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Abstract. This paper discusses the problem of causal query in ob-
servational data with hidden variables, with the aim of seeking the
change of an outcome when “manipulating” a variable while given a
set of plausible confounding variables which affect the manipulated
variable and the outcome. Such an “experiment on data” to estimate
the causal effect of the manipulated variable is useful for validat-
ing an experiment design using historical data or for exploring con-
founders when studying a new relationship. However, existing data-
driven methods for causal effect estimation face some major chal-
lenges, including poor scalability with high dimensional data, low
estimation accuracy due to heuristics used by the global causal struc-
ture learning algorithms, and the assumption of causal sufficiency
when hidden variables are inevitable in data. In this paper, we de-
velop theorems for using local search to find a superset of the adjust-
ment (or confounding) variables for causal effect estimation from ob-
servational data under a realistic pretreatment assumption. The theo-
rems ensure that the unbiased estimate of causal effect is included in
the set of causal effects estimated by the superset of adjustment vari-
ables. Based on the developed theorems, we propose a data-driven
algorithm for causal query. Experiments show that the proposed al-
gorithm is faster and produces better causal effect estimation than
an existing data-driven causal effect estimation method with hidden
variables. The causal effects estimated by the proposed algorithm
are as accurate as those by the state-of-the-art methods using domain
knowledge.

1 Introduction
Data is frequently used for various decision making which in-
volves causal evidence seeking (or causal query) in observational
data [25, 20, 38, 40]. For example, a biologist is planning for a bi-
ological experiment, and she has a collection of data from previous
experiments by other researchers (those experiments do not need to
have the same objective as hers) [6, 19]. She can plan the experiment
on the data by “manipulating” the variable which is to be modified in
the planned experiment, i.e. the treatment variable to see if the out-
come is changed as expected. This type of query is useful in many
real-world applications. When a public policy is in the design phase,
existing data can be used to assess the policy to find out whether the
policy would produce the desired outcome and what major factors
would affect the outcome. In a marketing campaign, similar queries
can be made to a dataset to help plan a successful campaign.

In this paper, we consider the problem that a user queries a dataset
for a causal effect, i.e. how much the interested outcome Y will
change due to a change of the treatment W . The answer depends
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on what other variables affect W and Y , called confounders or ad-
justment variables. Users do not know the adjustment variables in
most cases. For example, when a biologist studies how a gene causes
cancer, she may not know (or only partially know) the other genes
which are causal factors of the cancer and regulate this gene under
study. So, the adjustment variables are a part of the answer to seek
too and the query answer will be a set of pairs each containing a
set of possible adjustment variables (called an adjustment set in the
paper) and the corresponding causal effect. To confirm which pair
corresponds to the real-world mechanism, a user can design an ex-
periment by physically controlling the variables in an adjustment set
while manipulating the treatment variable, or pick up one or multiple
returned adjustment sets consistent with her knowledge of the system
as plausible answers.

From data, especially data with hidden variables [5, 27, 39], it may
not be possible to find an exact adjustment set. The number of re-
turned possible adjustment sets can be very large, which will make
the query answer unusable. For example, a biologist has only a lim-
ited budget to try a few experiments, and she will not be able to try
many possible adjustment sets. An advertisement company can try a
limited number of A/B tests to make a promotion decision. Another
constraint is the size of an adjustment set. A long adjustment set con-
taining many variables will complicate the design of an experiment
and make it hard to explain experimental results.

The causal query problem studied in this paper is related to adjust-
ment variable search and causal effect estimation in data. However,
existing works on causal effect estimation often have an adjustment
set given [3, 14, 15] or do not explicitly indicate the adjustment set
for the causal effect [16, 21, 31]. Hence they are not useful to solve
our problem.

Graphical causal modelling is a principled approach to adjustment
set search in data and causal effect estimation. Pearl has proposed
the back-door criterion for identifying an adjustment set based on
a given causal DAG (direct acyclic graph), and the do calculus for
deriving identifiable causal effects from the given causal DAG and
data [25]. The back-door criterion has become the main principle for
identifying adjustment sets.

When there are no hidden variables or more precisely the causal
sufficiency assumption is satisfied, i.e. all common causes are ob-
served [32], we can learn from data a Markov equivalence class of
causal DAGs for causal effect estimation. IDA is an algorithm for
estimating causal effects directly from data [23]. As many equivalent
causal DAGs can be learned from a dataset, IDA returns a multiset
of causal effects with different adjustment sets blocking the back-
door paths into the treatment variable W . Recently, Johansson et al.
utilised deep learning to learn balanced representations for counter-
factual inference [16]. Furthermore, Shalit et al. gave a meaningful
and intuitive error bound to guide deep neural networks for estimat-
ing individual causal effects [31]. However, the algorithms based on
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deep learning do not provide an explicit adjustment variable set.
When there are hidden variables, LV-IDA [24] extends IDA based

to a MAG (Maximal Ancestral Graph) which represents a causal
structure with hidden variables. LV-IDA also returns a multiset of
causal effects. Furthermore, LV-IDA has low efficiency for high-
dimensional or large data. Hyttinen et al. presented an ASP constraint
solver for causal inference directly in data without assuming causal
sufficiency [13], but it is impractical for high-dimensional data due to
the fact that the query-based techniques need to perform a complete
search for solutions. Entner et al. proposed a data-driven approach
to estimating causal effect from data with hidden variables [10], but
with impractically high time complexity. Louizos et al. developed
a new neural network latent variables model to estimate population
causal effects [21], but the model relies on a correct proxy variable
estimation and does not provide an explicit adjustment set.

In this paper, we aim to develop a practical solution for efficient
and accurate causal query in data without assuming causal suffi-
ciency. The contributions of the work are:

• We have developed the theorems for finding a superset of adjust-
ment variables for unbiased causal effect estimation based on the
local causal structure learning in a MAG under a realistic pre-
treatment assumption. The theorems support efficient data-driven
causal effect estimations without assuming causal sufficiency in
data. To our best knowledge, they are the first theorems to support
such a search.

• We have proposed an efficient and effective Data-drIven Causal
Effect estimation (DICE) algorithm. DICE is faster than LV-IDA,
the only practical data-driven causal effect estimation method with
hidden variables in graphical causal modelling. Extensive experi-
ments show that DICE works in datasets where LV-IDA fails, and
produces better causal effect estimation than LV-IDA. The causal
effects estimated by DICE are as accurate as those by the state-of-
the-art methods using domain knowledge.

2 Preliminaries
2.1 Notation and basic definitions
We use upper case letters to represent variables and bold-faced upper
case letters to denote sets of variables. Let G = (V,E) be a graph,
where V = {V1, . . . , Vp} is the set of nodes and E a set of edges.
Two nodes are adjacent if there is an edge between them. The set
of all the nodes adjacent to node V is denoted as Adj(V ). A path
π from Vs to Ve is a sequence of distinct nodes < Vs, . . . , Ve >
such that every pair of successive nodes are adjacent in G. A sub-
path of π from Vi to Vj is denoted by π(Vi, Vj). In G, if there exists
Vi → Vj , Vi is a parent of Vj and we use Pa(Vj) to denote the set
of all parents of Vj . If there exists Vi ↔ Vj , Vi is a spouse of Vj and
we use Sp(Vj) to denote the set of all spouses of Vj . A path from
Vs to Ve is a directed path if for any pair of adjacent nodes Vi and
Vj in the path where i ≤ j, Vi is a parent of Vj . Vs is an ancestor of
Ve if there is a directed path from Vs to Ve. The ancestor set of Ve is
denoted as An(Ve).

A DAG is a directed graph without directed cycles (See an exam-
ple of directed cycle in Figure 1 (a)). When a DAG satisfies the fol-
lowing Markov condition and faithfulness assumption, we can read
dependency/independency in a distribution from the DAG.

Definition 2.1 (Markov condition [25]). Given a DAG G = (V,E)
and P(V), the joint probability distribution of V, G satisfies the
Markov condition if for ∀Vi ∈ V, Vi probabilistically independent
of all non-descendants of Vi, given the parents of Vi.

Figure 1. (a) An example of a directed cycle, (b) An example of an almost
directed cycle.

Based on the Markov condition, according to G P(V) can be fac-
torized into: P(V) =

∏
i p(Vi|Pa(Vi)).

Definition 2.2 (Faithfulness [32]). A DAG G = (V,E) is faithful
to P(V) iff every independence presenting in P(V) is entailed by G
and fulfills the Markov condition. A distribution P(V) is faithful to a
DAG G iff there exists a DAG G which is faithful to P(V).

A causal DAG is a DAG in which a node’s parents are interpreted
as its direct causes. To learn a causal DAG from observational data,
we also need to assume causal sufficiency.

Definition 2.3 (Causal sufficiency [32]). A dataset satisfies causal
sufficiency if for every pair of variables (Vi, Vj) in V, all their com-
mon causes are also in V.

When causal sufficiency is violated, ancestral graphs are used to
represent data generating processes. An ancestral graph M is a
mixed graph that does not contain directed cycles or almost directed
cycles. A graph is called a mixed graph if it includes directed and
bi-directed edges. When there exists a bi-directed edge Vi ↔ Vj in
M, there is not directed path Vi → Vj or Vi ← Vj . An almost
directed cycle occurs when Vi ↔ Vj is in M and Vj ∈ An(Vi),
Figure 1 (b) is such an example. Let “∗” denote any allowed edge
marks. For a path π, a non-ending node Vi is a collider on π if π
contains Vi−1*→ Vi ←*Vi+1. A path π is a collider path if each
node excluding the ending nodes on π is a collider.

Definition 2.4 (m-separation [27]). In an ancestral graph G, a path
π between Vi and Vj is said to be m-separated by a set of nodes Z
(possibly ∅) if (1). π does not contain any collider which is in Z, or
(2). for any collider Vi on the path π, Vi /∈ Z and no descendant of
Vi is in Z. Two nodes Vi and Vj are said to be m-connected by Z in
G if Vi and Vj are not m-separated by Z.

If Vi and Vj are m-separated by Z, Vi ⊥⊥ Vj |Z, the information
flow from Vi and Vj is “blocked” by Z. In this paper, we call Z a
block set of the ordered pair (Vi, Vj).

Definition 2.5 (Maximal ancestral graph (MAG)). An ancestral
graph M = (V,E) is called a maximal ancestral graph if every
pair of non-adjacent nodes Vi, Vj inM can be m-separated by a set
Z ⊆ V\{Vi, Vj}.

We present an example of causal MAG in Figure 2 (b). Figure 2 (a)
is its corresponding causal DAG with the hidden variables U1 and U2

shown. In a MAGM, if a path between Vs and Ve is a directed path,
it is called a causal path from Vs to Ve. A non-directed path between
Vs and Ve is a non-causal path. In Figure 2(b), path W → Y is a
causal path, and other paths between W and Y are non-causal paths.

Definition 2.6 (Visibility [41]). Given a MAGM, a directed edge
Vi → Vj is visible if there is a node Vk not adjacent to Vj , such that
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Figure 2. (a) A DAG with two hidden variables U1 and U2. (b) The
corresponding MAG of the DAG.

either there is an edge between Vk and Vi that is into Vi, or there is a
collider path between Vk and Vi that is into Vi and every node in this
path is a parent of Vj . Otherwise, Vi → Vj is said to be invisible.

Figure 3. Two possible configurations of the visible edge for Vi → Vj .

Figure 3 shows two different graphical configurations where the
edge Vi → Vj is visible. In a given MAGM, a visible edge Vi →
Vj implies that there are no hidden variables between Vi and Vj .
Otherwise, the edge Vi → Vj may include hidden variables.

2.2 Adjustment set for causal effect estimation
Let W be a binary treatment variable, Y the outcome variable. The
causal effect of W on Y , CE(W,Y ) is the change of Y due to a
change of W . When we use the do operator [25] to represent a ma-
nipulation of a variable (e.g. set W to 1) and denote W = 1 and
W = 0 as w,w′ respectively, CE(W,Y ) is defined as:

CE(W,Y ) = E(Y | do (w))− E(Y | do (w′)) (1)

where E is the Expectation. CE(W,Y ) can be found in an exper-
imental setting where W is physically set as 0 and 1, respectively.
Let us assume that an underlying mechanism dictates the causal re-
lationships among variables, and CE(W,Y ) is determined by the
mechanism.

When estimating the causal effect of W on Y, the effect of other
variables needs to be eliminated or adjusted to obtain an unbiased es-
timation of the causal effect. In graphical causal modelling, the back-
door criterion is the main principle for identifying a set of adjustment
variables, denoted as Z in this paper.

Definition 2.7 (Back-door criterion in DAG). A set of variables Z
satisfies the back-door criterion relative to (W,Y ) in a DAG G if (1)
Z does not contain descendants of W ; (2) Z blocks every back-door
path betweenW and Y (i.e. the paths with an arrow pointing toW ).

Given an adjustment set Z, the causal effect CE(W,Y ) can be
estimated unbiasedly as follows:

CE(W,Y ) =
∑
z

[E(Y | w,Z = z)−E(Y | w′,Z = z)]p(Z = z)

(2)

When the assumption of causal sufficiency does not hold, the gen-
eralised back-door criterion in a MAG can be used to search for an
appropriate adjustment set Z for estimating CE(W,Y ) [22].

Definition 2.8 (Back-door path in MAG). For the ordered pair
(W,Y ) in a MAG, a path from W to Y is a back-door path if it
does not have a visible edge out of W .

Definition 2.9 (Generalised back-door criterion for MAG). Given a
MAGM = (V,E), a set Z ⊆ V \ {W,Y } satisfies the generalised
back-door criterion w.r.t. (W,Y ) in M if (1) Z does not contain
descendants of W ; (2) Z blocks every back-door path between W
and Y .

If a set Z inM satisfies the generalised back-door criterion, rel-
ative to (W,Y ), then the unbiased estimation of CE(W,Y ) can be
achieved by Eq.(2).

In some MAGs, the adjustment sets could not be found due to the
causal ambiguities, and this can be judged based on the amenability
of a MAG [35] as defined below.

Definition 2.10 (Amenable MAG w.r.t. (W,Y )). Let W and Y
be two nodes in a MAG M = (V,E). The MAG is adjustment
amenable w.r.t. (W,Y ) if W → Y is visible.

If the MAGM is not adjustment amenable w.r.t. (W,Y ), then no
adjustment set Z in V \ {W,Y } can be found [35].

3 Local search for an adjustment set
3.1 The Theorems
Let D be a dataset containing a binary treatment variable W , an out-
come variable Y which is binary or numerical, and X, a set of all
other variables of any type. We assume that the dataset is generated
from an underlying causal MAG M which is adjustment amenable
to the ordered pair (W,Y ). We also assume that all the variables in
X are measured before applying the treatment and observing Y , in-
dicating that variables in X are all non-descendants of W or Y in
M. The pretreatment variable assumption is realistic as it reflects
what normally happens in practice, that is, all the other variables are
often measured before the treatment is applied and the outcome is
observed. This assumption is commonly used in [9, 12, 14, 36].

In the proposed Theorem 1 below,MW denotes the manipulated
M from whichW → Y has been removed, andMW is still a MAG
by the closure property of a MAG [27].

Theorem 1 (Adjustment set discovery via local search). Given a
causal MAG M which is adjustment amenable to the ordered pair
(W,Y ), there exists at least an adjustment set Z ⊆ X for (W,Y )
such that Z is a subset of Adj(W ∪ Y ), where Adj(W ∪ Y ) is the
shorthand of Adj(W ) ∪Adj(Y ) inMW .

Proof. The requirement thatM is adjustment amenable toW and Y
is to ensure the identifiability of the causal effect of W on Y . A set
Z blocking all back-door paths from W to Y is an adjustment set for
the ordered pair (W,Y ). There are two types of paths between two
variables, causal paths and non-causal paths. In our problem setting,
pretreatment variables X are non-descendants ofW and Y and hence
MW does not contain any causal path between W and Y .

To prove that an adjustment set Z in the MAGM is a subset of
Adj(W ∪Y ), we will show that any non-causal path fromW to Y is
blocked by a variable inAdj(W ∪Y ) = Pa(W ∪Y )∪Sp(W ∪Y )
where Pa(W ∪ Y ) denotes the set of W ’s parents and Y ’s parents,
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and Sp(W ∪ Y ) denotes the set of W ’s spouses and Y ’s spouses.
There are four cases of a non-causal path from W to Y as follows.

1. No colliders are in Pa(W ∪ Y ). Each path will be blocked by
a node either in Pa(W ) or Pa(Y ), or the empty set when the path
contains one or more colliders.

2. If a node on a path π is in Sp(W ∪ Y ) (denoted as S). 2a. If
S is a collider, the path including S is blocked by the empty set. 2b.
If S is not a collider, the path is in the form of W ↔ S → . . .
or · · · ← S ↔ Y , then S blocks the path or the empty set blocks
the path if the path includes one or more colliders. A special case,
W ← · · · ← S ↔ Y ← W , forms an almost cycle, which is not
allowed in a MAG, so we don’t consider it.

3. If two nodes on a path π are both in Sp(W ∪Y ) (denoted as S1

and S2). 3a. If S1 6= S2, then the path will be blocked as in Case 2.
3b. If S1 = S2 = S, i.e. W ↔ S ↔ Y , then the path is blocked by
the empty set.

4. If a node S′ ∈ Adj(W ∪ Y ) on the path π is a descendant
of a collider C in another path π′. The path π has to be blocked
by S′ (no other alternatives). 4a. As in Case 1, the path π′ is not
opened since a parent of W or Y will still block it. 4b. When C is
a blocking variable as in Cases 2 & 3a, one end of the path π′ to W
or Y is opened, but the other end can be blocked. 4c. As in Case 3b,
an almost cycle is formed, but since it is not allowed by a MAG, this
case is impossible.

Therefore, there exists at least an adjustment set Z ⊆ Adj(W∪Y )
for the ordered pair (W,Y ) in the causal MAGM.

We can refine Adj(W ∪ Y ) further according to the following
theorem.

Theorem 2 (Refinement of the superset of adjustment set). Given a
causal MAG M which is adjustment amenable to the ordered pair
(W,Y ), there exists at least an adjustment set Z ⊆ X for (W,Y )
such that Z is a subset of AdjR(W ∪Y ) = Adj(W ∪Y ) \S, where
each X ∈ S is either m-separated from Y by W or m-separated
from W by the empty set.

Proof. If X is m-separated from Y by W , then X and Y are not m-
connecting given W . Hence we can remove X from an adjustment
set. If X is m-separated from W by the empty set, then X and W
are not m-connecting given the empty set. Hence we can remove X
from an adjustment set.

3.2 Causal effect estimation
Based on the above two Theorems developed, we can firstly employ
a local causal structure discovery algorithm to obtain AdjR(W ∪Y )
from data, then our answer to a causal query is an Adjustment Set-
Causal Effect Table, or ASCET, where each row contains a candidate
adjustment set (a subset of AdjR(W ∪ Y )) and the causal effect
estimated corresponding to the candidate adjustment set.

Example. Suppose AdjR(W ∪ Y ) = {X1, X2, X3}, Table 1
shows an example ASCET where 1 denotes a variable is in a can-
didate adjustment set and 0 otherwise.

3.3 Removing insignificant adjustment variables
We reduce the size of ASCET by removing variables that do not sig-
nificantly affect causal effect estimation. To test if a variable signif-
icantly affects causal effect estimation, we compare the cause effect
estimated by including the variable with the cause effect estimated
by excluding the variable in all cases. If the average difference is

smaller than a threshold, the variable is insignificant. More precisely,
we have the following definition.

Table 1. An example ASCET.

X1 X2 X3 CE
0 0 0 0.4
1 0 0 0.3
0 1 0 0.4
0 0 1 0.5
1 1 0 0.4
1 0 1 0.1
0 1 1 0.5
1 1 1 0.1

Table 2. The final ASCET.

X1 X3 CE
0 0 0.4
1 0 0.3
0 1 0.5
1 1 0.1

Definition 3.1. For eachX ∈ AdjR(W∪Y ), let Z ⊆ AdjR(W∪Y )
be a candidate adjustment set containing X and Z′ = Z \ {X}, the
sensitivity of X is defined as:

Sen(X) =
1

ρ

∑
Z

|CEZ − CEZ′ | (3)

where ρ is the size of the power set of AdjR(W ∪ Y ) \ {X}, CEZ

and CEZ′ are average causal effects ofW on Y with the adjustment
sets Z and Z′ respectively.

The sensitivity of variable X reflects its impact on the estimated
causal effect ofW on Y . WhenX has a low sensitivity, no significant
error will be introduced if we exclude it from AdjR(W ∪ Y ). So, X
is removed from AdjR(W ∪ Y ), and the size of ASCET is reduced.

Example. We use the example in Table 1 to illustrate how we re-
duce the size of ASCET. We useX1 as an example, ρ = 4 as the size
of the power set of {X2, X3} is 4, then Sen(X1) =

1
4
(|CE{X1} −

CEφ| + |CE{X1,X2} − CE{X2}| + |CE{X1,X3} − CE{X3}| +
|CE{X1,X2,X3}−CE{X2,X3}|) =

1
4
(0.1+0+0.4+0.4) = 0.25.

In the same way, Sen(X2) = 0.025 and Sen(X3) = 0.175.
Hence, X2 has a low sensitivity such that we can exclude it from
AdjR(W ∪ Y ) and the corresponding rows in ASCET can be re-
moved. The final result is presented as Table 2.

3.4 The proposed DICE algorithm

Algorithm 1 presents our proposed algorithm for Data-drIven Causal
Effect estimation without causal sufficiency (DICE). DICE contains
two parts. Part 1 (lines 1 to 13) is for finding AdjR(W ∪ Y ). Firstly,
a local causal structure learning algorithm (such as PC-Select [4]
or HITON-PC [1]) is used to find the parents of W and Y . In this
work, we use PC-Select, given its high accuracy, PC-Select is a local
version of PC [32], an algorithm for learning a global causal struc-
ture. Then we check whether Adj(W ) = Adj(W ) \ {Y } is empty
to determine if the causal effect of W on Y is identifiable or not
from data. If Adj(W ) is empty, no adjustment set can be found, and
DICE returns an empty ASCET and terminates; Otherwise, we refine
Adj(W ∪ Y ) to achieve AdjR(W ∪ Y ).

Part 2 of Algorithm 1 (lines 14 to 23) firstly estimates each pos-
sible causal effect when adjusting each subset of AdjR(W ∪ Y ).
We use Propensity Score Matching (PSM) [28] to estimate causal
effects where propensity score is calculated by glm and matching is
performed by Match in the R packages stats and Matching [30], re-
spectively. The adjustment sets and the corresponding causal effects
estimated are added to the ASCET. Next, DICE calculates the sensi-
tivity of each variable inAdjR(W ∪Y ), and if a variable’s sensitivity
is below the given threshold, DICE removes all the adjustment sets
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Algorithm 1 Data-drIven Causal Effect estimation without causal
sufficiency (DICE)
Input: Dataset D with treatment W , pretreatment variables X, out-
come Y and a sensitivity threshold τ .
Output: The ASCET.

1: Call a local causal structure learning algorithm to findAdj(W )\
{Y } and Adj(Y ) \ {W} from D, respectively.

2: ASCET ← ∅
3: if Adj(W ) is empty then
4: Adjustment set could not be found.
5: return ASCET .
6: else
7: S← ∅
8: for each variable X ∈ Adj(W ∪ Y ) do
9: if X ⊥⊥W | ∅ or X ⊥⊥ Y |W then

10: add X to S
11: end if
12: end for
13: AdjR(W ∪ Y ) = Adj(W ∪ Y ) \ S
14: for each subset Z ⊆ AdjR(W ∪ Y ) do
15: calculate CE(W,Y ) by adjusting Z.
16: add pair (Z, CE(W,Y )) to ASCET.
17: end for
18: For each X ∈ AdjR(W ∪ Y ) calculate Sen(X).
19: if Sen(X) < τ then
20: remove from ASCET all the rows containing X .
21: end if
22: return ASCET.
23: end if

containing the variable and the corresponding causal effects from the
ASCET.

Time-complexity analysis. PC-Select and PSM contribute the
most to the time complexity of DICE. In the worst case, the com-
plexity of PC-Select is O(p2p−1n) [4], where p is the number of
variables and n the number of samples. In our problem, the worst
case is when all variables of X are causes of W and/or Y , which,
however rarely occurs. In most cases, PC-Select can handle thou-
sands of variables [4]. The time complexity of PSM is O(p2). Our
experiment in Section 4 shows that DICE scales with both p and n
well.

4 Experiments

4.1 The quality of local structure learning

Before evaluating DICE, we assess the quality of local structure
learning algorithm, i.e. PC-Select used in our paper versus global
structure learning algorithms. The synthetic datasets are generated
according to the underlying causal DAG in Fig 2 (a) with 8 pretreat-
ment variables, 2 hidden variables, W and Y by following the pro-
cedure in [11]. The underlying causal MAG is presented in Fig 2 (b),
i.e. U1 and U2 are removed from these generated datasets.

We generate two groups of datasets to evaluate the impact of sam-
ple size and the number of variables on the quality of the local struc-
ture learning algorithm, respectively. The first group of datasets in-
clude 10 datasets , each containing 5K samples for 10 variables gen-
erated from Fig 2(b), plus 0, 10, 20, . . . , 90 random variables, re-
spectively. The second group of datasets include 20 datasets with 10
fixed variables of the MAG, but with varying sample sizes of 5K,

Figure 4. The Precision, Recall and F-score of FCI & RFCI & PC-Select
algorithms on two groups of synthetic datasets w.r.t. the number of variables
and samples. The qualities of parent discovery by the three algorithms are

very consistent. but the time efficiencies of the algorithms are quite different
as shown in Figure 6

10K, . . . , 95K and 100K. These datasets with hidden variables are
used to evaluate the quality of the local structure learning algorithm.

We use two global structure learning algorithms, Fast causal infer-
ence (FCI) [32] and Really FCI (RFCI) [8] to learn from each of the
generated datasets a PAG (Partial Ancestral Graph) which represents
a Markov equivalence class of MAGs encoding the same depen-
dence/independence relations in the data. Then we extract Adj(W )
and Adj(Y ) from the learned PAG. For PC-Select, we apply it twice
to a dataset, one havingW as the target and the other having Y as the
target to learn Adj(W ) and Adj(Y ). The implementations of FCI,
RFCI and PC-Select are from the R package pcalg [17], with the
default parameter settings and a significance level (α) of 0.05.

Results. We perform the experiments 10 times on each of the 30
datasets. We draw the mean results (precision, recall and F-score) of
the three algorithms in Figure 4. The local structure learning algo-
rithm PC-Selects achieves similar performance as the global struc-
ture learning algorithm in Adj(W ) and Adj(Y ), indicating that ad-
justment set discovery in data by local search is reliable.

4.2 Evaluating DICE with real-world datasets
We evaluate the effectiveness of DICE on three real-world datasets:
Jobs training (Jobs for short) [18], IHDP [12] and Twins [2]. A brief
description of the datasets is shown in Table 3.

Table 3. Summary of the real-world datasets.

Name #treated #control #samples #variables
Jobs 297 2915 3214 9

IHDP 139 608 747 24
Twins 3275 1546 4821 40
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Table 4. Results on Jobs. Bias (%) is the relative error comparing to the
ground-truth causal effect. The estimation with the lowest bias is highlighted

in each category.

Method ATT Bias (%) Remarks
LV-IDA -6645.1 827.4% The best of 4 estimates
DICE 834.7 5.8% The best of 128 estimates
DICE 1745.5 97.0% The most probable estimate
PSM -947.6 201.0%
CBPS 423.3 52.0%
CFR 742.0 16.0%
LASSO -475.3 153.6%
BART -245.2 127.7%
TMLE -1901.4 314.6%
CF -4438.4 600.9% The best of 30 forests

Table 5. Results on IHDP w.r.t. CE and Bias.

Method CE Bias(%) Remarks
LV-IDA 3.97 9.2% The best of 300 estimates
DICE 4.41 0.7% The best of 16 estimates
DICE 4.48 2.5% The most probable estimate
PSM 4.95 13.2%
CBPS 4.56 4.3%
CFR 4.86 11.0%
LASSO 5.06 15.7%
BART 4.69 7.3%
TMLE 4.86 11.2%
CF 4.25 2.9% The best of 30 forests

Jobs consists of the original LaLonde dataset (297 treated sam-
ples and 425 control samples) [18] and the Panel Study of Income
Dynamics (PSID) observational group (2490 control samples) [14].
Each sample has 9 variables, including 7 pretreatment variables
(which are age in years, schooling in years, indicators for black and
Hispanic, marriage status, school degree, previous earnings in 1974
and 1975, and whether the 1974 earnings variable is missing), em-
ployment status with/without job training as treatment variable, and
1978 earning as the outcome variable. Because the dataset contains
records of people taking part in the training only, as in [18], we es-
timate Average Treatment Effect on Treated (ATT) for DICE and all
comparisons, against the ground truth ATT which is $886 [14].

IHDP is related to the Infant Health and Development Program
(IHDP) on low-birth-weight premature infants [12]. IHDP has 24
pretreatment variables and we follow the method in [12] to generate
the simulated outcome with the ground-truth of 4.38 for the causal
effect (CE) by the R package npci3.

The Twins dataset consists of samples from twin births in the USA
between 1989 and 1991 with the birth weight less than 2000g [2]. We
eliminate records with missing values and have 4821 twin pairs left.
The treatment variable is birth weight: W=1 for a baby who is heavier
in a twin; W=0 otherwise. The mortality after one year is the true out-
come for each twin, and the ground-truth causal effect is -0.025. To
simulate an observational study, according to [21], we use the follow-
ing Bernoulli distribution to randomly select one of the two twins as
the observation and hide the other:Wi|xi ∼ Bern(sigmoid(βTx+
ε)), where xi denotes the pre-treatment variables of the sample i,
x denotes the samples set, and βT ∼ U((−0.1, 0.1)40×1) and
ε ∼ N (0, 0.1).

There are two major objectives for the experiments.

3 https://github.com/vdorie/npci

Table 6. Results on Twins w.r.t. CE and Bias..

Method CE Bias (%) Remarks
LV-IDA -0.007 72% The best of 36 estimates
DICE -0.027 8.0% The best of 64 estimates
DICE -0.039 59.2% The most probable estimate
PSM -0.018 56.7%
CBPS -0.010 59.4%
CFR -0.011 56.3%
LASSO -0.016 36.2%
BART -0.010 41.8%
TMLE -0.016 32.9%
CF -0.017 32.6% The best of 30 forests

Firstly, we will show that the true adjustment set can be found as
shown in Theorems 1 and 2, and therefore the smallest bias of DICE
will be very small. We compare DICE with a data-driven causal ef-
fect estimation method, LV-IDA [24]4 which uses FCI to learn a PAG
and searches for an adjustment set in each MAG enumerated from the
PAG. LV-IDA returns a set of causal effects, one for the adjustment
set discovered from each MAG. In the experiment, we report the best
estimates for both methods to show the quality of adjustment sets
found.

Secondly, we will show that a causal effect estimated by DICE is
comparative with the best estimates by methods using domain knowl-
edge. Some statistical and machine learning methods are available
for causal effect estimation, with the assumptions of known covariate
set and unfoundedness. The typical methods include PSM, propen-
sity score matching with logistic regression [28]; CBPS, covariate
balancing propensity score [14]; CFRNET, a deep learning frame-
work for counterfactual regression with a theoretical error bound
(named as CFR) [31]; LASSO, Linear regression with the regular-
ization `1-norm to predict the factual outcome [33]; BART, Bayesian
additive regression tree [7], a non-linear model which has been ap-
plied for counterfactual inference [12]; TMLE, targeted maximum
likelihood estimation, a doubly robust method [34]; CausalForest,
Random forest regression to estimate causal effect [37] (CF for
short). In the experiments, we compare DICE with all the above men-
tioned methods.

The three datasets will favour the above methods since the un-
confoundedness assumption is satisfied. Since the datasets were ob-
tained from well designed observational studies and the covariates
were chosen by domain experts.

DICE returns ASCET, the set of adjustment set and causal effect
pairs. When reporting causal effects estimated by DICE, we use the
most probable value in the ASCET after removing insignificant vari-
ables with the sensitivity threshold of τ = 0.1. We group the causal
effect in the ASCET by using the bin size of (max(Y )/100). The
average causal effect in the most frequent bin is used as an estimated
causal effect.

The parameter setting of DICE is that the Match function of esti-
mate is set to “ATT” for Jobs and “ATE” for IHDP and Twins as in
the prior work in [12, 31]. Other parameters are set as the default.
For CF, the parameter num.trees is set from 10 to 300 with the incre-
ment of 10, and the best result is reported. For PSM and CBPS, all
variables are included in the adjustment variable set.

The experimental results are shown in Tables 4, 5, 6, and Figure 5.
From the results, we have the following conclusions.

Firstly, DICE finds the correct adjustment set through local search.

4 https://github.com/dmalinsk/lv-ida
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Figure 5. Histograms of causal effects in ASCETs for Jobs, IHDP and Twins. The red line denotes the ground truth and the bin size is (max(Y )/100).

Comparing with the other methods, the lowest biases of DICE are
consistently the smallest in the three datasets, and are significantly
smaller than the lowest biases of LV-IDA, which searchers adjust-
ment sets by global search.

Secondly, causal effects estimated by DICE are comparative with
those by other methods which make use of domain knowledge. For
the IHDP dataset, DICE achieves the smallest bias. For the Jobs
dataset, DICE is ranked the 3rd based on smallest biases. For the
Twin dataset, the largest absolute bias is only 0.015, and hence we
consider that the estimates by all methods are similar and good.

To show that those comparison methods do not work in a dataset
when the unconfoundedness assumption is not satisfied, we have
generated datasets with M -bias [26]. The performance of some
methods deteriorates greatly. Implementations of other methods do
not work with datasets with more than 200K records. We do not show
the results in this paper due to the space limitation.

4.3 Efficiency evaluation of DICE
As PC-Select is a major contributor to the complexity of DICE, in
this section, we firstly evaluate the efficiency of PC-Select, and then
the overall efficiency of DICE. The computations were performed on
a PC with 2.6 GHz Intel Core i7 and 16GB of memory.
Efficiency evaluation of the structure learning algorithms.. We
record the running time of the structure learning algorithms on the
synthetic datasets introduced in Section 4.1 and draw the mean run-
ning time in Figure 6. PC-Select is faster than FCI and RFCI, and
comparing to FCI and RFCI, PC-Select scales with the number of
variables and samples very well.

Experiments on ten standard benchmark BNs. To evaluate
the efficiency of DICE, we use the datasets generated from the ten
benchmark BNs from the BN repository5: SACHS, CHILD, INSUR-
ANCE, WATER, ALARM, BARLEY, HAILFINDER, HEPAR II,
WIN95 and ANDES. With each BN, we choose a variable without
child nodes as the outcome variable and then select one of its par-
ents without child nodes (except the outcome) as the treatment vari-
able. We generate ten synthetic datasets from the ten BNs with 5000
samples each using the R package bnlearn [29]. Then we hide 5%
variables (only one variable is hidden for the small BNs SACHS and

5 http://www.bnlearn.com/bnrepository/

Figure 6. The runtime on two groups of synthetic datasets w.r.t. the
number of variables and samples.

Figure 7. The runtime on ten BNs. Note: LV-IDA did not return results in
two hours on BARLEY, HAILFINDER, HEPAR II, WIN95 and ANDES.

CHILD) which lie on a non-causal path between the treatment and
outcome variables. The same parameter settings are used for DICE
and LV-IDA as in Subsection 4.2.

Results. As shown in Figure 7, DICE is faster than LV-IDA across
all the 10 datasets. Especially, LV-IDA did not return results for the
5 datasets generated using the larger BNs within two hours, while
DICE completed in seconds (at most 50+ seconds) for all datasets.

5 Conclusion
Causal query in data is an important means for evidence-based deci-
sion making, without relying on or being restricted by domain knowl-
edge. However, its widespread applications are hindered by the low
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efficiency and unsatisfactory accuracy of existing methods. In this
paper, we have developed theorems which support the utilisation of
efficient local causal structure discovery for causal query and as-
sures the correctness of the result of causal query obtained with local
search. Based on the theorems, we have developed DICE to query
data for causal effects and the confounders potentially impacting the
causal effects. The results returned by DICE provide decision makers
not only valuable information on the effect of changing one variable
in their systems, but also the awareness of the other factors which
could influence the effect. Experiments with synthetic and real-world
data have demonstrated the effectiveness and efficiency of DICE. It
has been shown that DICE produces better causal effect estimation
than LV-IDA, and works on datasets where LV-IDA fails. The causal
effects estimated by DICE are as good as the state-of-the-art methods
which use domain knowledge. In future, we will evaluate DICE and
other methods on purely observational datasets which may include
M -bias, and apply it to real-world biological applications.
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