
Reasoning about Quality and Fuzziness of Strategic
Behaviours

Patricia Bouyer1, Orna Kupferman2, Nicolas Markey3, Bastien Maubert4, Aniello Murano4, Giuseppe Perelli5

1 Context and motivation
One of the significant developments in formal reasoning has been the
use of temporal logics for the specification of on-going behaviours of
reactive systems [4, 5]. Traditional temporal logics are interpreted
over Kripke structures, modelling closed systems, and can quan-
tify over the computations of the systems in a universal and exis-
tential manner. The need to reason about multi-agent systems has
led to the development of specification formalisms that enable the
specification of on-going strategic behaviours in multi-agent sys-
tems [2, 3, 10]. These formalisms, most notably ATL, ATL?, and
Strategy Logic (SL), include quantification of strategies of the differ-
ent agents and of the computations they may force the system into,
making it possible to specify concepts that have been traditionally
studied in game theory.

The duration of games in classical game theory is finite and the
outcome of the game depends on its final position [11]. In contrast,
agents in multi-agent systems maintain an on-going interaction with
each other [7], and reasoning about their behaviour refers not to their
final state (in fact, we consider non-terminating systems, with no final
state) but rather to the language of computations that they generate.
The logics ATL? and SL both extend the Linear Temporal Logic LTL
[12], and thus can express rich on-going strategic behaviours. How-
ever, their semantics are Boolean: a system may satisfy a specifica-
tion or it may not. The Boolean nature of traditional temporal logic
is a real obstacle in the context of strategic reasoning. Indeed, while
many strategies may attain a desired objective, they may do so at dif-
ferent levels of quality or certainty. Consequently, designers would
be willing to give up manual design only after being convinced that
the automatic procedure that replaces it generates systems of compa-
rable quality and certainty. For this to happen, one should first extend
the specification formalism to one that supports quantitative aspects
of the systems and the strategies. This is what we do in this work: we
merge the most natural and expressive logic for strategic reasoning
with a recent, very powerful quantitative extension of LTL, called
LTL[F].

The logic LTL[F] is a multi-valued logic that augments LTL with
quality operators [1]. The satisfaction value of an LTL[F] formula is
a real value in [0, 1], where the higher the value, the higher the qual-
ity in which the computation satisfies the specification. The quality
operators in F can prioritise different scenarios or reduce the satis-
faction value of computations in which delays occur. For example,
the set F may contain the min{x, y}, max{x, y}, and 1 − x func-

1 LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay
2 Hebrew University
3 Irisa, CNRS & Inria & Université de Rennes
4 Università degli Studi di Napoli “Federico II”
5 University of Göteborg

tions, which are the standard quantitative analogues of the ∧, ∨, and
¬ operators, and are known in fuzzy logics as the Zadeh operators.
The novelty of LTL[F] is the ability to manipulate values by arbi-
trary functions. For example, consider a “carrier” drone c that tries to
bring an artefact to a rescue point, while keeping it as far as possible
from the “villain” adversarial drone v. They evolve in a three dimen-
sional cube of side length 1 unit, in which coordinates are triples
~γ = (γ1, γ2, γ3) ∈ [0, 1]3. We use the triples of atomic propositions
p~γ = (pγ1 , pγ2 , pγ3) and q~γ = (qγ1 , qγ2 , qγ3) to denote the coordi-
nates of c and v, respectively. Assume that F contains the function
dist : [0, 1]3 × [0, 1]3 → [0, 1], which maps two points in the cube
to the (normalized) distance between them, and let the atomic propo-
sition “safe” denote that the artefact has reached the rescue point. In
this scenario, the quality of an execution, or path, can be formalised
with the following LTL[F] formula:

ψrescue = dist(p~γ , q~γ) U safe

Indeed, the satisfaction value of ψrescue is 0 on every path in which
the artefact is never rescued, and otherwise it is the minimum dis-
tance between the carrier and the villain along the trajectory from
the beginning until the rescue point is reached.

2 Contribution
We introduce and study SL[F ], a logic that extends both LTL[F]
and SL: On the one hand, it lifts LTL[F] to the strategic setting by
introducing strategy quantifier 〈〈x〉〉, which maximises the satisfac-
tion value of the formula in computations that are outcomes of in-
teractions that respect strategies in x, and binding operator (a, x),
which assigns strategy x to agent a. On the other hand, it lifts SL
to the quantitative setting by introducing quality operators as in
LTL[F]. The semantics of SL[F ] is defined with respect to weighted
multi-agent systems, namely ones where atomic propositions have
truth values in [0, 1], reflecting quality or certainty. Thus, a model-
checking procedure for SL[F ], which is our main contribution, en-
ables formal reasoning about both quality and fuzziness of strategic
behaviours. In addition, our model-checking procedure can be used
as a synthesis algorithm to produce witness strategies that maximise
the value of the formula.

Specifying strategies’ quality As a motivating example, consider
security drones that may patrol different height levels. Using SL[F ],
we can specify the quality of strategies for the drones, whose objec-
tives are to fly above and below all uncontrollable drones and perform
certain actions when uncontrollable drones exhibit some disallowed
behaviour. Indeed, the multi-valued atomic propositions are used to
specify the different heights, temporal operators are used for specify-
ing on-going behaviours, and the functions in F may be used to refer

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



to these behaviours in a quantitative manner, for example to compare
heights and to specify the satisfaction level that the designer gives to
different possible scenarios.

In the more concrete example from above, with the carrier drone
trying to rescue an artifact and the villain drone trying to steal it, we
can specify the quality of a strategy x for the carrier as the minimum
over all strategies y for the villain of the quality of the behaviour
resulting from x against y. If the quality of a behaviour is specified
by formula ψrescue as above, then the quality of a strategy x is 0 if
the villain has a counterstrategy y to steal it (in which case it never
reaches the rescue point); otherwise, it is the minimum distance be-
tween the carrier and the villain until the artifact is rescued over all
possible counterstrategies y of the villain. We are interested in max-
imising the quality of carrier’s strategies, which is formalised with
the following formula:

ϕrescue = 〈〈x〉〉[[y]](c, x)(v, y)(dist(p~γ , q~γ) U safe)

where [[y]] is the dual of 〈〈y〉〉. Thus, for a given strategy x, formula
[[y]](c, x)(v, y)(dist(p~γ , q~γ) U safe) minimises the quality over all
possible strategies y of the villain. It is therefore the minimal qual-
ity that strategy x is guaranteed to enforce. The formula ϕrescue then
maximises this value over all possible strategies x of the carrier.

Note that in this example, the formula ϕrescue does not just specify
the ability of the carrier to behave in some desired manner. Rather,
it associates a satisfaction value in [0, 1] with each strategy x. This
suggests that SL[F ] can be used not only to specify strategic be-
haviours with quantitative objectives, but also for quantizing notions
from game theory that are traditionally Boolean. For example, be-
yond specifying that the agents are in a Nash Equilibrium, we can
specify how far they are from an equilibrium, namely how much an
agent may gain by a deviation that witnesses the instability. As a re-
sult we can express concepts such as ε-Nash Equilibria [11].

Synthesising optimal strategies We consider the following gener-
alisation of the classic model-checking problem: given a weighted
concurrent game structure G, an SL[F ] formula ϕ and a predicate
P ⊆ [0, 1], does the satisfaction value of ϕ on G belong to P ?
To solve this problem, we employ an approach that recently proved
handy in the study of a number of logics for strategic reasoning, and
which consists in reducing the problem to the model checking of
(some appropriate extension of) Quantified CTL? [9]. This is, how-
ever, the first time this approach is used in a quantitative setting.

To do so we first need to define a fitting quantitative exten-
sion of Quantified CTL? (the extension of CTL? with second-
order quantifiers on atomic propositions [9]). We do so by ex-
tending CTL?[F] [1] with quantifiers over atomic propositions
where, similarly to strategy quantifiers in SL[F ], existential/universal
quantifications on atomic propositions are seen as maximisa-
tions/minimisations over possible valuations of the quantified propo-
sitions on the models, which are weighted infinite trees. However,
while atomic propositions may have values in [0, 1] in the models, we
restrict propositional quantifiers to quantify only over Boolean valu-
ations. The resulting logic is called Booleanly-Quantified CTL?[F],
or BQCTL?[F]. We show that the restriction to Booleanly quanti-
fied valuations is sufficient to simulate quantification on strategies.
Moreover, without it, this restriction, the model-checking problem of
QCTL?[F] is undecidable.

A general technique to model check CTL? is to repeatedly eval-
uate the innermost state subformulas by viewing them as (existen-
tially or universally quantified) LTL formulas, and replace them with
fresh atomic propositions [6]. For CTL?[F], it was possible to ex-

tend this technique, using weighted fresh atomic propositions [1].
However this approach does not work for BQCTL?[F]: indeed, the
externally quantified atomic propositions may appear in different
subformulas, and we cannot evaluate them one by one without fix-
ing the same assignment for the quantified atomic propositions. In-
stead, we build upon both the automata theoretic approach to CTL?

model checking [8] and the word automata construction developed
for LTL[F] [1], extending the latter from infinite words to infinite
trees. More precisely, given a BQCTL?[F] formula ϕ and a predi-
cate P ⊆ [0, 1], we construct an alternating parity tree automaton
that accepts exactly all the weighted trees t such that the satisfaction
value of ϕ on t is in P . The translation, and hence the complexity of
the model-checking problem, is non-elementary: we show that it is
(k+1)-EXPTIME-complete for formulas involving at most k nested
quantifications on atomic propositions, and we show a similar com-
plexity result for SL[F ], in terms of nesting of strategy quantifiers.
Similarly to LTL[F] [1], our complexity results hold as long as the
quality operators in F can be computed in the complexity class con-
sidered. Otherwise, they are the computational bottleneck.

Finally we observe that, as is often the case for this sort of
algorithms based on tree automata [13], whenever the answer to
the model-checking problem is positive, we can synthesise witness
strategies. More precisely, if a formula ϕ = 〈〈x1〉〉 . . . 〈〈xn〉〉ϕ′ starts
with a sequence of existentially quantified strategies, and it holds
that the satisfaction value of ϕ in some weighted game G belongs to
P ⊆ [0, 1], then our algorithm can be used to synthesise strategies
x1, . . . , xn that maximise the quality as specified by ϕ′.

REFERENCES
[1] Shaull Almagor, Udi Boker, and Orna Kupferman, ‘Formally reasoning

about quality’, JACM, 63(3), 24:1–24:56, (2016).
[2] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman, ‘Alternating-

time temporal logic’, JACM, 49(5), 672–713, (September 2002).
[3] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman, ‘Strat-

egy logic’, I& C, 208(6), 677–693, (June 2010).
[4] Edmund M. Clarke and E. Allen Emerson, ‘Design and synthesis

of synchronization skeletons using branching-time temporal logic’, in
LOP’81, ed., Dexter C. Kozen, volume 131 of Lecture Notes in Com-
puter Science, pp. 52–71. Springer-Verlag, (1982).

[5] E. Allen Emerson and Joseph Y. Halpern, ‘”Sometimes” and ”not
never” revisited: On branching versus linear time temporal logic’,
JACM, 33(1), 151–178, (January 1986).

[6] E. Allen Emerson and Chin-Laung Lei, ‘Modalities for model check-
ing: Branching time logic strikes back’, Science of Computer Program-
ming, 8, 275–306, (1987).

[7] David Harel and Amir Pnueli, ‘On the development of reactive sys-
tems’, in LMCS, volume F-13, 477–498, Springer, (1985).

[8] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper, ‘An automata-
theoretic approach to branching-time model checking’, Journal of the
ACM, 47(2), 312–360, (2000).

[9] François Laroussinie and Nicolas Markey, ‘Quantified CTL: Expres-
siveness and complexity’, LMCS, 10(4), (2014).

[10] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y.
Vardi, ‘Reasoning about strategies: On the model-checking problem’,
ToCL, 15(4), 34:1–34:47, (August 2014).

[11] Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani,
Algorithmic Game Theory, Cambridge University Press, 2007.

[12] Amir Pnueli, ‘The temporal semantics of concurrent programs’, Theo-
retical Computer Science, 13, 45–60, (1981).

[13] M.Y. Vardi and P. Wolper, ‘Automata-theoretic techniques for modal
logics of programs’, Journal of Computer and Systems Science, 32(2),
182–221, (1986).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain


