factors for predicting its unobserved data accurately.

To do so, an LFA-based estimator maps both the users and

services into the same low-dimensional latent factor (LF) space to

build a low-rank approximation to the target user-service matrix for

predicting its missing data. Such a process is defined on the known

data of the target matrix only and implemented through various

optimization techniques [10-12]. The resultant approximation

matrix can be full where the missing data are estimated based on

the information hidden in the known ones. With a well-established

model and carefully-chosen learning algorithms, an LFA-based

estimator can predict missing QoS data well with high

computational efficiency. Recently, researchers have paid a lot of

efforts on investigating LFA-based QoS-estimators, thereby

achieving several sophisticated models.

Related works. Lo et al. [15] propose to extend an LFA-based

QoS-estimator via incorporating the location information in each

historical QoS record. It can outperform an LFA-based QoS

estimator with additional data sources. Zheng et al. [11] propose an

LFA-based QoS-estimator which considers the neighborhood

information. Nonetheless, it costs much memory to store the pair-

wise neighborhood factor of each user/service in real applications.

Luo et al. [8] propose to ensemble a set of diversified non-negative

latent factor analysis-based QoS-estimators to achieve a highly

accurate one. For improving the time efficiency of the resultant

model, Luo et al. [12] further propose an ensemble of alternating

direction method-based LFA models, where the training process of

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

mailto:luoxin21%7d@cigit.ac.cn

each single model is accelerated following the principle of an

alternating direction method.

In spite of their efficiency, the aforementioned LFA-based QoS-

estimators are static models without considering the temporal

dynamic patterns hidden in QoS data. Note that in real applications,

the QoS data retrieved from user-side are highly sensitive to many

user-dependent factors (e.g., networking environment and

geographic location), which results in the temporal dynamics.

Hence, it becomes a vital task to explore LFA-based QoS-

estimators which are aware of temporal dynamics hidden in the

QoS data. Koren [17] propose the timeSVD++ model, which

models the temporal effects as additional LFs based on the time

slot of given data. However, it can only account for drift, meaning

that it can move from a central point. In fact, this constraint results

in overfitting an incorrect model. Sahoo et al. [18] propose to

model the dynamic transition of target data with a hidden Markov

model (HMM) approach. These models can incorporate dynamic

information into existing LF models, but it is not suitable for long-

term prediction and hard to completely describe the temporal

patterns in target data. Zhang et al. [16] employ tensor factorization

(TF) technique with average QoS value constraints to improve the

prediction accuracy for missing QoS data. Zhang et al. [19]

propose a non-negative tensor factorization (NTF)-based QoS-

estimator. An NTF-based model can extract temporal patterns from

dynamic QoS data. However, it suffers accuracy loss when the

temporal patterns fluctuate frequently because it is in nature a pure

optimization-based approach without specific design for describing

the temporal patterns.

Contributions. This paper incorporates the principle of Kalman

filter [20] into an LFA-based model, thereby implement an LFA-

based QoS estimator. Given a sparse user-service-time tensor, we

first adopt a Kalman filter to track the temporal variations of user

LFs, thereby obtain filter-user LFs which incorporate the temporal

patterns. And then we train service LFs based on filter-user LFs

with alternating least squares (ALS). Through such a design, we

are able to precisely model the temporal patterns hidden in

dynamic QoS data, thereby achieving high prediction accuracy for

missing QoS data. The main contributions of this paper include:

a) A KLFA-based QoS-estimator, which precisely models the

temporal patterns hidden in dynamic QoS data;

b) Algorithm design and analysis for a KLFA-based QoS-estimator;

c) Empirical studies conducted on the WS-Dream datasets [21, 22]

where several state-of-the-art temporal-aware QoS-estimators

are included for demonstrating the efficiency of the proposed

KLFA-based QoS-estimator.

According to the authors’ best knowledge, such efforts have

been never seen in any previous work.

The rest of this paper is organized as follows. Section 2 gives

the problem statement. Section 3 presents a KLFA-based QoS-

estimator. Section 4 gives the experimental results. Section 5 is the

discussion. Finally, Section 6 concludes the paper.

2 PRELIMINARIES

In this paper we consider a dynamic scene as depicted in Figure 1.

As the invoking time varies, the QoS data experienced by a

specified user on a specified service is temporal dynamics. Thus,

we can naturally adopt a three-dimensional tensor to describe the

relationship among users, services and time, which is the

fundamental data source for our problem, as depicted in Figure 2.

Figure 1. Collecting dynamic QoS data.

Figure 2. User-service-time tensor.

Given a user set M, service set N and time set L, we define this

user-service-time tensor as follows:

Definition 1. User-service-time Tensor Q. Q is a |M|×|N|×|L|

tensor where each element qi,j,t denotes the service QoS of the

specified characteristic on service j experienced by user i at time

interval t, where user i∈{1, 2, … |M|}, service j∈{1, 2, … |N|},

and time interval t∈{1, 2, … |L|}.

As mentioned before, at each time interval, a service cannot be

touched by all users, and a user cannot invoke all candidate

services. Therefore, Q is a High Dimensional and Sparse (HiDS)

tensor [28] with most QoS data unknown, as depicted in Figure 2.

Let QK and QT denote its known and missing entry sets,

respectively and we have |QK|≪|QT|.

Definition 2. Temporal-aware QoS-estimator Q̂ . Given Q, Q̂ is

built on QK. For each missing QoS record qi,j,t, it can generate a

prediction , ,
ˆ

i j tq based on information in QK and

, , , ,, ,
ˆ

K
i j t i j ti j t Q

q q is minimized.

3 KLFA-BASED QOS ESTIMATOR

Table 1. Notations and Descriptions.

Notations Descriptions

sj LFs of service j

ui,t LFs of user i at time interval t

Fi,t transition process matrix of user i at time interval t

Hi,t observation process matrix of user i at time interval t

wi,t transition Gaussian noise vector of user i at time interval t

vi,t observation Gaussian noise vector of user i at time interval t

qi,t The set of QoS values observed by user i at time interval t

Pi,t covariance matrix of ui,t

Ki,t Kalman gain matrix of user i at time interval t

U0 initial user LF matrix

U filter-user LF matrix

S service LF matrix

Kalman filter is a recursive estimation algorithm in control theory

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

[20], which is widely used in various fields for dynamic estimation.

It is able to estimate the current state based on the previous state

accurately.

As mentioned before, although state-of-the-art temporal-aware

QoS-estimators have been shown to be successful in practice, they

are limited in extracting temporal patterns from dynamic QoS data.

For addressing this issue, we introduce a KLFA-based QoS-

estimator, which precisely models the temporal patterns hidden in

dynamic QoS data without considering the data’s variation rule and

frequency. Before clarifying the KLFA-based QoS-estimator, some

basic notations are introduced at first in Table 1.

For each user i∈{1, 2, … |M|}, the proposed KLFA-based QoS-

estimator obtains the filter-user LFs ui,|L| through |L| times Kalman

filter. For each service j∈{1, 2, … |N|}, we train service LFs sj

based on filter-user LFs ui,|L| with alternating least squares (ALS).

Moreover, let R is a |M|×|N| HiDS matrix which denotes a time

slice of Q. The rank-f estimate to R is able to denoted by R̂ US

where U=[u1,|L|, …, u|M|,|L|]
T and S=[s1, …, s|N|]. Note that U|L| has

dimension |M|×f, S has dimension f×|N| and f≪min{|M|,|N|}. From

the above analysis, the prediction is only for a time slice of Q.

However, the obtained filter-user LFs ui,|L| incorporate the temporal

patterns hidden in dynamic QoS data over the whole time frame.

Hence, we can extend the matrix R̂ to the tensor Q̂ , where each

slice of Q̂ is R̂ and , , ,
ˆ

i j t ji L
q u s .

Therefore, to represent the given user-service-time tensor Q,

KLFA-based QoS-estimator builds its estimator Q̂ . Since Q is an

HiDS tensor, U and S are built based on QK only. To do so, the

objective function with Euclidean distance is formulated as follows:
2 2 2

, , , ,
, , ,

arg min ,
K

i j t j ji L i L FKLFA FU S i j t Q

U S C q u s u s (1)

where ||∙||F computes the Frobenius norm, the constant C controls

the regularization effect [23].

Note that the objective function (1) is generally the same as one

in a static LFA-based QoS-estimator [10-12]. However, our model

is sharply different from a static LFA-based QoS-estimator in the

following aspects:

a) The fundamental data source of KLFA is an HiDS tensor, not an

HiDS matrix.

b) The user LFs in KLFA incorporate the temporal patterns hidden

in dynamic QoS data, which are not standard static LFs.

Moreover, KLFA is also essentially different from tensor

factorization approaches [19, 33] which directly decompose the

target QoS tensor into a set of matrices: user LFs, service LFs, and

time LFs matrices, respectively. For KLFA, we just incorporate

temporal patterns into user LFs without extra time LFs matrix.

Next, we show how to build a KLFA-based QoS-estimator.

3.1 Coupled Dynamical System

To model the temporal patterns hidden in dynamic QoS data, a

coupled dynamical system of user LFs needs to be proposed first,

whose posteriori estimate can be obtained using Kalman filter. This

system can be represented by two stochastic equations (2) and (3).

First, we assume that user LFs are function of time and make ui,t

denote the LFs of user i at time interval t. For each user, the initial

user LFs matrix U0=[u1,0, …, u|M|,0]
T is randomly. The user LFs

evolution is according to the generally non-stationary transition

process matrix Fi,t and transition noise wi,t to capture dynamic

variations along the time frame. Taken together, the dynamic

variation process is described as follows:

, , , 1 ,i t i t i t i tu F u w (2)

where equation (2) is called a state process equation and represents

the internal state of the system. The transition noise wi,t is

independent, zero-mean, Gaussian noise with distributions: p(wi,t)

∼ N(0, Wi,t) and Wi,t is the covariance matrix. Note that in real

application, although the QoS data is always in a state of dynamic

change, there is no sudden change in magnitude. Hence, in this

context, we can set Fi,t to be a diagonal matrix which diagonal

elements are random values close to 1 even equal to 1.

Meanwhile, we assume that the service LFs evolve very slowly,

which can be considered constant over the time frame that user LFs

are collected. Also, due to a limited QoS values of Web services

number are observed by each user, we incorporate the service LFs

through a non-stationary observation process matrix Hi,t, which is

made up of subsets of rows of the service LF matrix S observed at

time t by user i, e.g., if user i observes service 1, 3 and 5 at time t,

so we select s1, s3 and s5 to compose the observation matrix Hi,t.

Note that all Hi,t are subsets of the same fixed S and are coupled in

this way. We also include observation noise and the overall

observation equation is:

, , , ,i t i t i t i tq H u v (3)

where equation (3) is called an observation process equation and

outputs observation on the basis of the state of the system. The

observation process matrix Hi,t maps user LFs ui,t to observed QoS

values qi,t. Moreover, vi,t is independent, zero-mean, Gaussian noise

with distributions: p(vi,t)∼N(0, Vi,t) and Vi,t is the covariance matrix.

The product Hi,tui,t in (3) parallels the product <ui, sj> in equation

(1). We use qi,t to denote the QoS values observed by user i at time

interval t, corresponding to the know entries of QK.

3.2 U Step via Kalman Filter

According to the nature of Kalman filter [20], we run M

independent Kalman filter to exploit dynamic variations of user

LFs for time interval t∈{1, 2, … |L|}. The Kalman filter performs

two steps: the time prediction step and the feedback update step.
Time prediction step. First, we need to use the state process

equation (2) to predict the priori estimate for user LFs at time

interval t from the posteriori estimate for user LFs at time interval

t-1. That means it is utilized to project forward both the current

posteriori estimate to acquire the priori estimate for the next time

interval. The time prediction step can be formulated as follows:

, , , 1i t i t i tu F u (4)

T

, , , 1 , ,i t i t i t i t i tP F P F W (5)

where T denotes the matrix transpose.
,i tu represents a priori user

LFs at time interval t and its priori covariance matrix is
,i tP . ui,t is a

posteriori user LFs at time interval t and its posteriori covariance

matrix is Pi,t.
Feedback update step. Now, we obtain the priori estimate for the

time interval t according to time prediction step. And then, we

rectify the priori estimate based on the observation process

equation (3) to get the posteriori estimate for the time interval t.

That means the feedback update step can be seen as a modification

of priori estimate based on observed values. The feedback update

step can be formulated as follows:

, , , ,i t i t i t i te q H u (6)

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

T

, , , , ,i t i t i t i t i tE V H P H (7)

T 1

, , , ,i t i t i t i tK P H E (8)

, , , ,i t i t i t i tP I K H P (9)

, , , ,i t i t i t i tu u K e (10)

where I is the unit matrix, ei,t and Ei,t represent observation

residuals and covariance of the observation residuals, respectively.

Based on (6)-(10), we obtain the posteriori estimate ui,t and Pi,t at

time interval t. ui,t is the optimal estimate LFs for user i at time t.

The posteriori estimate can be used not only as the optimal

estimate of this time interval, but also as the input of the next time

interval to keep the Kalman Filter running along the time.

For each user i∈{1, 2, … |M|}, the filter-user LFs ui,|L| are

obtained through |L| times Kalman filter. Hence, the filter-user LFs

ui,|L| incorporate the temporal patterns hidden in dynamic QoS data

over the whole time frame. The process of modeling the temporal

patterns via Kalman filter is depicted in Figure 3.

Figure 3. Process of modeling the temporal patterns via Kalman filter.

3.3 S Step via Alternating Least Squares

Based on the Kalman filter, the filter-user LFs with temporal

patterns are estimated. Note that objective function (1) relies on QK

along with related row and column vectors from U and S,

respectively. Hence, we solve (1) depending on each column vector

of S by denoting S=[s1, …, s|N|]. Naturally, since each ui,|L| is

obtained through Kalman filter, equation (1) is analytically

solvable with respect to each single service LFs sj with j∈{1, 2, …

|N|}. The derivative of KLFA with respect to sj is:

T T

, ,, , ,
, ,

2 () 2 2
K

KLFA
j K i j t ji L i L i L

i j t Q j i M jj

s Q j C u q C u u s
s

(1

1)

Note that in (11), M(j) denotes the subset of M where each user i

∈M(j) corresponds to a unique instance qi,j,t∈QK(j). To achieve a

local minimum of (1), we set (11) at zero to achieve the following

expression:

T

, ,, , ,
, ,

()

K

K T

i j t ji L i L i L
i j t Q j i M j

Q j
u q I u u s

C
 (12)

As discussed in the previous work [23, 24], the condition

f≪min{|M|, |N|} is always fulfilled. Hence, , ,

T

i L i Li M j
u u is full-

rank, making the following solution to (12) exist:

1

T T

, ,, , ,
, ,

()

K

K

j i j ti L i L i L
i M j i j t Q j

Q j
s I u u u q

C
 (13)

with (13), we solve S based on U.

3.4 Algorithm Design and Analysis

Algorithm: KLFA

Input: QK, M, N, L, f, C

 Operation Cost

Initialize: U0=[u1,0,..,u|M|,0]
T∈R|M|×f randomly Θ(|M|×f)

Initialize: S=[s1,..,s|N|]∈Rf×|N| randomly Θ(|N|×f)

Initialize: ROUND = max_round，n = 0 Θ(2)

while not converge && n ≤ ROUND do ×n

for i=1 to |M| ×|M|

initialize Pi,0 ∈ Rf×f all zeros Θ(f2)

for t=1 to |L| ×|L|

set Wi,t ∈ Rf×f known Θ(f2)

set Vi,t ∈ R|N(i,t)|×|N(i,t)|* known Θ(|N(i,t)|2)

set Ei,t∈ R|N(i,t)|×|N(i,t)| zeros Θ(|N(i,t)|2)

set Fi,t∈ Rf×f diagonal matrix Θ(f2)

set Hi,t∈ R|N(i,t)|×f subsets of fixed S Θ(|N(i,t)|×f)

set Ki,t∈ Rf×|N(i,t)| zeros Θ(|N(i,t)|×f)

set ei,t∈ R|N(i,t)| zeros Θ(|N(i,t)|)

, , , 1i t i t i tu F u Θ(f2)

T

, , , 1 , ,i t i t i t i t i tP F P F W Θ(2×f3)

, , , ,i t i t i t i te q H u Θ(|N(i,t)|×f)

T

, , , , ,i t i t i t i t i tE V H P H Θ(|N(i,t)|2×f+

|N(i,t)|×f2)

T 1

, , , ,i t i t i t i tK P H S Θ(|N(i,t)|2×f+

|N(i,t)|×f2+|N(i,t)|3)

, , , ,i t i t i t i tu u K e Θ(|N(i,t)|×f)

, , , ,i t i t i t i tP I K H P Θ(|N(i,t)|×f2+ f3)

end for

--

end for --

for j=1 to |N| ×|N|

set C ∈ Rf×f zeros Θ(f2)

set d ∈ Rf zeros Θ(f)

for I ∈ M(j)** ×|QK(j)|

C = C+ T

, ,i L i L
u u Θ(f2)

d = d+ T

, ,, i j ti L
u q Θ(f)

end for --

1

()K

j

Q j
s I C d

C
 Θ(f3+f2)

end for --

n = n+1 Θ(1)

set U0=[u1,|L|,..,u|M|,|L|]
T Θ(|M|×f)

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

end while --

Output: filter-user LFs and service LFs

*

|N(i, t)| represents the number of Qos values observed by user i on time t.

** M(j) represents the set of users who observe service j over the time frame.

Based on the above inference, we design Algorithm KLFA. As

discussed in Sections 3.2 and 3.3, each iteration of KLFA-based

QoS-estimator consists of two phases: a) obtain the filter-user LFs

via Kalman filter to explore the dynamics of QoS attributes and

model the temporal patterns; b) executing the S step to solve

service LFs based on user LFs and (13).

As given in Algorithm KLFA, its computational cost consists of

the following parts:

2

23

32

(1). Initialization 2

+2 ()
(2). step

3 () + ()

3 ,

+ , ,

(3). step K

f f

f N i t f

N i t f N i t

M N

U

f

n M L

S n f f Q N

 (14)

Based on (14), the computational cost of KLFA is:

3

2

23

32

+2 ()

3 () + ()

3 ,

+ , ,
K

K

f N i t f

nN i t f N i t
M L Q

T n
M L

f f Q N f

　 (15)

Note that in (15), we take advantage of the inference that

|M|×|L|×|N(i,t)|=QK. In real applications, f is a positive constant and

can be set small without impairing an LF model’s performance.

Therefore, we usually have f≪|N(i,t)|. Moreover, we reasonably

omit the lower-order-terms to achieve the final result.

4 EXPERIMENTAL RESULTS

4.1 General Settings

Evaluation Protocol. We focus on the accuracy of QoS prediction,

since it directly reflects whether or not the model has captured the

essential characteristics of given data. Hence, we adopt it as the

evaluation protocol in our experiments. A model’s prediction

accuracy is measured by root mean squared error (RMSE) [30]:

 
 

2

, , , ,

, ,

ˆ

T

i j t i j t T

i j t Q

RMSE q q Q


 
  

 
 
 (16)

where QT denotes the test set and is disjoint with QK, qi,j,t is the

QoS value of Web service j observed by user i at time interval 𝑡,

, ,
ˆ

i j tq denotes the prediction for the testing instance, and |∙|abs

computes the absolute value of a given number, respectively. All

experiments are conducted on a Tablet with a 2.5 GHz E5-2680 V4

CPU and 500 GB RAM. The programming language is JAVA SE

7U60.

Table 2. Details of datasets.

Dataset D1 D2

Type Response-time Throughput

Num. of Users 142 142

Num. of Web services 4,500 4,500

Num. of time intervals 64 64

|QK| 30,171,491 30,286,687

Datasets. To evaluate the KLFA-based QoS-estimator, we do

the experiments on two large-scale real-world Web service QoS

datasets collected by the WS-Dream system [21, 22]. These two

datasets consist of the response-time and throughput of the

invocations on 4,500 real-world WSs by 142 users during 64 time

intervals. Their details are summarized in Table 2.

We randomly select the service 1 observed by user 5 and service

7 observed by user 6 from the Throughput dataset. As shown in

Figure 4, a user observes different QoS values on the same Web

service during different time intervals. This observation indicates

the temporal of QoS values.

Figure 4. Throughput of Two Pairs of User-Service.

For D1 and D2, we design different testing cases under different

data ratios, as shown in Table 3. The column Train: Test means the

ratio of training to testing data; e.g., 10%:90% denotes 10% of

given data is chosen randomly as training data to predict the

remaining 90% data. Naturally, testing data are not involved in the

training process. Cross-validation techniques are employed to

obtain more objective results.

Table 3. Testing cases.

Dataset No. Train:Test Training data Testing data

D1

D11 5%:95% 1,508,574 28,662,917

D12 10%:90% 3,017,149 27,154,342

D13 20%:80% 6,034,298 24,137,193

D14 40%:60% 12,068,596 18,102,895

D15 50%:50% 15,085,745 15,085,746

D2

D21 5%:95% 1,514,334 28,772,353

D22 10%:90% 3,028,668 27,258,019

D23 20%:80% 6,057,337 24,229,350

D24 40%:60% 12,114,674 18,172,013

D25 50%:50% 15,143,343 15,143,344

4.2 Parameter-Sensitive Tests

From Section 3, we can see that the performance of KLFA depends

on the parameters C and f, which decide the regularization effect

and LF dimension, respectively. Moreover, the covariance matrix

Wi,t of transition noise wi,t and the covariance matrix Vi,t of

observation noise vi,t in Kalman filter are known normally [29].

Learning the Wi,t and Vi,t is difficult in practice from such limited

observations, but simplifications to process models yield tractable

closed-form solutions. These simplifications are that Wi,t is σwI, Vi,t

is σvI. Therefore, it is essential to investigate KLFA’s performance

as C, f, σw and σv vary. Figures 5-8 depict the results measured by

RMSE as parameters vary on D11 and D21. The similar

conclusions can be reached on other testing cases. From them, we

have the following findings:

a) First, we fix f, σw and σv to investigate KLFA’s performance as C

varies. As shown in Figure 5(a), on D11, the lowest RMSE is

3.7477 with C=1.010-3, 0.12% lower than 3.7523 with

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

C=0.710-3, 0.11% lower than 3.7518 with C=0.810-3, 0.05%

lower than 3.7496 with C=0.910-3, 0.25% lower than 3.7571

with C=1.110-3, 0.31% lower than 3.7592 with C=1.210-3,

0.41% lower than 3.7631 with C=1.310-3, and 0.51% lower

than 3.7671 with C=1.410-3. Similar situations can also be

found on D21. It demonstrates that regularization effect is

important for KLFA to achieve high-prediction accuracy.

(a) RMSE on D11 (b) RMSE on D21

Figure 5. The KLFA’s prediction accuracy as C varies.

(a) RMSE on D11 (b) RMSE on D21

Figure 6. The KLFA’s prediction accuracy as f varies.

(a) RMSE on D11 (b) RMSE on D21

Figure 7. The KLFA’s prediction accuracy as σw varies.

(a) RMSE on D11 (b) RMSE on D21

Figure 8. The KLFA’s prediction accuracy as σv varies.

b) Second, we fix C, σw and σv to investigate KLFA’s performance

as f varies. As shown in Figure 6(a), on D11, the lowest RMSE

is 3.7477 with f=20 and the highest RMSE is 3.7826 with f=120.

The largest gap of RMSE is 0.92%. On D21, the lowest and

highest RMSE are 23.2610 with f=80 and 23.5456 with f=10,

respectively. The gap reaches 1.21%. Note that KLFA’s

prediction accuracy also relies on the LF dimension. However,

in the previous studies [10, 23], the prediction accuracy of LFA-

based approaches for missing data usually increases as f

increases. Nonetheless, this rule does not hold for KLFA.

c) Finally, we investigate the effects of transition noise and

observation noise. As depicted in Figures 7 and 8, KLFA’s

prediction accuracy is always closely connected with σw and σv:

1) fix other parameters to investigate KLFA’s performance as σw

varies. For instance, as shown in Figure 7(a), on D11, the lowest

RMSE is 3.7431 with σw=0.910-3 and the highest RMSE is

3.7560 with σw=1.310-3. The gap is 0.34%; 2) fix other

parameters to investigate KLFA’s performance as σv varies. For

instance, on D21, as shown in Figure 8(b), the lowest RMSE is

23.2972 with σv=17, 0.48% higher than 23.7818 with σv=16.

Based on these results, it is necessary to tune these parameters

carefully to ensure high prediction accuracy. Note that the tuning

process is a tedious task. This problem can be addressed via offline

tuning setting, or adopting empirical values. Without loss of

generality, we simply fix C=1.010-3, f=20, σw=1.010-3, and

σv=20 in the following experiments.

4.3 Convergence Process

In this part, we aim to validate the convergence of KLFA. The

training process with different testing cases are shown in Figure 9.

We have some meaningful findings from these results:

(a) RMSE on D1 (b) RMSE on D2

Figure 9. Training process with different test cases.

a) Figure 9 depicts that the prediction accuracy is connecting with

data ratios. When the ratio is small (e.g., ratio is 5% or 10%), the

RMSE and MAE are higher. For instance, as shown in Figure

9(a), on D1, the lowest RMSE and MAE are 3.7477 and 1.8675,

3.7354 and 1.7545, 3.5881 and 1.7545, 3.4902 and 1.6583,

3.4724 and 1.6504 when the ratio of training data are 5%, 10%,

20%, 40% and 50%, respectively. The RMSE decreases as the

ratio increases. Similar results can also be found on D2.

b) It is different on D1 and D2 on regarding to the prediction

accuracy’s change rate as data ratio varies. As shown in Figure 9,

when the ratio of training data is increased from 5% to 10%, the

improvement of prediction accuracy is insignificant on D1, but

significant on D2. For instance, the lowest RMSE is 3.7477 with

the testing case D11, only 0.33% higher than 3.7354 with the

testing case D12. However, on D2, the lowest RMSE is 23.4906

with the testing case D21, 4.66% higher than 22.3959 with the

testing case D22. The gap is quite obvious. When the ratio of

training data is further increased from 20% to 40%, the lowest

RMSE are 3.5881 and 3.4902 on D1. The gap reaches 2.7%.

However, on D2, the RMSE is 21.7122 and 21.5637,

respectively. The gap is only 0.68%.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

4.4 Comparison with State-of-the-art Models

In this part of experiments, we compare a KLFA-based QoS-

estimator with the widely used state-of-the-art temporal-aware

QoS-estimators in terms of prediction accuracy. Moreover, we add

a widely used static LFA-based QoS-estimator [23] as the baseline,

which can be used to illustrate the importance of considering the

temporal patterns hidden in QoS data. The details of compared

models are listed below:

M1: TimeSVD++, it is a dynamic collaborative recommendation

model [17], which models the temporal effects as additional LFs.

M2: TF, it is a tensor factorization-based model [25], which

applies tensor factorization on an user-service-time tensor to

extract user-based, service-based and time-based factors directly.

M3: WSPred, it is a tensor factorization-based prediction model

with average QoS value constraints [16].

M4: KLFA, it is proposed in this paper, which incorporates

Kalman filter to model the temporal patterns.

M5 (baseline): Static LFA, This method considers the user-

service-time tensor as a set of user-service matrix slices in terms of

time. For each slice, the prediction method proposed by Koren and

Bell [24] is employed.

In terms of the hyperparameters in each model, to ensure a fair

comparison, we adopt the following settings: 1) For all compared

models, we compare their prediction accuracy as the ratio of

training data increases from 5% to 50%; 2) M1-M3 and M5 depend

on learning rate and regularization coefficient. Without lost of

generality, we search their optimal values by performing cross-

validation on the observed QoS data under the same latent factor

space f=20. The results are shown in Figure 10 and Table 4. From

them, we have the following findings:

(a) RMSE on D1 (b) RMSE on D2

Figure 10. Prediction accuracy comparison.

a) M4 proposed in this paper outperforms its peers on prediction

accuracy with all the testing cases. For instance, as shown in

Figure 10(a) and Table 4, on D11, the lowest RMSE achieved by

M4 is 3.7477, about 24.01% lower than 4.9322 by M1, 21.11%

lower than 4.7508 by M2, 14.09% lower than 4.3626 by M3, and

29.84% lower than 5.3423 by M5. On D21, the lowest RMSE

achieved by M4 is 23.4906, about 47.57% lower than 44.8051

by M1, 40.55% lower than 39.5133 by M2, 39.92% lower than

39.0972 by M3, and 49.67% lower than 46.6735 by M5. The

improvement of prediction accuracy is significant.

b) M1-M5’s RMSE decrease as the ratio of training data increases,

that means the RMSE and MAE of dense tensors are lower than

those of sparse ones. For instance, on D1, M4 achieves the

lowest RMSE at 3.4724 on D15, 7.34% lower than 3.7477 on

D11, 7.04% lower than 3.7354 on D12, 3.22% lower than

3.5881 on D13, and 0.51% lower than 3.4902 on D14. These

results indicate that a denser tensor provides more information

for predicting the missing values.

c) Note that all the compared models except M5 take into account

the temporal dynamics patterns hidden in the QoS data. As

shown in Table 4, M5 is outperformed by its peers since it does

not consider the temporal dynamic patterns hidden in QoS data.

For M1-M4, M1 adopts a heuristic function to model the

temporal patterns hidden in dynamic data, which may result in

inaccurate representation of these temporal patterns; M2 and M3

perform better than M1 since they extract temporal patterns from

dynamic QoS data directly through tensor factorization.

Moreover, M3 incorporates the average QoS value constraints

into M2 to improve the performance on prediction accuracy;

However, M2 and M3 suffer accuracy loss because they are

tensor factorization approaches, which are in nature a pure

optimization-based approach without specific design for

describing the temporal patterns. Owing to the nature of

Kalman-filter, M4 is able to naturally model such temporal

dynamics with state-transition functions, thereby completely

describe the temporal patterns hidden in target data.

Table 4. RMSE of compared models.
Dataset

se

No. M1 M2 M3 M4 M5

D1

D11 4.9322 4.7508 4.3626 3.7477 5.3423

D12 4.6126 4.5696 4.2892 3.7354 5.0667

D13 4.4212 4.3977 4.1535 3.5881 4.5772

D14 4.2571 4.2191 3.9246 3.4902 4.3541

D15 4.1347 4.0169 3.8971 3.4724 4.2996

D2

D21 44.8051 39.5133 39.0972 23.4906 46.6735

D22 42.9100 39.2792 38.6271 22.3959 46.6656

D23 42.0124 38.9987 38.1601 21.7122 44.3223

D24 41.6670 38.6981 36.5811 21.5637 42.1177

D25 41.6047 38.6972 36.5731 21.5063 41.9407

5 DISCUSSION

For implementing KLFA, we assume the service LFs evolve very

slowly and can be considered constant over the time frame that

user LFs are collected by a Kalman filter. Actually it can be named

User-based KLFA (U-KLFA). In addition, we try to obtain the

filter-service LFs by Kalman filter for modeling the temporal

dynamic patterns, which can be named Service-based KLFA (S-

KLFA). The details are recorded in the Supplementary File3.

6 CONCLUSIONS

This paper proposes a KLFA-based QoS-estimator, which

considers the temporal dynamics of QoS attributes. It estimates the

current LFs based on the previous ones through Kalman filter. The

Extensive experiments results based on large-scale real-world Web

service QoS datasets show when compared with state-of-the-art

temporal-aware QoS-estimators, KLFA is able to achieve

significantly higher prediction accuracy for missing QoS data.

However, there are several directions of future work for

improving KLFA: a) according to (15), the main drawback of

KLFA is the high computational complexity due to matrix

inversions. Therefore, parallel computing [26] can be considered to

improve the computational efficiency; b) Section 4.2 shows that

the tuning process of hyperparameters is a tedious task. Naturally,

the ideal way is to implement the parameter’s self-adaptive without

3
 https://pan.baidu.com/s/1JyllVuVV9L1ZKGMaDaqXiA

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

introducing any sizable computational overhead. According to

prior research [27], an evolutionary-computation-based algorithm

like particle swarm optimization can be useful in implementing

efficient adaptations of parameters in our scene. It will be

interesting to develop KLFA extensions under such circumstances.

ACKNOWLEDGEMENTS

This work is supported in part by the National Natural Science

Foundation of China under grants 61772493, 61902370, 61602434

and 61702475, in part by the Natural Science Foundation of

Chongqing (China) under grants cstc2019jcyj-msxmX0578 and

cstc2019jcyjjqX0013, and in part by the Pioneer Hundred Talents

Program of Chinese Academy of Sciences.

REFERENCES

[1] M. Bahrami and M. Singhal, ‘The role of cloud computing architecture

in big data’, Springer International Publishing, (2015).

[2] H. Artail, M. Saghir, and M. Sharafeddin, ‘Speedy cloud: Cloud

computing with support for hardware acceleration services’, IEEE

Transactions on Cloud Computing, 7(3), 850-865, (2019).

[3] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio,

‘Interacting with the SOA-Based Internet of Things: Discovery, Query,

Selection, and On-Demand Provisioning of Web Services’, IEEE

Transactions on Services Computing, 3(3), 223-235, (2010).

[4] P. Wang, A. K. Kalia, and M. P. Singh, ‘A collaborative approach to

predicting service price for QoS-aware service selection’, In

Proceedings of the IEEE International Conference on Web Services,

33-40, (2015).

[5] K. Liang, A. K. Qin, K. Tang, and K. C. Tan, ‘QoS-Aware Web

Service Selection with Internal Complementarity’, IEEE Transactions

on Services Computing, 12(2), 276-289, (2019).

[6] J. E. Haddad, M. Manouvrier, and M. Rukoz, ‘TQoS: Transactional

and QoS-Aware Selection Algorithm for Automatic Web Service

Composition’, IEEE Transactions on Services Computing, 3(1), 73-85,

(2010).

[7] X. Luo, M. Zhou, Z. Wang, Y. Xia, and Q. Zhu, ‘An effective scheme

for QoS estimation via alternating direction method-based matrix

factorization’, IEEE Transactions on Services Computing, 12(4), 503-

518, (2019).

[8] X. Luo, M. Zhou, Y. Xia, Q. Zhu, A. C. Ammari, and A.

Alabdulwahab, ‘Generating highly accurate predictions for missing

QoS data via aggregating nonnegative latent factor models’, IEEE

Transactions on neural networks and learning systems, 27(3), 524-537,

(2016).

[9] D. Yu, Y. Liu, Y. S. Xu, and Y. Y. Yin, ‘Personalized QoS Prediction

for Web Services Using Latent Factor Models’, In Proceedings of the

IEEE International Conference on Services Computing, 107-114,

(2014).

[10] X. Luo, M. Zhou, S. Li, Y. Xia, Z. You, Q. Zhu, and H. Leung,

‘Incorporation of Efficient Second-Order Solvers Into Latent Factor

Models for Accurate Prediction of Missing QoS Data’, IEEE

Transactions on Cybernetics, 48(4), 1216-1228, (2017).

[11] Z. Zheng, H. Ma, M. R. Lyu, and I. King, ‘Collaborative Web Service

QoS Prediction via Neighborhood Integrated Matrix Factorization’,

IEEE Transactions on Services Computing, 6(3), 289-299, (2013).

[12] X. Luo, M. Zhou, S. Li, Z. You, Y. Xia, and Q. Zhu, ‘A Nonnegative

Latent Factor Model for Large-Scale Sparse Matrices in

Recommender Systems via Alternating Direction Method’, IEEE

Transactions on Neural Networks and Learning Systems, 27(3), 579-

592, (2016).

[13] Q. Wang, M. Chen, and M. Shang, ‘A momentum-incorporated latent

factorization of tensors model for temporal-aware QoS missing data

prediction’, Neurocomputing, 367, 299-307, (2019).

[14] R. Xiong, J. Wang, and Z. Li, ‘Personalized LSTM Based Matrix

Factorization for Online QoS Prediction’, In Proceedings of the IEEE

International Conference on Services Computing, 34-41, (2018).

[15] W. Lo, J. Yin, and S. Deng S, ‘Collaborative Web Service QoS

Prediction with Location-Based Regularization. In Proceedings of

19th IEEE International Conference on Web Services, 464-471, (2012).

[16] Y. Zhang, Z. Zheng, and R. L. Michael, ‘WSPred: A Time-Aware

Personalized QoS Prediction Framework for Web Services’, In

Proceedings of the 22nd IEEE International Symposium on Software

Reliability Engineering, 210-219, (2011).

[17] Y. Koren, ‘Collaborative filtering with temporal dynamics’, In

Proceedings of the 15th SIGKDD International Conference on

Knowledge discovery and data mining, 447-456, (2009).

[18] N. Sahoo, P. V. Singh, and T. Mukhopadhyay, ‘A hidden Markov

model for collaborative filtering’, Mis Quarterly, 36(4), 1329-1356,

(2012).

[19] W. Zhang, H. Sun, X. Liu, and X. Guo, ‘Temporal QoS-aware Web

Service recommendation via Non-negative Tensor Factorization’, In

Proceedings of the 23rd International Conference on World wide web,

585-596, (2014).

[20] G. Welch and G. Bishop, ‘An introduction to the Kalman filter’,

Technical Report, (1995).

[21] Z. Zheng, Y. Zhang, and M. R. Lyu, ‘Distributed QoS evaluation for

real-world Web services’, In Proceedings of the IEEE International

Conference on Web Services, 83-90, (2010).

[22] Z. Zheng, Y. Zhang, and M. R. Lyu, ‘Exploring Latent Features for

Memory-Based QoS Prediction in Cloud Computing’, In Proceedings

of the 30th IEEE International Symposium on Reliable Distributed

Systems, 1-10, (2011).

[23] Y. Hu, Y. Koren, and C. Volinsky, ‘Collaborative filtering for implicit

feedback datasets. In Proceedings of the 8th IEEE International

Conference on Data Mining, 263–272, (2009).

[24] Y. Koren, R. Bell, and C. Volinsky, ‘Matrix-factorization techniques

for recommender systems’, IEEE Computer, 42(8), 30-37, (2009).

[25] S. Rendle and L. S. Thieme, ‘Pairwise interaction tensor factorization

for personalized tag recommendation’, In Proceedings of the 3rd

International Conference on Web search and data mining, 81-90,

(2010).

[26] O. Beaumont, B. A. Becker, A. M. DeFlumere, and A. L. Lastovetsky,

‘Recent Advances in Matrix Partitioning for Parallel Computing on

Heterogeneous Platforms’, IEEE Transactions on Parallel and

Distributed Systems, 30(1), 218-229, (2019).

[27] P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos, and J. R. Paster,

‘Particle swarm optimization for hyper-parameter selection in deep

neural networks’, in Proceedings of the ACM International

Conference on Genetic and Evolutionary Computation, 481-488,

(2017).

[28] X. Luo, H. Wu, M. Zhou, and H. Yuan, ‘Temporal Pattern-aware QoS

Prediction via Biased Non-negative Latent Factorization of Tensors’,

IEEE Transactions on Cybernetics, 10.1109/TCYB.2019.2903736,

(2019).

[29] S. Benferhat, D. Dubios, and H. Prade, ‘Kalman-like Filtering in a

Possibilistic Setting’, In Proceedings of the 14th European Conference

on Artificial Intelligence, 8-12, (2000).

[30] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl, ‘Evaluating

collaborative filtering recommender systems’, ACM Trans. on

Information Systems, 22(1), 5-53, (2004).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

https://dblp.uni-trier.de/pers/hd/t/Tan:Kay_Chen
https://dblp.uni-trier.de/db/journals/tsc/tsc12.html#LuoZWXZ19
https://www.researchgate.net/scientific-contributions/10127621_Yehuda_Koren
http://xueshu.baidu.com/s?wd=author:(Yehuda%20Koren)%20Yahoo!%20Research&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(Robert%20Bell)%20AT&T%20Labs%20%E2%80%93%20Research&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://dblp.uni-trier.de/pers/hd/b/Beaumont:Olivier
https://dblp.uni-trier.de/pers/hd/b/Becker:Brett_A=
https://dblp.uni-trier.de/pers/hd/d/DeFlumere:Ashley_M=
https://dblp.uni-trier.de/pers/hd/l/Lastovetsky:Alexey_L=

