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Abstract.1With the rapid development of services computing in the 
past decade, automatic selection of QoS-aware Web service out 
from numerous candidates with similar functions is becoming a hot 
yet thorny issue. Conducting warming up tests on numerous 
candidate services for quality evaluation is extremely time-
consuming and expensive, making it vital to generate highly 
accurate predictions for missing QoS data based on known ones. 
Since QoS data are time-dependent, it is vital to consider the 
temporal dynamic patterns hidden in historical ones when building 
a QoS-estimator. For addressing this issue, this study invents a 
Kalman filter-incorporated Latent Factor Analysis (KLFA)-based 
QoS-estimator, which precisely models the temporal patterns 
hidden in dynamic QoS data. Experimental results based on large-
scale and real-world Web service QoS data demonstrate that 
compared with state-of-the-art temporal-aware QoS-estimators, a 
KLFA-based one achieves significantly higher prediction accuracy 
for missing QoS data. 

1 INTRODUCTION 

Cloud computing facilities are indispensable for big data-related 

industrial applications [1], with web services being fundamental 

components for implementing service-oriented architecture-based 

systems and softwares. They are so desired by most industrial Web 

applications, that numerous Web-services with similar functions 

are available online. Consequently, how to implement efficient 

service selection from a large candidate set becomes a major yet 

thorny issue in the area of cloud computing [2, 3]. 

Most non-functionality of a Web-service is reflected by its 

Quality-of-service (QoS), making efficient QoS-based approaches 

for service selection [4, 5] highly feasible, which take QoS data as 

the fundamental data source. Commonly, QoS data are retrieved 

from both servers and users. Server-side data like price and 

invoking protocol are provided by service providers. On the other 

hand, user-side data like response-time and throughput are highly 

related to many user-dependent factors. Although user-side QoS 

data can be obtained by real-world service invocations, but it 
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suffers the following defects: a) such ‘warming up’ tests lead to 

high expenses because most online services are not free to invoke; 

and b) with a drastically increasing number of candidate services, it 

costs long to evaluate all of them. Due to these defects mentioned 

above, it becomes infeasible to acquire all QoS data through real 

invocations, yielding the critical problem of missing QoS data 

estimation, i.e., how to predict unknown QoS data precisely based 

on historical QoS invocations? 

Various approaches are proposed to address this issue, where 

latent factor analysis (LFA)-based approaches [6-9, 13, 14] are 

getting increasingly attractive. An LFA-based QoS estimator takes 

a user-service QoS matrix as the fundamental data source, where 

each row denotes a specified user, each column denotes a specified 

service, and each element denotes the QoS record of a certain type 

experienced by a specified user on a specified service. Obviously, a 

user cannot invoke all candidate services or a service cannot be 

touched by all users, making this matrix highly sparse with 

numerous unknown yet desired data. Hence, an LFA-based 

estimator tries to handle this user-service matrix, extracting its 

essential factors for predicting its unobserved data accurately. 

To do so, an LFA-based estimator maps both the users and 

services into the same low-dimensional latent factor (LF) space to 

build a low-rank approximation to the target user-service matrix for 

predicting its missing data. Such a process is defined on the known 

data of the target matrix only and implemented through various 

optimization techniques [10-12]. The resultant approximation 

matrix can be full where the missing data are estimated based on 

the information hidden in the known ones. With a well-established 

model and carefully-chosen learning algorithms, an LFA-based 

estimator can predict missing QoS data well with high 

computational efficiency. Recently, researchers have paid a lot of 

efforts on investigating LFA-based QoS-estimators, thereby 

achieving several sophisticated models. 

Related works. Lo et al. [15] propose to extend an LFA-based 

QoS-estimator via incorporating the location information in each 

historical QoS record. It can outperform an LFA-based QoS 

estimator with additional data sources. Zheng et al. [11] propose an 

LFA-based QoS-estimator which considers the neighborhood 

information. Nonetheless, it costs much memory to store the pair-

wise neighborhood factor of each user/service in real applications. 

Luo et al. [8] propose to ensemble a set of diversified non-negative 

latent factor analysis-based QoS-estimators to achieve a highly 

accurate one. For improving the time efficiency of the resultant 

model, Luo et al. [12] further propose an ensemble of alternating 

direction method-based LFA models, where the training process of 
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each single model is accelerated following the principle of an 

alternating direction method. 

In spite of their efficiency, the aforementioned LFA-based QoS-

estimators are static models without considering the temporal 

dynamic patterns hidden in QoS data. Note that in real applications, 

the QoS data retrieved from user-side are highly sensitive to many 

user-dependent factors (e.g., networking environment and 

geographic location), which results in the temporal dynamics. 

Hence, it becomes a vital task to explore LFA-based QoS-

estimators which are aware of temporal dynamics hidden in the 

QoS data. Koren [17] propose the timeSVD++ model, which 

models the temporal effects as additional LFs based on the time 

slot of given data. However, it can only account for drift, meaning 

that it can move from a central point. In fact, this constraint results 

in overfitting an incorrect model. Sahoo et al. [18] propose to 

model the dynamic transition of target data with a hidden Markov 

model (HMM) approach. These models can incorporate dynamic 

information into existing LF models, but it is not suitable for long-

term prediction and hard to completely describe the temporal 

patterns in target data. Zhang et al. [16] employ tensor factorization 

(TF) technique with average QoS value constraints to improve the 

prediction accuracy for missing QoS data. Zhang et al. [19] 

propose a non-negative tensor factorization (NTF)-based QoS-

estimator. An NTF-based model can extract temporal patterns from 

dynamic QoS data. However, it suffers accuracy loss when the 

temporal patterns fluctuate frequently because it is in nature a pure 

optimization-based approach without specific design for describing 

the temporal patterns. 

Contributions. This paper incorporates the principle of Kalman 

filter [20] into an LFA-based model, thereby implement an LFA-

based QoS estimator. Given a sparse user-service-time tensor, we 

first adopt a Kalman filter to track the temporal variations of user 

LFs, thereby obtain filter-user LFs which incorporate the temporal 

patterns. And then we train service LFs based on filter-user LFs 

with alternating least squares (ALS). Through such a design, we 

are able to precisely model the temporal patterns hidden in 

dynamic QoS data, thereby achieving high prediction accuracy for 

missing QoS data. The main contributions of this paper include: 

a) A KLFA-based QoS-estimator, which precisely models the 

temporal patterns hidden in dynamic QoS data; 

b) Algorithm design and analysis for a KLFA-based QoS-estimator; 

c) Empirical studies conducted on the WS-Dream datasets [21, 22] 

where several state-of-the-art temporal-aware QoS-estimators 

are included for demonstrating the efficiency of the proposed 

KLFA-based QoS-estimator. 

According to the authors’ best knowledge, such efforts have 

been never seen in any previous work. 

The rest of this paper is organized as follows. Section 2 gives 

the problem statement. Section 3 presents a KLFA-based QoS-

estimator. Section 4 gives the experimental results. Section 5 is the 

discussion. Finally, Section 6 concludes the paper. 

2 PRELIMINARIES 

In this paper we consider a dynamic scene as depicted in Figure 1. 

As the invoking time varies, the QoS data experienced by a 

specified user on a specified service is temporal dynamics. Thus, 

we can naturally adopt a three-dimensional tensor to describe the 

relationship among users, services and time, which is the 

fundamental data source for our problem, as depicted in Figure 2. 

 
Figure 1. Collecting dynamic QoS data. 

 
Figure 2. User-service-time tensor. 

Given a user set M, service set N and time set L, we define this 

user-service-time tensor as follows: 

Definition 1. User-service-time Tensor Q. Q is a |M|×|N|×|L| 

tensor where each element qi,j,t denotes the service QoS of the 

specified characteristic on service j experienced by user i at time 

interval t, where user i∈{1, 2, … |M|}, service j∈{1, 2, … |N|}, 

and time interval t∈{1, 2, … |L|}. 

As mentioned before, at each time interval, a service cannot be 

touched by all users, and a user cannot invoke all candidate 

services. Therefore, Q is a High Dimensional and Sparse (HiDS) 

tensor [28] with most QoS data unknown, as depicted in Figure 2. 

Let QK and QT denote its known and missing entry sets, 

respectively and we have |QK|≪|QT|. 

Definition 2. Temporal-aware QoS-estimator Q̂ . Given Q, Q̂  is 

built on QK. For each missing QoS record qi,j,t, it can generate a 

prediction , ,
ˆ

i j tq  based on information in QK and 

, , , ,, ,
ˆ

K
i j t i j ti j t Q

q q  is minimized. 

3 KLFA-BASED QOS ESTIMATOR 

Table 1. Notations and Descriptions. 

Notations Descriptions 

sj LFs of service j 

ui,t LFs of user i at time interval t 

Fi,t transition process matrix of user i at time interval t 

Hi,t observation process matrix of user i at time interval t 

wi,t transition Gaussian noise vector of user i at time interval t 

vi,t observation Gaussian noise vector of user i at time interval t 

qi,t The set of QoS values observed by user i at time interval t 

Pi,t covariance matrix of ui,t 

Ki,t Kalman gain matrix of user i at time interval t 

U0 initial user LF matrix 

U filter-user LF matrix 

S service LF matrix 

Kalman filter is a recursive estimation algorithm in control theory 
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[20], which is widely used in various fields for dynamic estimation. 

It is able to estimate the current state based on the previous state 

accurately. 

As mentioned before, although state-of-the-art temporal-aware 

QoS-estimators have been shown to be successful in practice, they 

are limited in extracting temporal patterns from dynamic QoS data. 

For addressing this issue, we introduce a KLFA-based QoS-

estimator, which precisely models the temporal patterns hidden in 

dynamic QoS data without considering the data’s variation rule and 

frequency. Before clarifying the KLFA-based QoS-estimator, some 

basic notations are introduced at first in Table 1. 

For each user i∈{1, 2, … |M|}, the proposed KLFA-based QoS-

estimator obtains the filter-user LFs ui,|L| through |L| times Kalman 

filter. For each service j∈{1, 2, … |N|}, we train service LFs sj 

based on filter-user LFs ui,|L| with alternating least squares (ALS). 

Moreover, let R is a |M|×|N| HiDS matrix which denotes a time 

slice of Q. The rank-f estimate to R is able to denoted by R̂ US  

where U=[u1,|L|, …, u|M|,|L|]
T and S=[s1, …, s|N|]. Note that U|L| has 

dimension |M|×f, S has dimension f×|N| and f≪min{|M|,|N|}. From 

the above analysis, the prediction is only for a time slice of Q. 

However, the obtained filter-user LFs ui,|L| incorporate the temporal 

patterns hidden in dynamic QoS data over the whole time frame. 

Hence, we can extend the matrix R̂  to the tensor Q̂ , where each 

slice of Q̂  is R̂  and , , ,
ˆ

i j t ji L
q u s . 

Therefore, to represent the given user-service-time tensor Q, 

KLFA-based QoS-estimator builds its estimator Q̂ . Since Q is an 

HiDS tensor, U and S are built based on QK only. To do so, the 

objective function with Euclidean distance is formulated as follows: 
2 2 2

, , , ,
, , ,

arg min ,
K

i j t j ji L i L FKLFA FU S i j t Q

U S C q u s u s     (1) 

where ||∙||F computes the Frobenius norm, the constant C controls 

the regularization effect [23]. 

Note that the objective function (1) is generally the same as one 

in a static LFA-based QoS-estimator [10-12]. However, our model 

is sharply different from a static LFA-based QoS-estimator in the 

following aspects: 

a) The fundamental data source of KLFA is an HiDS tensor, not an 

HiDS matrix. 

b) The user LFs in KLFA incorporate the temporal patterns hidden 

in dynamic QoS data, which are not standard static LFs.  

Moreover, KLFA is also essentially different from tensor 

factorization approaches [19, 33] which directly decompose the 

target QoS tensor into a set of matrices: user LFs, service LFs, and 

time LFs matrices, respectively. For KLFA, we just incorporate 

temporal patterns into user LFs without extra time LFs matrix. 

Next, we show how to build a KLFA-based QoS-estimator. 

3.1 Coupled Dynamical System 

To model the temporal patterns hidden in dynamic QoS data, a 

coupled dynamical system of user LFs needs to be proposed first, 

whose posteriori estimate can be obtained using Kalman filter. This 

system can be represented by two stochastic equations (2) and (3). 

First, we assume that user LFs are function of time and make ui,t 

denote the LFs of user i at time interval t. For each user, the initial 

user LFs matrix U0=[u1,0, …, u|M|,0]
T is randomly. The user LFs 

evolution is according to the generally non-stationary transition 

process matrix Fi,t and transition noise wi,t to capture dynamic 

variations along the time frame. Taken together, the dynamic 

variation process is described as follows: 

, , , 1 ,i t i t i t i tu F u w                                      (2) 

where equation (2) is called a state process equation and represents 

the internal state of the system. The transition noise wi,t is 

independent, zero-mean, Gaussian noise with distributions: p(wi,t) 

∼ N(0, Wi,t) and Wi,t is the covariance matrix. Note that in real 

application, although the QoS data is always in a state of dynamic 

change, there is no sudden change in magnitude. Hence, in this 

context, we can set Fi,t to be a diagonal matrix which diagonal 

elements are random values close to 1 even equal to 1. 

Meanwhile, we assume that the service LFs evolve very slowly, 

which can be considered constant over the time frame that user LFs 

are collected. Also, due to a limited QoS values of Web services 

number are observed by each user, we incorporate the service LFs 

through a non-stationary observation process matrix Hi,t, which is 

made up of subsets of rows of the service LF matrix S observed at 

time t by user i, e.g., if user i observes service 1, 3 and 5 at time t, 

so we select s1, s3 and s5 to compose the observation matrix Hi,t. 

Note that all Hi,t are subsets of the same fixed S and are coupled in 

this way. We also include observation noise and the overall 

observation equation is: 

, , , ,i t i t i t i tq H u v                                    (3)
 

where equation (3) is called an observation process equation and 

outputs observation on the basis of the state of the system. The 

observation process matrix Hi,t maps user LFs ui,t to observed QoS 

values qi,t. Moreover, vi,t is independent, zero-mean, Gaussian noise 

with distributions: p(vi,t)∼N(0, Vi,t) and Vi,t is the covariance matrix. 

The product Hi,tui,t in (3) parallels the product <ui, sj> in equation 

(1). We use qi,t to denote the QoS values observed by user i at time 

interval t, corresponding to the know entries of QK. 

3.2 U Step via Kalman Filter 

According to the nature of Kalman filter [20], we run M 

independent Kalman filter to exploit dynamic variations of user 

LFs for time interval t∈{1, 2, … |L|}. The Kalman filter performs 

two steps: the time prediction step and the feedback update step. 
Time prediction step. First, we need to use the state process 

equation (2) to predict the priori estimate for user LFs at time 

interval t from the posteriori estimate for user LFs at time interval 

t-1. That means it is utilized to project forward both the current 

posteriori estimate to acquire the priori estimate for the next time 

interval. The time prediction step can be formulated as follows: 

, , , 1i t i t i tu F u                                       (4)
 

T

, , , 1 , ,i t i t i t i t i tP F P F W                                (5) 

where T denotes the matrix transpose. 
,i tu  represents a priori user 

LFs at time interval t and its priori covariance matrix is 
,i tP . ui,t is a 

posteriori user LFs at time interval t and its posteriori covariance 

matrix is Pi,t. 
Feedback update step. Now, we obtain the priori estimate for the 

time interval t according to time prediction step. And then, we 

rectify the priori estimate based on the observation process 

equation (3) to get the posteriori estimate for the time interval t. 

That means the feedback update step can be seen as a modification 

of priori estimate based on observed values. The feedback update 

step can be formulated as follows: 

, , , ,i t i t i t i te q H u                                   (6)
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T

, , , , ,i t i t i t i t i tE V H P H                                (7)
 

T 1

, , , ,i t i t i t i tK P H E                                      (8)
 

, , , ,i t i t i t i tP I K H P                                 (9)
 

, , , ,i t i t i t i tu u K e                                   (10)
 

where I is the unit matrix, ei,t and Ei,t represent observation 

residuals and covariance of the observation residuals, respectively. 

Based on (6)-(10), we obtain the posteriori estimate ui,t and Pi,t at 

time interval t. ui,t is the optimal estimate LFs for user i at time t. 

The posteriori estimate can be used not only as the optimal 

estimate of this time interval, but also as the input of the next time 

interval to keep the Kalman Filter running along the time. 

For each user i∈{1, 2, … |M|}, the filter-user LFs ui,|L| are 

obtained through |L| times Kalman filter. Hence, the filter-user LFs 

ui,|L| incorporate the temporal patterns hidden in dynamic QoS data 

over the whole time frame. The process of modeling the temporal 

patterns via Kalman filter is depicted in Figure 3. 

 
Figure 3. Process of modeling the temporal patterns via Kalman filter. 

3.3 S Step via Alternating Least Squares 

Based on the Kalman filter, the filter-user LFs with temporal 

patterns are estimated. Note that objective function (1) relies on QK 

along with related row and column vectors from U and S, 

respectively. Hence, we solve (1) depending on each column vector 

of S by denoting S=[s1, …, s|N|]. Naturally, since each ui,|L| is 

obtained through Kalman filter, equation (1) is analytically 

solvable with respect to each single service LFs sj with j∈{1, 2, … 

|N|}. The derivative of KLFA with respect to sj is: 

T T

, ,, , ,
, ,

2 ( ) 2 2
K

KLFA
j K i j t ji L i L i L

i j t Q j i M jj

s Q j C u q C u u s
s

(1

1) 

Note that in (11), M(j) denotes the subset of M where each user i

∈M(j) corresponds to a unique instance qi,j,t∈QK(j). To achieve a 

local minimum of (1), we set (11) at zero to achieve the following 

expression: 

T

, ,, , ,
, ,

( )

K

K T

i j t ji L i L i L
i j t Q j i M j

Q j
u q I u u s

C
         (12) 

As discussed in the previous work [23, 24], the condition 

f≪min{|M|, |N|} is always fulfilled. Hence, , ,

T

i L i Li M j
u u  is full-

rank, making the following solution to (12) exist: 

1

T T

, ,, , ,
, ,

( )

K

K

j i j ti L i L i L
i M j i j t Q j

Q j
s I u u u q

C
      (13) 

with (13), we solve S based on U. 

3.4 Algorithm Design and Analysis 

Algorithm: KLFA 

Input: QK, M, N, L, f, C 

 Operation Cost 

Initialize: U0=[u1,0,..,u|M|,0]
T∈R|M|×f randomly Θ(|M|×f) 

Initialize: S=[s1,..,s|N|]∈Rf×|N| randomly Θ(|N|×f) 

Initialize: ROUND = max_round，n = 0 Θ(2) 

while not converge && n ≤ ROUND do ×n 

for i=1 to |M| ×|M| 

initialize Pi,0 ∈ Rf×f all zeros Θ(f2) 

for t=1 to |L| ×|L| 

set Wi,t ∈ Rf×f known Θ(f2) 

set Vi,t ∈ R|N(i,t)|×|N(i,t)|* known Θ(|N(i,t)|2) 

set Ei,t∈ R|N(i,t)|×|N(i,t)| zeros Θ(|N(i,t)|2) 

set Fi,t∈ Rf×f diagonal matrix Θ(f2) 

set Hi,t∈ R|N(i,t)|×f subsets of fixed S Θ(|N(i,t)|×f) 

set Ki,t∈ Rf×|N(i,t)| zeros Θ(|N(i,t)|×f) 

set ei,t∈ R|N(i,t)| zeros Θ(|N(i,t)|) 

, , , 1i t i t i tu F u  Θ(f2) 

T

, , , 1 , ,i t i t i t i t i tP F P F W  Θ(2×f3) 

, , , ,i t i t i t i te q H u  Θ(|N(i,t)|×f) 

T

, , , , ,i t i t i t i t i tE V H P H  Θ(|N(i,t)|2×f+ 

|N(i,t)|×f2) 

T 1

, , , ,i t i t i t i tK P H S  Θ(|N(i,t)|2×f+ 

|N(i,t)|×f2+|N(i,t)|3) 

, , , ,i t i t i t i tu u K e  Θ(|N(i,t)|×f) 

, , , ,i t i t i t i tP I K H P  Θ(|N(i,t)|×f2+ f3) 

end for
 

-- 

end for -- 

for j=1 to |N| ×|N| 

set C ∈ Rf×f zeros Θ(f2) 

set d ∈ Rf zeros Θ(f) 

for I ∈ M(j)** ×|QK(j)| 

C = C+ T

, ,i L i L
u u  Θ(f2) 

d = d+ T

, ,, i j ti L
u q  Θ(f) 

end for -- 

1

( )K

j

Q j
s I C d

C
 Θ(f3+f2) 

end for -- 

n = n+1 Θ(1) 

set U0=[u1,|L|,..,u|M|,|L|]
T Θ(|M|×f) 
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end while -- 

Output: filter-user LFs and service LFs  

*
 
|N(i, t)| represents the number of Qos values observed by user i on time t. 

** M(j) represents the set of users who observe service j over the time frame. 

Based on the above inference, we design Algorithm KLFA. As 

discussed in Sections 3.2 and 3.3, each iteration of KLFA-based 

QoS-estimator consists of two phases: a) obtain the filter-user LFs 

via Kalman filter to explore the dynamics of QoS attributes and 

model the temporal patterns; b) executing the S step to solve 

service LFs based on user LFs and (13).  

As given in Algorithm KLFA, its computational cost consists of 

the following parts: 

2

23

32

(1). Initialization 2  

+2 ( )
(2).  step

3 ( ) + ( )

3 ,

+ , ,

(3).  step  K

f f

f N i t f

N i t f N i t

M N

U

f

n M L

S n f f Q N

        (14)

 

Based on (14), the computational cost of KLFA is: 

3

2

23

32

+2 ( )

3 ( ) + ( )

3 ,

+ , ,
K

K

f N i t f

nN i t f N i t
M L Q

T n
M L

f f Q N f

　  (15) 

Note that in (15), we take advantage of the inference that 

|M|×|L|×|N(i,t)|=QK. In real applications, f is a positive constant and 

can be set small without impairing an LF model’s performance. 

Therefore, we usually have f≪|N(i,t)|. Moreover, we reasonably 

omit the lower-order-terms to achieve the final result. 

4 EXPERIMENTAL RESULTS 

4.1 General Settings 

Evaluation Protocol. We focus on the accuracy of QoS prediction, 

since it directly reflects whether or not the model has captured the 

essential characteristics of given data. Hence, we adopt it as the 

evaluation protocol in our experiments. A model’s prediction 

accuracy is measured by root mean squared error (RMSE) [30]: 

 
 

2

, , , ,

, ,

ˆ

T

i j t i j t T

i j t Q

RMSE q q Q


 
  

 
 
                   (16) 

where QT denotes the test set and is disjoint with QK, qi,j,t is the 

QoS value of Web service j observed by user i at time interval 𝑡, 

, ,
ˆ

i j tq  denotes the prediction for the testing instance, and |∙|abs 

computes the absolute value of a given number, respectively. All 

experiments are conducted on a Tablet with a 2.5 GHz E5-2680 V4 

CPU and 500 GB RAM. The programming language is JAVA SE 

7U60. 

Table 2. Details of datasets. 

Dataset D1 D2 

Type Response-time Throughput 

Num. of Users 142 142 

Num. of Web services 4,500 4,500 

Num. of time intervals 64 64 

|QK| 30,171,491 30,286,687 

Datasets. To evaluate the KLFA-based QoS-estimator, we do 

the experiments on two large-scale real-world Web service QoS 

datasets collected by the WS-Dream system [21, 22]. These two 

datasets consist of the response-time and throughput of the 

invocations on 4,500 real-world WSs by 142 users during 64 time 

intervals. Their details are summarized in Table 2. 

We randomly select the service 1 observed by user 5 and service 

7 observed by user 6 from the Throughput dataset. As shown in 

Figure 4, a user observes different QoS values on the same Web 

service during different time intervals. This observation indicates 

the temporal of QoS values. 

 
Figure 4. Throughput of Two Pairs of User-Service. 

For D1 and D2, we design different testing cases under different 

data ratios, as shown in Table 3. The column Train: Test means the 

ratio of training to testing data; e.g., 10%:90% denotes 10% of 

given data is chosen randomly as training data to predict the 

remaining 90% data. Naturally, testing data are not involved in the 

training process. Cross-validation techniques are employed to 

obtain more objective results. 

Table 3. Testing cases. 

Dataset No. Train:Test Training data Testing data 

D1 

D11 5%:95% 1,508,574 28,662,917 

D12 10%:90% 3,017,149 27,154,342 

D13 20%:80% 6,034,298 24,137,193 

D14 40%:60% 12,068,596 18,102,895 

D15 50%:50% 15,085,745 15,085,746 

D2 

D21 5%:95% 1,514,334 28,772,353 

D22 10%:90% 3,028,668 27,258,019 

D23 20%:80% 6,057,337 24,229,350 

D24 40%:60% 12,114,674 18,172,013 

D25 50%:50% 15,143,343 15,143,344 

4.2 Parameter-Sensitive Tests 

From Section 3, we can see that the performance of KLFA depends 

on the parameters C and f, which decide the regularization effect 

and LF dimension, respectively. Moreover, the covariance matrix 

Wi,t of transition noise wi,t and the covariance matrix Vi,t of 

observation noise vi,t in Kalman filter are known normally [29]. 

Learning the Wi,t and Vi,t is difficult in practice from such limited 

observations, but simplifications to process models yield tractable 

closed-form solutions. These simplifications are that Wi,t is σwI, Vi,t 

is σvI. Therefore, it is essential to investigate KLFA’s performance 

as C, f, σw and σv vary. Figures 5-8 depict the results measured by 

RMSE as parameters vary on D11 and D21. The similar 

conclusions can be reached on other testing cases. From them, we 

have the following findings: 

a) First, we fix f, σw and σv to investigate KLFA’s performance as C 

varies. As shown in Figure 5(a), on D11, the lowest RMSE is 

3.7477 with C=1.010-3, 0.12% lower than 3.7523 with 
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C=0.710-3, 0.11% lower than 3.7518 with C=0.810-3, 0.05% 

lower than 3.7496 with C=0.910-3, 0.25% lower than 3.7571 

with C=1.110-3, 0.31% lower than 3.7592 with C=1.210-3, 

0.41% lower than 3.7631 with C=1.310-3, and 0.51% lower 

than 3.7671 with C=1.410-3. Similar situations can also be 

found on D21. It demonstrates that regularization effect is 

important for KLFA to achieve high-prediction accuracy. 

 
(a) RMSE on D11                             (b) RMSE on D21 

Figure 5. The KLFA’s prediction accuracy as C varies. 

 
(a) RMSE on D11                             (b) RMSE on D21 

Figure 6. The KLFA’s prediction accuracy as f varies. 

 
(a) RMSE on D11                            (b) RMSE on D21 

Figure 7. The KLFA’s prediction accuracy as σw varies. 

 
(a) RMSE on D11                           (b) RMSE on D21 

Figure 8. The KLFA’s prediction accuracy as σv varies. 

b) Second, we fix C, σw and σv to investigate KLFA’s performance 

as f varies. As shown in Figure 6(a), on D11, the lowest RMSE 

is 3.7477 with f=20 and the highest RMSE is 3.7826 with f=120. 

The largest gap of RMSE is 0.92%. On D21, the lowest and 

highest RMSE are 23.2610 with f=80 and 23.5456 with f=10, 

respectively. The gap reaches 1.21%. Note that KLFA’s 

prediction accuracy also relies on the LF dimension. However, 

in the previous studies [10, 23], the prediction accuracy of LFA-

based approaches for missing data usually increases as f 

increases. Nonetheless, this rule does not hold for KLFA. 

c) Finally, we investigate the effects of transition noise and 

observation noise. As depicted in Figures 7 and 8, KLFA’s 

prediction accuracy is always closely connected with σw and σv: 

1) fix other parameters to investigate KLFA’s performance as σw 

varies. For instance, as shown in Figure 7(a), on D11, the lowest 

RMSE is 3.7431 with σw=0.910-3 and the highest RMSE is 

3.7560 with σw=1.310-3. The gap is 0.34%; 2) fix other 

parameters to investigate KLFA’s performance as σv varies. For 

instance, on D21, as shown in Figure 8(b), the lowest RMSE is 

23.2972 with σv=17, 0.48% higher than 23.7818 with σv=16. 

Based on these results, it is necessary to tune these parameters 

carefully to ensure high prediction accuracy. Note that the tuning 

process is a tedious task. This problem can be addressed via offline 

tuning setting, or adopting empirical values. Without loss of 

generality, we simply fix C=1.010-3, f=20, σw=1.010-3, and 

σv=20 in the following experiments. 

4.3 Convergence Process 

In this part, we aim to validate the convergence of KLFA. The 

training process with different testing cases are shown in Figure 9. 

We have some meaningful findings from these results: 

 
(a) RMSE on D1                                 (b) RMSE on D2 

Figure 9. Training process with different test cases. 

a) Figure 9 depicts that the prediction accuracy is connecting with 

data ratios. When the ratio is small (e.g., ratio is 5% or 10%), the 

RMSE and MAE are higher. For instance, as shown in Figure 

9(a), on D1, the lowest RMSE and MAE are 3.7477 and 1.8675, 

3.7354 and 1.7545, 3.5881 and 1.7545, 3.4902 and 1.6583, 

3.4724 and 1.6504 when the ratio of training data are 5%, 10%, 

20%, 40% and 50%, respectively. The RMSE decreases as the 

ratio increases. Similar results can also be found on D2. 

b) It is different on D1 and D2 on regarding to the prediction 

accuracy’s change rate as data ratio varies. As shown in Figure 9, 

when the ratio of training data is increased from 5% to 10%, the 

improvement of prediction accuracy is insignificant on D1, but 

significant on D2. For instance, the lowest RMSE is 3.7477 with 

the testing case D11, only 0.33% higher than 3.7354 with the 

testing case D12. However, on D2, the lowest RMSE is 23.4906 

with the testing case D21, 4.66% higher than 22.3959 with the 

testing case D22. The gap is quite obvious. When the ratio of 

training data is further increased from 20% to 40%, the lowest 

RMSE are 3.5881 and 3.4902 on D1. The gap reaches 2.7%. 

However, on D2, the RMSE is 21.7122 and 21.5637, 

respectively. The gap is only 0.68%. 
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4.4 Comparison with State-of-the-art Models 

In this part of experiments, we compare a KLFA-based QoS-

estimator with the widely used state-of-the-art temporal-aware 

QoS-estimators in terms of prediction accuracy. Moreover, we add 

a widely used static LFA-based QoS-estimator [23] as the baseline, 

which can be used to illustrate the importance of considering the 

temporal patterns hidden in QoS data. The details of compared 

models are listed below: 

M1: TimeSVD++, it is a dynamic collaborative recommendation 

model [17], which models the temporal effects as additional LFs. 

M2: TF, it is a tensor factorization-based model [25], which 

applies tensor factorization on an user-service-time tensor to 

extract user-based, service-based and time-based factors directly. 

M3: WSPred, it is a tensor factorization-based prediction model 

with average QoS value constraints [16]. 

M4: KLFA, it is proposed in this paper, which incorporates 

Kalman filter to model the temporal patterns. 

M5 (baseline): Static LFA, This method considers the user-

service-time tensor as a set of user-service matrix slices in terms of 

time. For each slice, the prediction method proposed by Koren and 

Bell [24] is employed.  

In terms of the hyperparameters in each model, to ensure a fair 

comparison, we adopt the following settings: 1) For all compared 

models, we compare their prediction accuracy as the ratio of 

training data increases from 5% to 50%; 2) M1-M3 and M5 depend 

on learning rate and regularization coefficient. Without lost of 

generality, we search their optimal values by performing cross-

validation on the observed QoS data under the same latent factor 

space f=20. The results are shown in Figure 10 and Table 4. From 

them, we have the following findings: 

 
(a) RMSE on D1                       (b) RMSE on D2 

Figure 10. Prediction accuracy comparison. 

a) M4 proposed in this paper outperforms its peers on prediction 

accuracy with all the testing cases. For instance, as shown in 

Figure 10(a) and Table 4, on D11, the lowest RMSE achieved by 

M4 is 3.7477, about 24.01% lower than 4.9322 by M1, 21.11% 

lower than 4.7508 by M2, 14.09% lower than 4.3626 by M3, and 

29.84% lower than 5.3423 by M5. On D21, the lowest RMSE 

achieved by M4 is 23.4906, about 47.57% lower than 44.8051 

by M1, 40.55% lower than 39.5133 by M2, 39.92% lower than 

39.0972 by M3, and 49.67% lower than 46.6735 by M5. The 

improvement of prediction accuracy is significant. 

b) M1-M5’s RMSE decrease as the ratio of training data increases, 

that means the RMSE and MAE of dense tensors are lower than 

those of sparse ones. For instance, on D1, M4 achieves the 

lowest RMSE at 3.4724 on D15, 7.34% lower than 3.7477 on 

D11, 7.04% lower than 3.7354 on D12, 3.22% lower than 

3.5881 on D13, and 0.51% lower than 3.4902 on D14. These 

results indicate that a denser tensor provides more information 

for predicting the missing values. 

c) Note that all the compared models except M5 take into account 

the temporal dynamics patterns hidden in the QoS data. As 

shown in Table 4, M5 is outperformed by its peers since it does 

not consider the temporal dynamic patterns hidden in QoS data. 

For M1-M4, M1 adopts a heuristic function to model the 

temporal patterns hidden in dynamic data, which may result in 

inaccurate representation of these temporal patterns; M2 and M3 

perform better than M1 since they extract temporal patterns from 

dynamic QoS data directly through tensor factorization. 

Moreover, M3 incorporates the average QoS value constraints 

into M2 to improve the performance on prediction accuracy; 

However, M2 and M3 suffer accuracy loss because they are 

tensor factorization approaches, which are in nature a pure 

optimization-based approach without specific design for 

describing the temporal patterns. Owing to the nature of 

Kalman-filter, M4 is able to naturally model such temporal 

dynamics with state-transition functions, thereby completely 

describe the temporal patterns hidden in target data. 

Table 4. RMSE of compared models. 
Dataset

se 

No. M1 M2 M3 M4 M5 

D1 

D11 4.9322 4.7508 4.3626 3.7477 5.3423 

D12 4.6126 4.5696 4.2892 3.7354 5.0667 

D13 4.4212 4.3977 4.1535 3.5881 4.5772 

D14 4.2571 4.2191 3.9246 3.4902 4.3541 

D15 4.1347 4.0169 3.8971 3.4724 4.2996 

D2 

D21 44.8051 39.5133 39.0972 23.4906 46.6735 

D22 42.9100 39.2792 38.6271 22.3959 46.6656 

D23 42.0124 38.9987 38.1601 21.7122 44.3223 

D24 41.6670 38.6981 36.5811 21.5637 42.1177 

D25 41.6047 38.6972 36.5731 21.5063 41.9407 

5 DISCUSSION 

For implementing KLFA, we assume the service LFs evolve very 

slowly and can be considered constant over the time frame that 

user LFs are collected by a Kalman filter. Actually it can be named 

User-based KLFA (U-KLFA). In addition, we try to obtain the 

filter-service LFs by Kalman filter for modeling the temporal 

dynamic patterns, which can be named Service-based KLFA (S-

KLFA). The details are recorded in the Supplementary File3. 

6 CONCLUSIONS 

This paper proposes a KLFA-based QoS-estimator, which 

considers the temporal dynamics of QoS attributes. It estimates the 

current LFs based on the previous ones through Kalman filter. The 

Extensive experiments results based on large-scale real-world Web 

service QoS datasets show when compared with state-of-the-art 

temporal-aware QoS-estimators, KLFA is able to achieve 

significantly higher prediction accuracy for missing QoS data. 

However, there are several directions of future work for 

improving KLFA: a) according to (15), the main drawback of 

KLFA is the high computational complexity due to matrix 

inversions. Therefore, parallel computing [26] can be considered to 

improve the computational efficiency; b) Section 4.2 shows that 

the tuning process of hyperparameters is a tedious task. Naturally, 

the ideal way is to implement the parameter’s self-adaptive without 
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introducing any sizable computational overhead. According to 

prior research [27], an evolutionary-computation-based algorithm 

like particle swarm optimization can be useful in implementing 

efficient adaptations of parameters in our scene. It will be 

interesting to develop KLFA extensions under such circumstances. 
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