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Abstract. The notion of inclusion is one of the most basic rela-
tions between sets, however, there is not a consensus about how to
extend such a notion in fuzzy set theory. We introduce an alterna-
tive approach to previous methods in the literature in which we make
use of the so-called ϕ-index of inclusion. This approach has a main
difference with respect to previous ones: instead of a value in [0, 1],
the measure of inclusion is identified with a function. In this paper,
using the ϕ-index of inclusion we define two measures of inclusion
in the standard sense, i.e., taking a value in [0, 1] and then, we show
that both measures are in accordance with the standard axiomatic ap-
proaches about measures of inclusion in the literature.

1 INTRODUCTION
The information perceived and provided by humans is often im-
perfect; either vague, imprecise, uncertain, incomplete, etc. Accord-
ingly, it is necessary the use of specific techniques capable to process
imperfect data for the development of AI-tools oriented to the in-
teraction with humans. In this respect, expert systems founded on
fuzzy logic [41] have shown to be capable to deal suitably with such
a kind of information. In general, expert systems are based on IF-
THEN rules, which can be interpreted and applied from different
perspectives. Here we can do a first distinction between two main
families of approaches, those based on determining satisfiability de-
grees of the antecedent of rules (as the well-known Mamdani [30],
Takagi-Sugeno [34] or Fuzzy Logic Programming [35] inference sys-
tems) and those based on determining a similarity or inclusion de-
gree of the input with the antecedents of rules (as originally pro-
posed by Zadeh [40] and axiomatized by Baldwin-Pilsworth [1] and
Fukami [16]). This paper is of interest for the latter group of ap-
proaches that require the use of measures of inclusion in the infer-
ence systems [9, 19, 36].

Although the notion of inclusion is one of the most basic rela-
tions between sets, currently there is not a consensus about how to
extend such a notion in fuzzy set theory. Possibly, the best known
definition for inclusion is the original one provided by Zadeh in [41],
which identifies inclusion between fuzzy sets with the point-wise or-
dering between membership functions. However, some approaches
have criticized such a definition “for being rigid and for the lack of
softness according to the spirit of fuzzy logic” (quoted from [10]).
Basically, one can find three main kinds of approaches in the litera-
ture: those based on cardinality [11, 18, 22]; those based on logic
implications [2, 5, 15]; and those based on axiomatic definitions
[4, 12, 14, 21, 39]. Defining measures of inclusion is not only of the-
oretical interest since, for instance, in a framework of Social Science,
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fuzzy inclusion can be linked with mainstream statistical techniques
[32], in a framework of data analysis, with classifiers [24] and the
search of redundancy [25], and in a framework of image processing,
with fuzzy mathematical morphology [13] and image quality mea-
sures [17].

We revisit here the ϕ-index2, which was introduced in [29] origi-
nally to quantify the inclusion of a fuzzy set into another by following
the guiding motto from [22]: “A ‘good’ measure of inclusion should
measure violations of Zadeh’s inclusion”; the main difference with
respect to standard approaches to fuzzy inclusion is that, instead of
representing the inclusion by a value in [0, 1], the ϕ-index of inclu-
sion is a mapping from [0, 1] to [0, 1]. In [28], it was proved that ϕ-
indexes of inclusion have properties which resemble those of some
well-known measures of inclusion [27], and were used to define a
new type of fuzzy similarity relations [28].

In this paper, we define two natural measures of inclusion in terms
of the ϕ-index of inclusion, so that we can fairly compare its prop-
erties with those of other approaches to the inclusion between fuzzy
sets. Specifically, we construct a measure of inclusion that satisfies
the three axioms of Fan-Xie-Pie [14] and most of the axioms of Ki-
tainik [21] and Sinha-Dougherty [31]; the other measure of inclusion
satisfies the four axioms of Young [39] and, hence, also those of Fan-
Xie-Pie.

The paper is structured as follows. Firstly, in Section 2 we recall
the four most relevant axiomatic approaches about inclusion mea-
sures between fuzzy sets; namely, Kitainik, Sinha-Dougherty, Young
and Fan-Xie-Pie approaches, then we finish the section by recalling
the ϕ-index of inclusion and its main properties. In Section 3, we de-
fine two novel measures of inclusion, and show some of their proper-
ties and the relationships with the mentioned axiomatic approaches.
Finally, in Section 4 we provide some conclusions and prospects for
future works.

2 Preliminaries
A fuzzy set A is a pair (U , µA) where U is a non-empty set (called
the universe ofA) and µA is a mapping from U to [0, 1] (called mem-
bership function of A). In general, the universe is a fixed set for all
the fuzzy sets considered and therefore, each fuzzy set is determined
by its membership function. Hence, for the sake of clarity, we iden-
tify fuzzy sets with membership functions (i.e., A(u) = µA(u)).

On the set of fuzzy sets defined on the universe U , denoted F(U),
we can extend the usual crisp operations of union, intersection and
complement as follows. Given two fuzzy sets A and B, we define

• (union) (A ∪B)(u) = max{A(u), B(u)}

2 The prefix ϕ- indicates that these indexes are functional parameters.
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• (intersection) (A ∩B)(u) = min{A(u), B(u)}
• (complement) Ac(u) = 1−A(u).

The previous extensions of union, intersection and complement
are the most common in the literature but, certainly, there are other
options. For example, as generalization of the previous extensions,
many authors use t-norms to generalize intersection, t-conorms to
generalize union and negation operators to generalize the comple-
ment.

Any transformation in the universe T :U → U can be extended
to F(U) by defining for each A ∈ F(U) the fuzzy set T (A)(u) =
A(T (u)).

In the rest of this section we recollect four established approaches
for the axiomatic definition of measures of inclusion; namely, those
of Sinha-Dougherty, of Kitainik, of Young approach and of Fan-Xie-
Pei. It is worth mentioning that there are more measures of inclu-
sion in the literature than those recalled here, like Kosko and DI-
subsethood measures [23, 7], which are particular cases of Young
measures; the inclusion grade [5] which is a particular case of the
Sinha-Dougherty inclusion measure; or the Kaburlasos inclusion
measure [20], which is a particular case of the Fan-Xie-Pei inclu-
sion measure. Summarizing, the four axiomatic measures of inclu-
sion recalled below are, under our point of view, the most important
axiomatic definitions in the literature.

At the end of this section, we recall also the index of inclusion
presented in [28] which, contrariwise to the previous approaches, in-
tends to represent the inclusion between two fuzzy sets by means of
functions instead of by values in [0, 1].

2.1 Kitainik axioms
In 1987, Leonid Kitainik [21] proposed an axiomatic definition for
measures of inclusion aimed at capturing those inclusion measures
based on the minimum of implications; this approach was extensively
applied during the eighties [2, 37].

Definition 1 A mapping I:F(U) × F(U) → [0, 1] is called a K-
measure of inclusion if it satisfies the following axioms for all fuzzy
sets A,B and C:

(K1) I(A,B) = I(Bc, Ac).
(K2) I(A,B ∩ C) = min{I(A,B), I(A,C)}.
(K3) If T :U → U is a bijective transformation on the universe, then
I(A,B) = I(T (A), T (B)).

(K4) If A and B are crisp then I(A,B) = 1 if and only if A ⊆ B.
(K5) If A and B are crisp then I(A,B) = 0 if and only if A 6⊆ B.

In [15], Fodor and Yager showed that, for every K-measure of
inclusion I, there exists a fuzzy implication→ such that for all fuzzy
sets A and B, the following equality holds

I(A,B) =
∧
u∈U

A(u)→ B(u) .

In other words, the axiomatic definition of Kitainik characterizes the
measures of inclusion based on infimum of fuzzy implications.

2.2 Sinha-Dougherty axioms
One of the measures of inclusion most used in the literature was pro-
posed by Divyendu Sinha and Edward R. Dougherty in 1993 [31].
Originally, they required nine axioms, but one could be inferred from
the others (see [10, 5]) and then, we present here only the indepen-
dent eight ones.

Definition 2 A mapping I:F(U)×F(U)→ [0, 1] is called an SD-
measure of inclusion if it satisfies the following axioms for all fuzzy
sets A,B and C:

(SD1) I(A,B) = 1 if and only if A(u) ≤ B(u) for all u ∈ U .
(SD2) I(A,B) = 0 if and only if there exists u ∈ U such that
A(u) = 1 and B(u) = 0.

(SD3) If B(u) ≤ C(u) for all u ∈ U then I(A,B) ≤ I(A,C).
(SD4) If B(u) ≤ C(u) for all u ∈ U then I(C,A) ≤ I(B,A).
(SD5) If T :U → U is a bijective transformation on the universe,

then I(A,B) = I(T (A), T (B)).
(SD6) I(A,B) = I(Bc, Ac).
(SD7) I(A ∪B,C) = min{I(A,C), I(B,C)}.
(SD8) I(A,B ∩ C) = min{I(A,B), I(A,C)}.

Although the definition of Sinha and Dougherty was introduced
independently from the Kitainik approach, both are somewhat sim-
ilar in that they share certain features. In fact, it is straightforward
to prove that every SD-measure of inclusion is also a K-measure of
inclusion.

2.3 Young axioms
The axioms proposed by Virginia R. Young [39] in 1996 focus on
mesures of inclusion capable to define entropy measures [22] in
terms of the value of the inclusion degree of A ∪ Ac into A ∩ Ac.
This fact generates an evident difference of the Young approach with
respecto to the Kitainik and Sinha-Dougherty approaches.

Definition 3 A mapping I:F(U) × F(U) → [0, 1] is called a Y-
measure of inclusion if it satisfies the following axioms for all fuzzy
sets A,B and C:

(Y1) I(A,B) = 1 if and only if A(u) ≤ B(u) for all u ∈ U .
(Y2) If A(u) ≥ 0.5 for all u ∈ U , then I(A,Ac) = 0 if and only if
A = U; i.e., A(u) = 1 for all u ∈ U .

(Y3) If A(u) ≤ B(u) ≤ C(u) for all u ∈ U then I(C,A) ≤
I(B,A).

(Y4) If B(u) ≤ C(u) for all u ∈ U then I(A,B) ≤ I(A,C) for
all fuzzy set A ∈ F(U).

In the original definition [39], axioms (Y3) and (Y4) are stated
jointly as one axiom but here we have preferred to write them sepa-
rately for a better comparison with the other axiomatic approaches.
Young shows that her axiomatic definition covers those measures of
inclusion defined as the mean of implication operators [38].

2.4 Fan-Xie-Pei axioms
The definition of Young was analyzed and slightly modified by Jiu-
lun Fan, Weixin Xie and Jihong Pie [14]. As a result, they propose
three other different definitions of measure of inclusion called, re-
spectively, strong measure of inclusion, measure of inclusion and
weak measure of inclusion.

Definition 4 A mapping I:F(U) × F(U) → [0, 1] is said to be a
strong FXP-inclusion measure if it satisfies the following axioms for
all fuzzy sets A,B and C:

(sFXP1) I(A,B) = 1 if and only if A(u) ≤ B(u) for all u ∈ U .
(sFXP2) If A 6= ∅ and A ∩B = ∅ then, I(A,B) = 0.
(sFXP3) If A(u) ≤ B(u) ≤ C(u) for all u ∈ U then I(C,A) ≤
I(B,A) and I(A,B) ≤ I(A,C).
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Due to the restrictive condition of axiom (sFXP2), Fan, Xie and
Pie also proposed the following definitions.

Definition 5 A mapping I:F(U) × F(U) → [0, 1] is said to be
a FXP-inclusion measure if it satisfies the following axioms for all
fuzzy sets A,B and C:

(FXP1) I(A,B) = 1 if and only if A(u) ≤ B(u) for all u ∈ U .
(FXP2) I(U , ∅) = 0.
(FXP3) If A(u) ≤ B(u) ≤ C(u) for all u ∈ U then I(C,A) ≤
I(B,A) and I(A,B) ≤ I(A,C).

Definition 6 A mapping I:F(U) × F(U) → [0, 1] is said to be
weak FXP-inclusion measure if it satisfies the following axioms for
all fuzzy sets A,B and C:

(wFXP1) I(∅, ∅) = I(∅,U) = I(U ,U) = 1; where U(u) = 1 for
all u ∈ U .

(wFXP2) I(U , ∅) = 0
(wFXP3) If A(u) ≤ B(u) ≤ C(u) for all u ∈ U then I(C,A) ≤
I(B,A) and I(A,B) ≤ I(A,C).

In the original paper of Fan, Xie and Pie [14] the reader can find
relationships between these measures and fuzzy implications.

2.5 The ϕ-index of inclusion
The idea behind the ϕ-index of inclusion is to quantify the inclu-
sion of one fuzzy set into another by a mapping from [0, 1] to [0, 1],
instead of a value in [0, 1] as the previous axiomatic measures of
inclusion. The set of possible assignable mappings is called set of
ϕ-indexes of inclusion, is denoted by Ω, and consists of every mono-
tonically increasing mapping f : [0, 1] → [0, 1] such that f(x) ≤ x
for all x ∈ [0, 1]. In order to define the ϕ-index of inclusion, we need
to introduce firstly the notion of f -inclusion [29].

Definition 7 Let A and B be two fuzzy sets and consider f ∈ Ω. We
say that A is f -included inB (denoted byA ⊆f B) if and only if the
inequality f(A(u)) ≤ B(u) holds for all u ∈ U .

Note that, fixed f ∈ Ω, the relation of f -inclusion is a crisp re-
lation and, in general, is not even an ordering relation (transitivity
fails). Therefore, at first view the f -inclusion (with a fixed f ∈ Ω)
seems to be unsuitable to represent the inclusion between to fuzzy
sets, since it is lacking of softness, like Zadeh’s inclusion. However,
we do not define the ϕ-index of inclusion by fixing an f -inclusion,
but we consider all of them as different degrees of inclusion. Specif-
ically, since each f -inclusion is determined by a mapping f in Ω,
we consider mappings in Ω as indexes of inclusions. Such a con-
sideration is described and motivated in detail in [29] and can be
summarized in the following items:

• Ω has the structure of complete lattice with the natural ordering
between functions; i.e., given f, g ∈ Ω, we say that f ≤ g if
f(x) ≤ g(x) for all x ∈ [0, 1]. In particular, the mappings id (de-
fined by id(x) = x for all x ∈ [0, 1]) and⊥ (defined by⊥(x) = 0
for all x ∈ [0, 1]) are the top and bottom elements in Ω, respec-
tively.

• Each f ∈ Ω determines a restriction, via the corresponding f -
inclusion, that can be understood as “how much do we have to
reduce the truth values of a fuzzy set in order to be included into
another in Zadeh’s sense”. Thus, each f ∈ Ω can be seen as how
much Zadeh’s inclusion is violated.

• Finally, the greater the mapping f ∈ Ω the stronger the restriction
imposed by the f -inclusion. In particular, the id-inclusion is the
most restrictive case (and is equivalent to Zadeh’s inclusion) and
the ⊥-inclusion does not establish any restriction at all (below we
show that ⊥-inclusion is identified with no inclusion).

The ϕ-index of inclusion is based on the idea “the more f -
inclusions holding between two sets, the greater is the inclusion”.
Fortunately, we do not need to check all the f -inclusions between
two sets thanks to the following lemmas.

Lemma 1 Let A and B be two fuzzy sets and let f, g ∈ Ω such that
f ≤ g. Then, A ⊆g B implies A ⊆f B.

Lemma 2 Let A and B be two fuzzy sets and consider a family
{fi}i∈I ⊆ Ω. If A is fi-included in B for all i ∈ I , then A is∨

i∈I fi-included in B.

As a direct consequence of the previous two lemmas, given two
fuzzy sets, the subset Λ(A,B) = {f ∈ Ω | A ⊆f B} has a max-
imum element in Ω. This fact allows us to introduce the following
definition .

Definition 8 (ϕ-index of inclusion) Let A and B be two fuzzy sets,
the ϕ-index of inclusion ofA inB, denoted by Inc(A,B), is defined
as the maximum of Λ(A,B).

Note firstly that the ϕ-index of inclusion of A in B does not de-
pend on any prior assumption or any kind of parameter [15]. Sec-
ondly, note that thanks to Lemma 1, the set Λ(A,B) of mappings
f ∈ Ω such A is f -included in B is characterized by Inc(A,B),
since:

Λ(A,B) = {f ∈ Ω | A ⊆f B} = {f ∈ Ω | f ≤ Inc(A,B)}

In [28], the following analytical expression for Inc(A,B) was
found:

Theorem 1 Let A and B be two fuzzy sets, then Inc(A,B) =
fA,B ∧ id, where

fA,B(x) =
∧
u∈U

{B(u) | x ≤ A(u)} .

We summarize below some properties that motivate the use of
Inc(A,B) as a suitable index of inclusion between two fuzzy sets.

Theorem 2 ([28]) Let A,B and C be fuzzy sets,

1. (Full inclusion) Inc(A,B) = id if and only if A(u) ≤ B(u) for
all u ∈ U .

2. (Null inclusion) Inc(A,B) = ⊥ if and only if there is a set of
elements in the universe {ui}i∈I ⊆ U such that A(ui) = 1 for
all i ∈ I and

∧
i∈I B(ui) = 0.

3. (Pseudo transitivity) Inc(B,C) ◦ Inc(A,B) ≤ Inc(A,C).
4. (Monotonicity) if B(u) ≤ C(u) for all u ∈ U then, Inc(C,A) ≤
Inc(B,A).

5. (Monotonicity) ifB(u) ≤ C(u) for all u ∈ U then, Inc(A,B) ≤
Inc(A,C);

6. (Transformation Invariance) LetA andB be two L-fuzzy sets and
let T :U → U be a transformation on U , then Inc(A,B) =
Inc(T (A), T (B)).

7. (Relationship with intersection) Inc(A,B ∩ C) = Inc(A,B) ∧
Inc(A,C).
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8. (Relationship with union) Inc(A ∪ B,C) = Inc(A,C) ∧
Inc(B,C).

The final property of ϕ-indexes of inclusion relates the adjoint
property and the complement. In order to maintain this paper self-
contained, let us recall the notion of adjoint property: given a com-
plete lattice L, we say that a pair (f, g) of mappings f, g:L → L
satisfy the adjoint property in L if

f(x) ≤ y ⇐⇒ x ≤ g(y) for all x ∈ L

Theorem 3 (Relationship with complement) Let (f, g) be an adjoint
pair in the unit interval, and n and involute negation, then

A ⊆f B if and only if Bc ⊆n◦g◦n A
c.

3 NEW MEASURES OF INCLUSION BASED
ON THE ϕ-INDEX OF INCLUSION

The reader can easily obverse the close relationship between the
properties recalled in Theorem 2 and the axiomatic approaches given
by Sinha-Dougherty, Kitainik, Young and Fan-Xie-Pie recalled in the
previous section. First of all, note that the comparison may be un-
fair, since those mentioned approaches consider measures of inclu-
sion that return real values but, instead, the ϕ-index of inclusion is a
mapping. Anyway, by rewriting the respective axioms in functional
terms, the reader can check that the only axioms that are not satisfied
are (K1), (SD6), (Y2) and (sFXP2). In this section, we provide a new
measure of inclusion in terms of ϕ-indexes, prove that it is a Fan-
Xie-Pie measure of inclusion such that the axioms (K1) and (SD6)
are satisfied with this new measure; finally, this measure is further
tuned so that it is not only a Fan-Xie-Pie measure but also a Young
measure.

3.1 A new Fan-Xie-Pie measure
We know by Theorem 2 that the greater the ϕ-index of inclusion,
the greater the inclusion. On the other hand, the best way to measure
a function is by integrals. These two facts lead us to the following
definition of measure of inclusion.

Definition 9 Let A and B be two fuzzy sets, the ϕ-measure of inclu-
sion of A in B, denoted by MInc(A,B), is defined as

MInc(A,B) = 2

∫ 1

0

Inc(A,B)(x)dx

The scalar 2 in the previous definition is included only for a nor-
malization purpose; i.e., the maximum of this measure should be 1.
Note also that the stronger the inclusion, the greater Inc(A,B) and,
then, the greater the value of MInc(A,B) as well. The following
example shows how the ϕ-measure of inclusion can be computed in
terms of a graphical representation. Such a graphical representation
also illustrates a meaning of MInc.

Example 1 Let us consider the universe {u0, u1, u2, u3, u4, u5}
and the two fuzzy sets given by the table:

U A B

u0 1 0.7

u1 0.2 0.8

u2 0 0.2

u3 1 1

u4 0.4 0.1

u5 0.5 0.6

In order to compute the analytical expression of Inc(A,B) we ap-
ply Theorem 1; hence, firstly, we have to compute the expression of
the function fA,B . To facilitate such a task, we represent in the unit
square [0, 1]2 the point {(A(u), B(u)) | u ∈ U}; i.e., the truth de-
grees of elements in A and B.

Then, the graph of the function fA,B is easily determinable

and as result, the expression Inc(A,B) = fA,B ∧ id is directly
achievable:

fA,B(x) =


x if x ≤ 0.1
0.1 if 0.1 < x ≤ 0.4
x if 0.4 < x ≤ 0.7
0.7 if 0.7 < x ≤ 1

Finally, the measure of inclusion of A into B is given by

MInc(A,B) = 2

∫ 1

0

Inc(A,B)(x)dx = 0.82

which represents the double of the area below Inc(A,B)(x):
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Note that the measure of inclusion is not symmetric. Following a sim-
ilar procedure than above, we determine firstly the ϕ-index of inclu-
sion Inc(B,A):

and then, the measure of inclusion is

MInc(B,A) = 2

∫ 1

0

Inc(A,B)(x)dx = 0.68.

Therefore, we can conclude that A is more included in B than B in
A under the measure MInc.

As expected, the measure of inclusion MInc is a FXP-measure of
inclusion.

Theorem 4 MInc is a FXP-measure of inclusion, that is, for all
fuzzy sets A,B and C:

• MInc(A,B) = 1 if and only if A(u) ≤ B(u) for all u ∈ U .
• MInc(U , ∅) = 0.
• If A(u) ≤ B(u) ≤ C(u) for all u ∈ U then MInc(C,A) ≤
MInc(B,A) and MInc(A,B) ≤MInc(A,C).

As a consequence of the previous theorem, MInc is also a weak
FXP-measure of inclusion. However, MInc is not a strong FXP-
measure of inclusion, since axiom (sFXP2) of Definition 4 does not
hold; as the following example shows.

Example 2 Consider the universe U = {u0, u1} and the fuzzy sets
A and B defined by A(u0) = 0, A(u1) = 0.5, B(u0) = 0.5
and B(u1) = 0. In order to compute the analytical expression of
Inc(A,B) we apply Theorem 1 as in Example 1. We firstly compute
the expression of the function fA,B:

fA,B(x) =
∧
u∈U

{B(u) | x ≤ A(u)} =

{
0 if x ≤ 0.5
1 otherwise

and then,

Inc(A,B)(x) = fA,B(x) ∧ id =

{
0 if x ≤ 0.5
x otherwise

Note that bothA andB are different from ∅ butA∩B = ∅, however,

MInc(A,B) = 2

∫ 1

0

Inc(A,B)(x)dx = 2

∫ 1

0.5

xdx = 0.75

Therefore MInc(A,B) 6= 0 and MInc does not satisfy axiom
(sFXP2).

The axiom (sFXP2) in Definition 4 intends to represent the rela-
tionship between the empty set and the measure of inclusion. How-
ever, under our point of view, the relationship modelled is quite dras-
tic and goes against the inherent gradualness of fuzzy sets. For in-
stance, we can consider B = ∅ and a fuzzy set A as close to the

empty set as desired. In all those cases, the axiom (sFXP2) implies
that the inclusion ofA inB is 0, but our intuition says something dif-
ferent, since the closer is A to B, the greater should be the inclusion
of A in B.

Note that in the crisp setting, “being different from the empty set”
is equivalent to assert the existence of an element in the set. However,
both ideas are generalized differently in the fuzzy setting, whereas
the first statement is generalized as A 6= ∅ (as Fan, Xie and Pie do in
the axiom (sFXP2)), the latter statement is generalized by the notion
of normality (i.e., a fuzzy setA is normal if there is an element u ∈ U
such that A(u) = 1). Changing “A 6= ∅” by “A is normal” in axiom
(sFXP2) we obtain the corresponding property.

Proposition 1 Let A and B be two fuzzy sets. If A is normal and
A ∩B = ∅, then MInc(A,B) = 0.

The previous result can be generalized in a more complex but con-
venient way: a smooth transition of the hypothesis from ∅ to normal-
ity implies a smooth transition of an upper bound for the measure
MInc, which is clearly in accordance to the spirit of fuzzy sets.

Proposition 2 Let A and B be two fuzzy sets and let α, β ∈ [0, 1]
such that β ≤ α. If there exists u0 ∈ U such that A(u0) ≥ α and
A ∩B(u) ≤ β for all u ∈ U , then

MInc(A,B) ≤ 1− (α− β)2.

Note that the hypothesis of the previous result can be interpreted
as follows: on the one hand, the existence of u0 ∈ U such that
A(u0) ≥ α is like a degree of normality of A and on the other
hand, A ∩ B(u) < β for all u ∈ U is like a degree of emptiness
of A ∩ B. Hence, the previous result can be roughly paraphrased in
natural language as “the more normal the fuzzy set A and the more
empty the intersection A ∩ B, the lesser the inclusion of A in B”.
That is, the measure of inclusion MInc satisfies a fuzzy version of
the axiom (sFXP2).

In the rest of the paper, we focus on the properties of MInc ori-
ented to the axiomatic definitions of Sinha-Dougherty and Kitainik.

To begin with, we have that MInc satisfies axiom (SD1).

Proposition 3 Let A and B be two fuzzy sets. MInc(A,B) = 1 if
and only if A(u) ≤ B(u) for all u ∈ U .

As a consequence of the previous proposition, the axiom (K4) also
holds. Concerning the axioms (SD2) and (K5) we have the following
result. Note that the statement resembles item 2 of Theorem 2 but
there are differences between them, though.

Theorem 5 Let A and B be two fuzzy sets. MInc(A,B) = 0 if and
only if there is a set of elements in the universe {ui}i∈I ⊆ U such
that

∨
i∈I A(ui) = 1 and

∧
i∈I B(ui) = 0.

Note that, as a consequence of the previous result, the axiom (K5)
is satisfied by the measure of inclusion MInc.

Corollary 1 LetA andB be two crisp sets.MInc(A,B) = 0 if and
only if there exists u ∈ U such tat A(u) = 1 and B(u) = 0.

Another consequence of Theorem 5 is that the axiom (SD2) is
satisfied by the measure of inclusion MInc when the underlying uni-
verse considered is finite.

Corollary 2 Let A and B be two fuzzy sets defined on a finite uni-
verse U . MInc(A,B) = 0 if and only if there exists u ∈ U such tat
A(u) = 1 and B(u) = 0.
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The following result concerns the monotonicity of MInc.

Proposition 4 LetA,B andC be three fuzzy sets such thatB(u) ≤
C(u) for all u ∈ U then:

• MInc(A,B) ≤MInc(A,C);
• MInc(C,A) ≤MInc(B,A).

The transformation invariance of MInc is also a consequence
of Theorem 2.

Proposition 5 Let A and B be two fuzzy sets and T :U → U a
bijective transformation on the universe U . Then, MInc(A,B) =
MInc(T (A), T (B)).

Note that the only axiom of Sinha-Dougherty and Kitainink that
is not satisfied3 by the ϕ-index of inclusion in Theorem 2 is exactly
the one concerned to complement of fuzzy sets. The following result
shows that that axiom is satisfied by the measure of inclusion MInc.

Theorem 6 Let A and B be two fuzzy sets, then MInc(A,B) =
MInc(B

c, Ac).

Despite of all the properties stated above relating MInc to the ax-
iomatic definitions of Sinha-Dougherty and Kitainik, it is convenient
to remark that MInc is neither a SD-measure of inclusion nor a K-
measure of inclusion. The reason in both cases is the same, MInc

does not satisfy the axioms (SD7)=(K2) and (SD8). The following
example shows a counterexample for both axioms.

Example 3 Consider the universe U = {u0, u1} and the fuzzy sets
A, B and C given by A(u0) = 0.5, A(u1) = 1, B(u0) = 1,
B(u1) = 0.5,C(u0) = 0 andC(u1) = 1. It is easy to check that the
ϕ-indexes of inclusion Inc(A,B) and Inc(A,C) are respectively:

Inc(A,B) =

{
x if x ≤ 0.5
0.5 otherwise

Inc(A,C) =

{
0 if x ≤ 0.5
x otherwise

Moreover, by item 7 of Theorem 2 we have as a consequence:

Inc(A,B∩C) = Inc(A,B)∧Inc(A,C) =

{
0 if x ≤ 0.5
0.5 otherwise

Then, we have the following corresponding measures of inclusion:
MInc(A,B) = MInc(A,C) = 0.75 and MInc(A,B ∩ C) = 0.5.
Hence, the axiom (SD8) given by the equality I(A,B ∩ C) =
min{I(A,B), I(A,C)} does not hold in this case.

On the other hand, let us consider in addition the fuzzy sets D
and E given by: D(u0) = 0, D(u1) = 0.5, E(u0) = 0.5 and
E(u1) = 0. Then, we have the following ϕ-indexes of inclusion:

Inc(C,D) =

{
x if x ≤ 0.5
0.5 otherwise

Inc(E,D) =

{
0 if x ≤ 0.5
x otherwise

and by item 8 of Theorem 2 we have:

Inc(C∪E,D) = Inc(C,D)∧Inc(E,D) =

{
0 if x ≤ 0.5
0.5 otherwise

3 Under the natural interpretation of axioms in the set [0, 1][0,1].

Finally, the corresponding measures of inclusion are:
MInc(C,D) = MInc(E,D) = 0.75 but MInc(C ∪ E,D) = 0.5.
Hence, the axioms (SD7) and (K2) given by the equality
I(C ∪ E,D) = min{I(C,D), I(E,D)} does not hold in
this case.

Note that despite of the previous counter-example, the ϕ-index
of inclusion actually gathers the idea behind axioms (SD8), (SD7)
and (K2), which is visible in Theorem 2. Actually, Theorem 6 can
be interpreted as, although the ϕ-index of inclusion does not satisfy
directly the axioms (SD6) and (K1), the inclusion determined by the
respective ϕ-index of inclusions “measure the same inclusion”. As a
result, theϕ-index of inclusion covers all the underlying ideas behind
both, the axiomatic definitions of Sinha-Dougherty and Kitainik.

3.2 From MInc to a Young measure of inclusion
The main difference between the axiomatic definition of Young with
respect to both Kitainik and Sinha-Dougherty axiomatic approaches
resides in Axiom (Y2), which is related to null measure and is con-
tradictory with the respective axioms related to null measure (SD2)
and (K5); quoting Virginia R. Young [39]: “This axiom follows the
spirit of Willmott [38], in which he defines a subsethood measure
as a mean value of an implication operator”. Following this idea,
we propose a new measure of inclusion between fuzzy sets defined
on finite universes as the mean of the point-wise inclusion measure
given by MInc.

In order to make use of a point-wise inclusion measure, we have
to do the following formal considerations: Given two fuzzy sets A
and B, we plan to measure the inclusion of A in B for each element
in the universe individually. Formally, for each u ∈ U , we define
the singleton universe Uu = {u} and the fuzzy sets (Uu, Au) and
(Uu, Bu) defined byAu(u) = A(u) andBu(u) = B(u). The single
measure of inclusion for u ∈ U is defined as MInc(Au, Bu). Once
the notion of single measure of inclusion has been introduced, we
can define the following measure of inclusion.

Definition 10 Let A and B be two fuzzy sets defined on a finite uni-
verse. We define the mean-measure of inclusion as the value:

M̂Inc(A,B) =

∑
u∈UMInc(Au, Bu)

Card(U)

Theorem 7 The mean-measure of inclusion M̂Inc is a Young mea-
sure of inclusion. That is:

(Y1) M̂Inc(A,B) = 1 if and only if A(u) ≤ B(u) for all u ∈ U
(Y2) if A(u) ≥ 0.5 for all u ∈ U , then M̂Inc(A,A

c) = 0 if and
only if A(u) = 1 for all u ∈ U .

(Y3) If A(u) ≤ B(u) ≤ C(u) for all u ∈ U then M̂Inc(C,A) ≤
M̂Inc(B,A).

(Y4) If B(u) ≤ C(u) for all u ∈ U then M̂Inc(A,B) ≤
M̂Inc(A,C) for all fuzzy set A ∈ F(U).

Note that, as consequence of the previous theorem, M̂Inc is also a
Fan-Xie-Pie measure of inclusion.

Corollary 3 M̂Inc is a FXP-measure of inclusion.

Besides M̂Inc is a Young measure of inclusion, it satisfies the con-
traposition law; that is, it satisfies the axiom (K1).
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Proposition 6 Let A and B be two fuzzy sets, then M̂Inc(A,B) =

M̂Inc(B
c, Ac).

Let us end the section with an example to illustrate the differences
between the measures MInc and M̂Inc.

Example 4 Let us consider over the universe U = {u1, u2, u3}
the fuzzy sets A, B and C given by A(u1) = 1, A(u2) = 0.5,
A(u3) = 1, B(u1) = 0.1, B(u2) = 0.2, B(u3) = 0.4, C(u1) =
0.1, C(u2) = 0.6 and C(u3) = 1. Then, it is not difficult to check
that Inc(A,B) coincides with Inc(A,C) and:

Inc(A,B) = Inc(A,C) =

{
x if 0 ≤ x ≤ 0.1
0.1 otherwise.

Therefore, we have the measure of inclusion MInc(A,B) =
MInc(A,C) = 0.19.

Let us calculate now the respective single measures of inclusion
for u1, u2 and u3. We have:

Inc(Au1 , Bu1) =

{
x if 0 ≤ x ≤ 0.1
0.1 otherwise.

Inc(Au2 , Bu2) =

{
x if 0 ≤ x ≤ 0.2
0.2 if 0.2 < x ≤ 0.5
x otherwise.

Inc(Au3 , Bu3) =

{
x if 0 ≤ x ≤ 0.4
0.4 otherwise.

Inc(Au1 , Cu1) =

{
x if 0 ≤ x ≤ 0.1
0.1 otherwise.

and Inc(Au2 , Cu2) = Inc(Au3 , Cu3) = id. As a result, we have
the following measures:

MInc(Au1 , Bu1) = 0.19 MInc(Au2 , Bu2) = 0.91
MInc(Au3 , Bu3) = 0.64 MInc(Au1 , Cu1) = 0.19
MInc(Au2 , Cu2) = 1 MInc(Au3 , Cu3) = 1

Then, the measures of inclusion are M̂Inc(A,B) = 0.58 and
M̂Inc(A,C) = 0.73.

Note that although the measures of inclusion coincide with respect
to MInc, they do not with respect to the measure M̂Inc. The reason
is that the measure of inclusion related to u1 collapses the others
in MInc; so the other truth values have not effect. However, in the
measure of inclusion M̂Inc all the truth values are considered, and
then, the single inclusions related to u2 and u3 are also taken into
account.

4 Conclusions

The notion of ϕ-index, originally used to quantify the inclusion of a
fuzzy set into another, is revisited. Two natural measures of inclusion
in terms of the ϕ-index of inclusion are defined in order to compare
its properties with those of other well-known approaches to the in-
clusion between fuzzy sets.

The two measures of inclusion introduced satisfy all the axioms
of Fan-Xie-Pie and also the contrapositive law, contrariwise to the
ϕ-index of inclusion in which this law does not hold. The contra-
positive law make these new measures specially suitable for further

advancing the theory of weak-contradictions [6] and the study of in-
consistency in fuzzy answer-set semantics [26]. The difference be-
tween the two measures is their underlying philosophy. Whereas one
is a Young measure of inclusion, the other is oriented to the Kitainik
and Sinha-Dougherty (KSD) measures of inclusion. This fact opens
two different future research lines. On the one hand, Young mea-
sures are closely related to entropy measures and have been applied
to Decision making [8], whereas Kitainik and Sinha-Dougherty are
related to fuzzy implications and then, to Knowledge-Based Systems
and Inferences [5].

Furthermore, using the ϕ-index of inclusion Inc as a seed for the
definition of different measures of inclusion, the consideration of ϕ-
index of inclusion for other purposes will be considered. Note that
the measures presented in this work are founded on the fact that the
ϕ-index of inclusion represents a certain kind of inclusion between
fuzzy sets. Then, the functional feature of the ϕ-index of inclusion
is of great interest for frameworks where functional operators, sim-
ilarities and inclusion are combined. One of those frameworks is
might Fuzzy Logic Programming [35], which can be applied, for in-
stance, to define ontologies in the framework of Fuzzy Description
Logic [33, 3]. The inference system in fuzzy logic programming is
based on rules IF-THEN associated to monotonic functions. We be-
lieve that the monotonic functions used in fuzzy logic programming
can be related to the ϕ-index of inclusion Inc and, as a result, it
would be possible to define inference procedures based on the ϕ-
index of inclusion.
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