
Macro Operator Synthesis for ADL Domains
Till Hofmann1 and Tim Niemueller1,2 and Gerhard Lakemeyer1

Abstract. A macro operator is a planning operator that is generated
from a sequence of actions. Macros have mostly been used for macro
planning, where the planner considers the macro as a single action
and expands it into the original sequence during execution, but they
can also be applied to other problems, such as maintaining a plan
library. There are several approaches to macro operator generation,
which differ in restrictions on the original actions and in the way
they represent macros. However, all existing approaches are either
restricted to STRIPS domains, only work on grounded actions, or they
do not synthesize macros but consider the original sequence instead.
We study the synthesis of macro operators for ADL domains. We
describe how to compute the parameterized preconditions and effects
of a macro operator such that they are equivalent to the preconditions
and effects of the respective action sequence and prove the correctness
of the synthesized macro operators based on a Situation Calculus
semantics for ADL. We use the synthesis method for ADL macro
planning and evaluate it on a number of domains from the IPC. As a
second application, we describe how macro operator synthesis can be
useful for maintaining a plan library by computing the precondition
and effects of the parameterized library plans.

1 Introduction
Automated planning can be thought of as the task to determine a
sequence of actions from a given initial state to a desired goal state.
Macro planning is a technique to improve planner performance by
treating sequences of actions, which frequently occur together, as
atomic. Macro planning is a well-studied field and a number of
macro planners exist, e.g., Marvin [11], MUM [5], MACROFF [2],
or DBMP/S [20]. However, all existing macro planners are either
restricted to STRIPS, or they apply macros by applying each action
of the sequence one-by-one. In comparison to STRIPS, ADL adds
quantified preconditions and affects, disjunctive preconditions, and
conditional effects. This makes ADL macro operator synthesis a chal-
lenging problem, as “the precondition and effect formulas of a macro
are hard to infer from the formulas of contained operators” [2]. In this
paper, we investigate the synthesis of ADL macro operators. Given
a parameterized sequence of operators, the task is to determine a
precondition formula such that the macro operator can be applied
if and only if the respective action sequence can be applied, and an
effect formula such that the resulting states after applying the macro
operator and the respective action sequence are the same. Consider a
robot that can carry a bag of potentially fragile objects (Listing 1). If
we combine the actions drop and fix into the macro drop-fix, the
precondition formula of the macro should state that (1) the robot must
be carrying the bag, and (2) the object to fix must be either broken

1 Knowledge-Based Systems Group, RWTH Aachen University, Germany,
email: (hofmann,lakemeyer)@kbsg.rwth-aachen.de

2 T. Niemueller is now with X, The Moonshot Factory, email: timdn@x.team

(:action drop :parameters (?b - bag)
:precondition (carrying ?b)
:effect (and (not (carrying ?b))
(forall (?o - obj)

(when (and (in ?o ?b) (fragile ?o))
(broken ?o)))))

(:action fix :parameters (?o - obj)
:precondition (broken ?o)
:effect (not (broken ?o)))

Listing 1. An extract from a simple PDDL domain of a robot carrying a bag
with potentially fragile objects.

; MACRO [drop,fix] PARAMETERS [[1],[2]]
(:action drop-fix :parameters (?p1 - bag ?p2 - obj)
:precondition (and (carrying ?p1)

(or (and (in ?p2 ?p1) (fragile ?p2))
(broken ?p2)))

:effect (and
(not (broken ?p2)) (not (carrying ?p1))
(forall (?o - obj)
(when (and (in ?o ?p1) (fragile ?o)

(not (= ?o ?p2)))
(broken ?o)))))

Listing 2. The macro operator consisting of the actions drop and fix.

already, or it must be fragile and in the bag. The effect formula of the
macro should state that (1) the robot is not carrying the bag anymore,
(2) the object that the robot fixed is not broken, and (3) all fragile
objects in the bag other than the object to be fixed are still broken.
The resulting macro is shown in Listing 2.

Apart from macro planning, macro operator synthesis can be used
to generate and maintain a plan library. A plan library is a collection
of pre-computed plans and can be used as replacement for planning at
run-time, e.g., in robotics domains [1, 18]. Such a plan library is either
hand-crafted or computed from previous planning results. In both
cases, macro operator synthesis alleviates the problem of creating and
maintaining a consistent library: In the former case, macro operator
synthesis can be used to compute the overall preconditions and effects,
which can then be used at run-time to check whether the plan is
suitable in the given situation. In the latter case, macro operator
synthesis can be used to generalize the sample plans.

We describe our synthesis method based on an ADL semantics
in ES [9], a dialect of the Situation Calculus, which we summarize
in Section 3. In Section 4, we describe how to synthesize the macro
operator by regressing the actions’ preconditions into a single precon-
dition, and by chaining the actions’ effects into a single effect. We
show that the synthesized macro operators are indeed correct. As the
main application of ADL operator synthesis, we extend the macro
planner DBMP/S to ADL by using the synthesized macro operators
for planning in Section 5. We evaluate the approach by comparing
it to MACROFF and planning without macros. In Section 6, we de-

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



scribe how macro operator synthesis can also be used to generate and
maintain a plan library, before we conclude in Section 7.

2 Related Work

Already the original STRIPS planner was extended with macros in
the form of generalized plans [14], (partial) solutions to previous
problems which are generalized by substituting constants with param-
eters. Marvin [11] based on FF uses macros to escape search plateaus.
Marvin has been extended to store macros in a library so they can
be re-used later [10]. To maintain a small library, macros are filtered
based on usage count, number of problems since last use, instantiation
count, and length of the macro. Wizard [27] learns STRIPS-based
macros using a genetic algorithm. It generates initial macros from so-
lutions of simple seeding problems. It evaluates macros based on the
percentage of problems solved, the mean time gain/loss, and the per-
centage of problems solved faster [26]. MACROFF [2] uses two differ-
ent approaches to macro planning: Component Abstraction-Enhanced
Domains (CA-ED) and a Solution-Enhanced Planner (SOL-EP). CA-
ED supports only STRIPS domains. SOL-EP represents a macro as
a partially ordered sequence of operators [3], which can be applied
in one step during search. SOL-EP supports ADL domains. MUM
[8] is a STRIPS macro planner that learns macros from the solu-
tions of less complex training problems and ranks macros based on
the concept of outer entanglements [6] and independent actions [5].
BLOMA [7] decomposes plans into blocks, sub-sequences that must
not be interleaved with other actions. From those blocks, BLOMA

generates macro actions, which can again be represented as PDDL
actions. BLOMA is restricted to STRIPS. DBMP/S [20] determines
macro operators by analyzing a plan database for frequent action se-
quences. In contrast to MACROFF, it synthesizes an operator from the
action sequence and represents the macro as regular PDDL operator.
DBMP/S only supports the STRIPS fragment.

Similar to the proposed operator synthesis method, Rintanen [30]
proposes to use regression to compute the preconditions and effects
of an ADL action sequence. However, in contrast to the proposed
method, they only allow grounded action sequences, which is not
sufficient to generate macro operators or to maintain a plan library.

3 Foundations: ES and ADL Semantics

For the definition of ADL macro operators, we use an ADL semantics
based on ES [9]. Based on this semantics, we will define ADL macro
operators and proof that such an operator is equivalent to the original
action sequence with respect to its preconditions and effects.

3.1 The Logic ES
The logic ES [22] is an epistemic variant of the Situation Calculus
[25, 24] where situations do not appear as terms in the language but
are part of the semantics. We only present the non-epistemic subset
of ES and refer to [22, 21] for details.

Syntax ES is a first-order modal logic with equality, infinitely many
fluent predicate symbols F k and rigid function symbols Gk of every
arity k, and connectives ∧,¬, ∀,�, [·]. The terms of the language are
the least set of expressions such that (1) Every first-order variable is
a term; (2) If t1, . . . , tk are terms and g ∈ Gk, then g(t1, . . . , tk) is
a term. A term is called ground if it does not contain any variables.
We let R denote the set of all ground terms. As in [22], we do not

distinguish between sorts action and object but allow any term to be
used as an action or as an object.

The well-formed formulas of the language are the least set of ex-
pressions such that (1) If t1, . . . , tk are terms and F ∈ F k, then
F (t1, . . . , tk) is an atomic formula; (2) If t1 and t2 are terms, then
(t1 = t2) is a formula; (3) If t is a term and α is a formula, then [t]α
is a formula; (4) If α and β are formulas, then so are (α ∧ β), ¬α,
∀x. α, �α.

We read [t]α as “α holds after action t” and �α as “α holds after
any sequence of actions”. As usual, we treat ∃. α, (α ∨ β), α ⊃ β,
and (α ≡ β) as abbreviations. A formula without free variables is
called a sentence. A formula with no � operators is called bounded,
a sentence with no � and [·] operators and not mentioning Poss is
called fluent.

Semantics Let P denote the set of all pairs σ:ρ where σ ∈ R∗ is
considered a sequence of actions and ρ = F (r1, . . . , rk) is a ground
fluent atom from F k. A world is then a mapping from P to truth
values {0, 1}. Variables are interpreted substitutionally over the rigid
terms R, i.e., R is treated as being isomorphic to a fixed universe of
discourse. This is similar to the logic L [23].

Given a world w, for any formula α with no free variables, we
write w |= α instead of w, 〈〉 |= α where 〈〉 denotes the empty action
sequence, and

w, σ |= F (r1, . . . , rn) iff w [σ:F (r1, . . . , rn)] = 1

w, σ |= (r1 = r2) iff r1 and r2 are identical

w, σ |= (α ∧ β) iff w, σ |= α and w, σ |= β

w, σ |= ¬α iff w, σ 6|= α

w, σ |= ∀x. α iff w, σ |= αxr for every r ∈ R
w, σ |= [r]α iff w, σ · r |= α

w, σ |= �α iff w, σ · σ′ for every σ′ ∈ R∗

The notation αxt means the result of simultaneously replacing all
free occurrences of the variable x by the term t; σ1 · σ2 denotes the
concatenation of the two action sequences.

Basic Action Theories Given a set F of fluent predicates, a set of
sentences Σ is called a basic action theory over F iff it only mentions
the fluents in F and is of the form Σ = Σ0 ∪ Σpre ∪ Σpost, where
(1) Σ0 is a finite set of fluent sentences; (2) Σpre is a singleton of
the form �Poss(a) ≡ π, where π is fluent with a being the only
free variable; (3) Σpost is a finite set of successor state axioms of the
form �[a]F (~x) ≡ γF , one for each fluent F ∈ F \ {Poss}, where
γF is a fluent sentence whose free variables are among ~x and a. Σ0

represents the initial database, Σpre is one large precondition axiom,
and Σpost the set of successor state axioms for all fluents in F .

Regression Given a basic action theory Σ, a common task is pro-
jection, i.e., determining what holds after a sequence of actions has
occurred. For a given basic action theory Σ, ground terms r1, . . . , rk,
and an arbitrary sentenceα, the projection task is to determine whether
Σ |= [r1] . . . [rk]α holds. One method to do projection is to use re-
gression. The idea of regression is to successively replace fluents
in α by the right-hand side of their successor state axioms until the
resulting sentence does not contain any actions. In ES, any bounded,
objective sentence α is considered regressable. The regression of α
over a sequence of (not necessarily ground) terms σ is denoted as
R[σ, α]. As σ does not need to be ground, we can also regress a

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



sentence over a sequence of operators A1 . . . An, which we will use
to define the preconditions and effects of a macro operator. The re-
gressionR[α] of α wrt Σ is defined to be the fluent formulaR[〈〉, α],
where for any sequence of terms σ,R[σ, α] is defined inductively on
α:

1. R[σ, (t1 = t2)] = (t1 = t2);
2. R[σ,∀x α] = ∀xR[σ, α];
3. R[σ, (α ∧ β)] = (R[σ, α] ∧R[σ, β]);
4. R[σ,¬α] = ¬R[σ, α];
5. R[σ, [t]α] = R[σ · t, α];
6. R[σ,Poss(t)] = R[σ, πat ];
7. R[σ, F (t1, . . . , tk)] is defined inductively on σ by

(a) R[〈〉, F (t1, . . . , tk)] = F (t1, . . . , tk);

(b) R[σ · t, F (t1, . . . , tk)] = R[σ, (γF )a x1t t1
· · · xktk ]

For any world w and basic action theory Σ, we define a world wΣ

which is like w except that it satisfies the Σpre and Σpost sentences of
Σ. Formally, wΣ is a world satisfying the following conditions:

1. For F /∈ F , wΣ[σ:F (~r)] = w[σ:F (~r)];
2. For F ∈ F , wΣ[σ:F (~r)] is defined inductively:

(a) wΣ[〈〉:F (~r)] = w[〈〉:F (~r)]

(b) wΣ[σ · r:F (~r)] = 1 iff wΣ, σ |= (γF )a ~xr ~r

3. wΣ[σ:Poss(r)] = 1 iff wΣ, σ |= πar

As shown in [22], for any w, wΣ exists and is unique.

Theorem 1 (Regression Theorem [22]). Let Σ = Σ0 ∪ Σpre ∪ Σpost

be a basic action theory, w a world, α a bounded sentence, and σ a
sequence of ground terms. Then:

1. w |= R[σ, α] iff wΣ, σ |= α;
2. Σ0 ∪ Σpre ∪ Σpost |= α iff Σ0 |= R[α].

3.2 ADL Semantics
We summarize a declarative semantics of ADL based on ES [9], which
translates ADL operators into precondition and successor state axioms
of ES.

ADL Operators First, we describe how we can define ADL opera-
tors consisting of a precondition formula and an effect formula in ES.
An ADL precondition formula is an ES formula of the following form:
(1) An atomic formula F (~t) is a precondition formula if each of the
ti is either a variable or a constant. (2) An equality atom (t1 = t2)
is a precondition formula if each ti is a variable or a constant. (3) If
φ1 and φ2 are precondition formulas, then so are φ1 ∧ φ2, ¬φ1, and
∀x:τ φ1.

The quantifier ∀x:τ stands for “all x of type τ”, where a type
τ is a unary predicate from F 1 and τ(x) means that object x has

type τ . The quantifier ∀x:τ is defined as ∀x:τ φ
def
= ∀x τ(x) ⊃ φ.

Furthermore, we denote tuples of terms and types by vectors, e.g.,
~t and ~τ . If ~τ denotes τ1, . . . , τk, ~r denotes r1, . . . , rk and ~t denotes
t1, . . . , tk, then we use the following short-hand notations: (1) (~r =

~t)
def
= (r1 = t1)∧· · ·∧(rk = tk), (2) ~τ(~t)

def
= τ1(t1)∧· · ·∧τk(tk).

An ADL effect formula is an ES formula of the following form:
(1) An atomic formula F (~t) is an effect formula if each of the ti is
either a variable or a constant. (2) A negated atomic formula ¬F (~t)
is an effect formula if each of the ti is either a variable or a constant.

(3) If ψ1 and ψ2 are effect formulas, then ψ1 ∧ ψ2 and ∀x:τ. ψ1

are effect formulas. (4) If γ is a precondition formula and ψ is an
effect formula not containing “⇒” and “∀”, then γ ⇒ ψ is an effect
formula.

An ADL operator O is given by a quadruple (A, ~y:~τ, πA, εA),
where (1) A is a symbol from Gp, with p = |~y|, (2) ~y:~τ is a list
of variable symbols with associated types, (3) πA is a precondition
formula with free variables from ~y, (4) and εA is an effect formula
with free variables from ~y. We call A the operator name and ~y:~τ the
parameters of O. An ADL operator (A, ~y:~τ, πA, εA) is in normal
form, if its effect εA is of the following form:∧

Fj

∀~xj :~τFj .
(
γ+
Fj ,A

(~xj)⇒ Fj(~xj)
)
∧

∧
Fj

∀~xj :~τFj .
(
γ−Fj ,A(~xj)⇒ ¬Fj(~xj)

)
If an ADL operator is in normal form, then for each Fj , there
is at most one positive effect formula of the form · · · ⇒
Fj(~x) and at most one negative effect formula of the form
· · · ⇒ ¬Fj(~x). The ADL operator for drop is Odrop =
(drop, b:bag , πdrop , εdrop) with πdrop = carrying(b) and εdrop =
∀o:obj [(in(o, b) ∧ fragile(o)) ⊃ broken(o)] ∧ ¬carrying(b).

ADL Problem Description Using the definitions above, we can
now describe how we can formulate an ADL problem description
in ES. A problem description for ADL is given by (1) a finite
list of types τ1, . . . , τl,Object , where Object is a special type that
must always be included, (2) a finite list of statements of the form
τi(either τi1 . . . τiki ) defining some of the types as compound types,
where τi is the union of all τij and ki is the number of sub-types of
τi; a primitive type is a type other than Object that does not occur on
the left-hand side of such a definition, (3) a finite list of fluent predi-
cates F1, . . . , Fn with a list of types τj1 , . . . τjkj for each Fj , which
defines the types of the arguments of Fj , (4) a finite list of objects
with associated primitive types o1:τo1 , . . . , ok:τok , where each oi is
a symbol from G0, (5) a finite list of ADL operators O1, . . . , Om
withOi = (Ai, ~yi:~τi, πAi , εAi), in normal form, where each operator
only contains symbols from the operator’s parameters, and from (1),
(3), and (4), (6) an initial state I in form of an effect formula that only
contains symbols from (1), (3), and (4), and (7) a goal description G
in form of a precondition formula, which only contains symbols from
(1), (3), and (4).

ADL Basic Action Theories Given an ADL problem description,
a corresponding ES basic action theory can be constructed as follows:

Successor State Axioms Σpost A set of operator descriptions
{O1, . . . , Om} can be transformed into a set of successor state ax-
ioms Σpost . Let

γ+
Fj

def
=

∨
γ+
Fj,Ai

∈NF(Oi)

∃~yi. a = Ai(~yi) ∧ γ+
Fj ,Ai

γ−Fj
def
=

∨
γ−
Fj,Ai

∈NF(Oi)

∃~yi. a = Ai(~yi) ∧ γ−Fj ,Ai

Using the definitions for γ±Fj ,Ai , we can define the successor state
axiom for Fj (cf., [28]).

� [a]Fj(~xj) ≡ γ+
Fj
∧ ~τFj (~xj) ∨ Fj(~xj) ∧ ¬γ

−
Fj

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



In our example, the successor state axiom for broken is:

� [a]broken(o) ≡
∃b. a = drop(b) ∧ (in(o, b) ∧ fragile(o)) ∧ obj (o)

∨ broken(o) ∧ ¬a = fix (o)

The Precondition Axiom Σpre The precondition axiom π is a
disjunction over all m operators of the problem domain:

π
def
=

∨
1≤i≤m

∃~yi:~τi. a = Ai(~yi) ∧ πAi

In our example, the precondition axiom is:

π =∃b:bag . a = drop(b) ∧ carrying(b)

∨ ∃o:obj . a = fix (o) ∧ broken(o)

Initial Description Σ0 The initial description Σ0 is a conjunction
of fluent formulas describing the initial state of the world and all
information about the types of objects, e.g.,:

Σ0 = bag(b1) ∧ obj (o1) ∧ carrying(b1) ∧ in(o1, b1)

4 ADL Macro Operator Synthesis
Using ES and the ADL semantics described above, we can now define
ADL macro operators. For a given sequence σ of ADL operator names,
we construct a new macro operator Oσ whose precondition formula
is satisfied iff all preconditions of σ are satisfied when applied subse-
quently, and whose effect is the same as the observed accumulated ef-
fect after applying σ. In the following, let σ = 〈A1, . . . , An〉 be a non-
empty sequence of ADL operator names with corresponding operators
Oi = (Ai, ~yAi :~τAi , πAi , εAi).

Macro Preconditions
For the sequence σ, we need to compute a precondition formula πσ for
the corresponding macro operator Oσ . Intuitively, for any grounding
ρ = σ(~t) of σ, w |= πσ(~t) must hold iff ρ is executable, i.e., iff it
is possible to execute all actions of ρ subsequently. First, we define
under what condition an action sequence is executable:

Definition 1 (Executable action sequence). Given an ADL problem
description with ADL operators O1, . . . , Ol and corresponding basic
action theory Σ. Let ρ = 〈a1, . . . , an〉 = 〈A1(~t1), . . . , An(~tn)〉 be
a ground sequence of actions with preconditions πai = πAi(~ti). We
say ρ is executable in world w iff the following holds:

w |= πa1 ∧ [a1]
(
πa2 ∧ [a2](πa3 ∧ . . . [an−1](πan)

)
Next, we define the precondition formula of the macro operator Oσ .

Definition 2 (Macro Precondition). The macro precondition πσ is
defined inductively:

π〈An〉 = πAn

π〈A1,A2,...,An〉 = πA1 ∧R(〈A1〉, π〈A2,...,An〉)

Note that we define the precondition by regressing over the non-
ground operator Ai, i.e., π〈A1,...,An〉 may have free variables
~x1, . . . , ~xn. Given ground terms ~t1, . . . ,~tn, we denote the grounded
precondition π〈A1,...,An〉(~t1, . . . ,~tn) as π〈a1,...,an〉. Coming back

to our example, the macro precondition of the sequence σ =
〈drop(b),fix (o)〉 is:

πσ = πdrop ∧R(〈drop(b)〉, πfix )

= carrying(b) ∧R(〈drop(b)〉, broken(o))

= carrying(b) ∧ (broken(o) ∨ in(o, b) ∧ fragile(o))

The macro precondition πσ satisfies the desired property:

Theorem 2. Let Σ = Σ0 ∪ Σpre ∪ Σpost be a BAT. Then:

Σ0 |= π〈a1,...,an〉 ⇔ Σ |= πa1 ∧ [a1]
(
πa2 ∧ . . . [an−1]πan

)
Proof. By Regression Theorem:
Σ |= πa1 ∧ [a1]

(
πa2 ∧ . . . [an−1]πan

)
iff

Σ0 |= R
[
πa1 ∧ [a1]πa2 ∧ . . . [an−1]πan

]
where

R
[
πa1 ∧ [a1]πa2 ∧ . . . [an−1]πan

]
= πa1 ∧R

[
[a1]πa2 ∧ . . . [an−1]πan

]
= πa1 ∧R

[
〈a1〉, πa2 ∧ . . . ∧ [an−1]πan

]
= πa1 ∧R[〈a1〉, πa2 ] ∧R[〈a1〉, [a2](πa3 ∧ . . . ∧ [an−1]πan)]

= πa1 ∧R[〈a1〉, πa2 ] ∧R[〈a1, a2〉, πa3 ∧ . . . ∧ [an−1]πan ]

= . . .

= πa1 ∧R[〈a1〉, πa2 ] ∧R[〈a1, a2〉, πa3 ] ∧ . . .
∧R[〈a1, a2, . . . , an−1〉, πan ]

= π〈a1,...,an〉

Corollary 1. The action sequence σ = 〈A1(~t1), . . . An(~tn)〉 is exe-
cutable in w iff w |= π〈A1,...,An〉(~t1, . . . ,~tn).

Macro Effects
For the sequence σ of ADL operator names, we need to compute the
accumulated effect of σ. To do so, we first define the chaining of two
ADL operators:

Definition 3. Let O1, O2 be ADL operators in normal form with
Oi = (Ai, ~yAi :~τAi , πAi , εAi). We define the chaining C(εA1 , εA2)
of O1 with O2 as:

C(εA1 , εA2) =
∧
Fj

∀~xj :~τFj
(
γ+
Fj ,〈A1,A2〉(~xj)⇒ Fj(~xj)

)
∧

∧
Fj

∀~xj :~τFj
(
γ−Fj ,〈A1,A2〉(~xj)⇒ ¬Fj(~xj)

)
where

γ+
Fj ,〈A1,A2〉(~xj) = γ+

Fj ,A1
(~xj)∧

¬R(〈A1〉, γ−Fj ,A2
(~xj)) ∨R(〈A1〉, γ+

Fj ,A2
(~xj))

γ−Fj ,〈A1,A2〉(~xj) = γ−Fj ,A1
(~xj)∧

¬R(〈A1〉, γ+
Fj ,A2

(~xj)) ∨R(〈A1〉, γ−Fj ,A2
(~xj))

The subformula γ+
Fj ,〈A1,A2〉(~xj) defines when the chained actions

〈A1, A2〉 cause the fluent Fj to be true. This is the case if A1 causes
the fluent to be true (γ+

Fj ,A1
(~xj)) and after doing A1, A2 does not

cause it to be false again (¬R(〈A1〉, γ−Fj ,A2
(~xj))), or if after doing

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



A1, A2 causes the fluent to be true (R(〈A1〉, γ+
Fj ,A2

(~xj))). As an
example, for the chaining of the effects of drop(b) and fix (o) and the
successor state axiom of the fluent broken , γ+ looks as follows:

γ+
broken,〈drop(b),fix(o)〉(o

′)

= γ+
broken,drop(b)(o

′)∧

¬R
(
〈drop(b)〉, γ−broken,fix(o)(o

′)
)

∨R
(
〈drop(b)〉, γ+

broken,fix(o)(o
′)
)

= in(o′, b) ∧ fragile(o′)

∧ ¬R(〈drop(b)〉, o = o′) ∨R(〈drop(b)〉,⊥)

= in(o′, b) ∧ fragile(o′) ∧ o 6= o′

We use the chaining C to define the effect εσ of the macro:

Definition 4. We define the macro effect εσ inductively:

ε〈A1〉 = εA1

ε〈A1,A2...,An〉 = C(ε〈A1,A2,...,An−1〉, εAn)

With precondition πσ and effect εσ , we can define the ADL macro
operator for σ:

Definition 5 (Macro Operator). We call the ADL operator Oσ =
(Aσ, (~yA1 :~τA1 , . . . , ~yAn :~τAn), πσ, εσ) the macro operator for σ.

We do not require the ~yAi,j to be distinct, i.e., we can assign a
parameter ofAi to the same name as another parameter ofAj , as long
as they are of the same type. We denote the distinct joint parameters
ofOσ as ~yσ:~τσ . The PDDL representation of the synthesized operator
for the sequence 〈drop,fix 〉 is shown in Listing 2. We show that Oσ
has the same effect as σ:

Lemma 1. Given an ADL problem description A with correspond-
ing basic action theory Σ. Let ~t1, . . . ,~tn be ground terms of type
~τA1 , . . . , ~τAn , and Oσ the corresponding macro operator for σ =
〈A1, . . . , An〉 with operator name Aσ . Let Σσ be the same ba-
sic action theory as Σ but with additional ADL (macro) operators
O〈A1,A2〉, O〈A1,A2,A3〉, . . . , Oσ . For any bounded sentence α:

wΣσ |= [Aσ(~t1, . . . ,~tn)]α⇔

wΣ |= [A1(~t1)][A2(~t2)] . . . [An(~tn)]α

Proof. Proof by induction over the length of σ for atomic formulas α
and then by structural induction over α. We denote Ai(~ti) as ai and
(~t1, . . . ,~tn) as ~tσ .

Base case n = 1: Follows directly from πσ = πA1 , εσ = εA1 and
thus Aσ = A1.

Induction step Let F (~t) be a ground atomic formula.
⇐: Assume wΣ |= [a1] . . . [an]F (~t). Following the successor
state axiom, we have two cases:

1. wΣ |= [a1][a2] . . . [an−1]γ+
F ∧ ~τF (~t) and thus wΣ |=

R(〈a1, . . . , an−1〉, γ+
F ). By definition of γ+

F , we can follow:
wΣ |= R(〈a1, . . . , an−1〉, γ+

F,An
(~t)), where γ+

F,An
(~t) is de-

fined by the disjunct for An of γ+
F in the successor state axiom

for F . By definition of the chaining C(A〈A1,...,An−1〉, An) and
by induction: wΣσ |= γ+

F,〈A1,...An〉(
~t). By definition of the

macro effect ε〈A1,...An〉, it follows: wΣσ |= [Aσ(~tσ)]F (~t).

2. wΣ |= [a1][a2] . . . [an−1](F (~t) ∧ ¬γ−F ). By induction:
wΣσ′ |= [Aσ′(~tσ′)](F (~t) ∧ ¬γ−F ) for the sub-sequence σ′ =

〈A1, . . . , An−1〉. In particular, wΣσ′ |= [Aσ′(~tσ′)]¬γ−F,An
(again γ−F,An being defined by the disjunct for Ai of γ−F in
the successor state axiom for F ) and by Regression Theorem
and Theorem 2: wΣσ′ |= R(〈Aσ′(~tσ′)〉,¬γ−F,An), and there-
fore wΣσ |= ¬γ−F,〈Aσ′ ,An〉. It follows: wΣσ |= F (~t) ∧ ¬γ−F
and thus wΣσ |= [Aσ(~tσ)]F (~t).

⇒: Assume wΣσ |= [Aσ(~tσ)]F (~t). Again, we have two cases:

1. wΣσ |= (γ+
F ∧ ~τF (~t))|a

Aσ(~t)
. By definition of γ+

F , it follows

that wΣσ |= γ+
F,Aσ

(~t) and thus

wΣσ |= γ+
F,Aσ′

(~t)∧¬R(〈Aσ′〉, γ−F,An(~t))∨R(〈Aσ′〉, γ+
F,An

(~t))

for the sub-sequence σ′ = 〈A1, . . . , An−1〉.
(a)

wΣσ |= γ+
F,Aσ′

(~t) ∧ ¬R(〈Aσ′〉, γ−F,An(~t))

With wΣσ |= γ+
F,Aσ′

(~t) and wΣσ |= ~τ(~t), it fol-

lows that wΣσ |= [Aσ′(~t)]F (~t), and thus by induc-
tion, wΣ |= [a1] . . . [an−1]F (~t). Because of wΣσ |=
¬R(〈Aσ′〉, γ−F,An(~t)), and by Regression Theorem, it follows
that wΣσ |= [Aσ′(~t)]¬γ−F,An(~t).
We conclude by induction wΣ |= [a1] . . . [an−1]¬γ−F,An(~t)

and therefore wΣ |= [a1] . . . [an]F (~t).
(b)

wΣσ |= R(〈Aσ′〉, γ+
F,An

(~t))

By induction and Theorem 2, wΣ |= [a1] . . . [an−1]γ+
F,An

(~t)

and also wΣ |= [a1] . . . [an−1]~τ(~t). It follows: wΣ |=
[a1] . . . [an]F (~t).

2. wΣσ |= F (~t) ∧ ¬γ−F . Thus, wΣσ |= F (~t), and

wΣσ |=

¬
(
γ−F,Aσ′ (

~t) ∧ ¬R
(
〈Aσ′〉, γ+

F,An
(~t)
)
∨R

(
〈Aσ′〉, γ−F,An(~t)

))
By induction and Regression Theorem:

wΣ |= [a1, . . . , an−1]¬γ−F,An(~t)

We conclude: wΣ |= [a1, . . . , an]F (~t).

Structural induction over α:

1. α = (t1 = t2): Follows directly from the semantics of ES.

2. α = φ ∧ ψ: By induction, wΣσ |= [Aσ(~t1, . . . ,~tn)]φ iff
wΣ |= [A1(~t1)][A2(~t2)] . . . [An(~tn)]φ, similarly for ψ. Thus,
by ES semantics, wΣσ |= [Aσ(~t1, . . . ,~tn)](φ ∧ ψ) iff wΣ |=
[A1(~t1)][A2(~t2)] . . . [An(~tn)](φ ∧ ψ).

3. α = ¬ϕ: Follows directly by induction for ϕ.

4. α = ∀x. α: By induction, for every r ∈ R: wΣσ |=
[Aσ(~t1, . . . ,~tn)]ϕxr iff wΣ |= [A1(~t1)] . . . [An(~tn)]ϕxr .
By ES semantics, we can follow: wΣσ |= [Aσ(~t1, . . . ,~tn)]α iff
wΣ |= [A1(~t1)][A2(~t2)] . . . [An(~tn)]α.

Finally, we can show that any grounded instance Aσ(~t1, . . . ,~tn)
of a macro operator Oσ has the same effects as the corresponding
ground action sequence 〈A1(~t1), . . . , An(~tn)〉:

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Theorem 3. For any bounded sentence α:

Σσ |= [Aσ(~t1, . . . ,~tn)]α⇔ Σ |= [A1(~t1)] . . . [An(~tn)]α

Proof. ⇒: Assume Σσ |= [Aσ(~t1, . . . ,~tn)]α. Let wσ be a world
with wσ |= Σσ , therefore wσ = wΣσ , and thus by Lemma 1:

wΣ |= [A1(~t1)][A2(~t2)] . . . [An(~tn)]α

Assume Σ 6|= [A1(~t1)][A2(~t2)] . . . [An(~tn)]α.
Then there is a world w′Σ with w′Σ |= Σ but w′Σ 6|=
[A1(~t1)][A2(~t2)] . . . [An(~tn)]α. Contradiction to the uniqeness of
wΣ.
⇐: Analogously to “⇒”.

5 Macro Planning
We extended the implementation1 of DBMP/S [20] with ADL
macros. DBMP/S generates macro-augmented domains as follows:
(1) identify frequent action sequences in a plan database, (2) generate
macro operators for those sequences and add them to the domain,
(3) select the macro-augmented domains that are most promising.
Apart from extending the planner to ADL, we also modified the
macro selection. We score a macro Oσ with two properties:

1. The normalized frequency f(Oσ) of the macro in the training
solutions. Let n be the number of occurrences of the sequence σ
and l the total number of actions in the database. The frequency of
σ is defined as f(σ) = n

l
.

2. The number of joint parameters in the operators of the macro. The
parameter reduction r(Oσ) is defined by

r(Oσ) =

∑
Ai(~yi)∈σ |~yi| − |~yσ|∑

Ai(~yi)∈σ |~yi|

As an example, the parameter reduction for σ1 =
〈drop(b),fix (o), drop(b)〉 (dropping the same bag twice)
is r(Oσ1) = 1

3
, because the two parameters of drop are

replaced by the common parameter b. On the other hand, for
σ2 = 〈drop(b1),fix (o), drop(b2)〉 (i.e., dropping two possibly
different bags), r(Oσ2) = 0, as the number of parameters is
the same as in the original sequence. The operator Oσ2 is more
general but also has more parameters, possibly resulting in a larger
search space.

For macro-augmented domains, we use the complementarity of the
domain macros as an additional property. LetM = {Oσ1 , . . . , Oσn}
be the macros of the domain and σi = 〈Ai1 , . . . , Aiji 〉. The comple-
mentarity ofM is defined as

C(M) =

∣∣⋃n
i=1

⋃
Aj∈σi{Aj}

∣∣∑n
i=1

∣∣⋃
Aj∈σi{Aj}

∣∣
Intuitively, the complementarity is a measure for the difference of the
macros in the domain, where a higher complementarity corresponds
to a higher difference of the macro operators.

Using those properties, we define an evaluator

E(M) = |M|−wlC(M)wc
∑
O∈M

wff(O) + (1− wf )r(O)

where wf , wl, wc are weights from [0, 1]. The higher wl, the higher
we prefer domains with a small number of macros. The higherwf , the
more we use frequently occurring macros at the cost of less parameter
reduction. The higher wc, the higher we penalize macros that have
the same actions.
1 The code is open-source and available at https://github.com/
morxa/dbmp.

5.1 Evaluation
As benchmark domains, we used the STRIPS and ADL domains from
the IPC-14 and IPC-18, in addition to a modified version of the ADL
robotics domain Cleanup [13, 19]. We excluded domains that require
functions or action costs, and we excluded Maintenance, as it consists
of only one action. We generated macros using the DBMP/S frame-
work with the ADL operator synthesis and the modified selection
procedure as described above. As comparison, we used FF [17] and
LAMA [29] without macro actions, in addition to MACROFF. Since
our focus is on ADL, we did not include any STRIPS macro planner.
As our primary focus is an application in robotics, we followed the
rules of the IPC-18 Agile Track for scoring, which specifies a time
limit of 5 min and a memory limit of 8 GB. For each task, the planner
scores 1 point if the run-time t was less than 1 sec, 1− log t

log 300
points

if 1 ≤ t ≤ 300, and 0 points otherwise.
For each domain, we split the problem set into sets for training

(25 %), validation (25 %), and testing (50 %). The training set is used
for generating macro actions, the validation set is used for evaluator
parameter tuning, and the test set is used for the final evaluation. We
used the smallest problems for the training set and randomly assigned
the remaining problems to the other sets. We generated solutions for
the training set with the optimal variant of LAMA with a time limit
of 60 min and a memory limit of 8 GB. Based on these solutions, we
created macros consisting of up to 4 actions and macro-augmented
domains containing up to 4 macros. In the next step, we selected
the best macro-augmented domain for each possible configuration
of (wf , wc, wl) ∈ {0.0, 0.1, . . . , 1.0}3 and ran the planners FF and
LAMA (2011) — modified to terminate when the first solution is
found — with the augmented domains on the validation set.

Table 1. The weights for frequency (wf ), complementarity (wc), and
number of macros (wl) of the evaluators which performed best on problems

of the validation set and which were used on the test set.

Domain FF LAMA
wf wl wc wf wl wc

Blocksworld 0.1 1.0 0.0 0.0 1.0 0.0
Caldera 0.0 0.9 0.0 0.0 0.0 0.0

Nurikabe 0.5 0.0 0.1 0.1 0.0 0.0
Termes 0.6 0.0 0.9 0.0 0.4 0.3
Barman 0.7 0.0 0.0 0.5 1.0 0.0

Childsnack 0.0 0.6 1.0 0.0 0.6 1.0
Hiking 0.6 0.5 0.9 0.6 0.6 0.7

Thoughtful 0.5 0.8 0.4 0.7 0.0 0.0
Cleanup 0.9 0.0 0.0 0.0 0.0 0.2

Table 2. Planner scores on the validation set using the DBMP macro
domains with the best configurations according to Table 1.

Domain FF LAMA MACROFF
DBMP

FF
DBMP
LAMA

Blocksworld 8.87 15.00 11.80 10.99 14.82
Caldera 0.85 1.35 0.75 0.85 2.06

Nurikabe 0.00 0.73 0.00 0.90 0.76
Termes 0.00 2.00 0.00 1.83 2.00
Barman 0.00 4.00 0.00 4.36 4.96

Childsnack 0.00 1.00 0.00 3.97 3.90
Hiking 0.65 1.87 1.29 3.01 3.54

Thoughtful 1.55 1.82 3.06 2.95 3.00
Cleanup 1.00 0.70 0.00 4.11 0.73

Based on the validation results, we chose the configuration with
the highest total score for each domain-planner pair. The chosen
configurations are shown in Table 1, the scores on the evaluation set

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Table 3. Planner scores on the test set. The macro-augmented domain was
selected based on the validation set. Scores for FF and LAMA on the original
domains, MACROFF with its own macros, and FF and LAMA with DBMP

domains augmented by up to 4 macros of maximum length 4.

Domain FF LAMA MACROFF
DBMP

FF
DBMP
LAMA

Blocksworld 17.73 30.00 28.40 23.00 29.72
Caldera 3.57 3.63 2.47 3.58 3.05

Nurikabe 2.79 2.36 1.68 2.50 2.26
Termes 0.97 6.00 0.00 2.63 3.00
Barman 0.00 10.00 0.00 8.80 9.96

Childsnack 0.00 1.00 0.00 6.11 7.57
Hiking 3.28 9.40 2.89 5.95 6.55

Thoughtful 4.73 8.11 3.78 3.00 5.22
Cleanup 3.82 0.70 0.00 12.67 0.73

are shown in Table 2. For each pair, we selected the macro-augmented
domain with the highest score and evaluated it on the test set. The
results are shown in Table 3.

On the validation set, we can see that DBMP improves planner
performance on most domains with both FF and LAMA as base
planner. It also generally performs better than MACROFF. However,
in the test set the macro-augmented domains did not improve and
sometimes even impaired the performance of LAMA, with Childsnack
being a notable exception. For FF, macros are more helpful, and
FF with DBMP macros generally outperforms FF also in the test
set. MACROFF was not able to generate any macros for Barman,
Childsnack, and Cleanup, because it could not solve any of the training
problems. This clearly shows the advantage of having a planner-
independent macro representation, as we can use a different (and if
desired optimal) planner to solve the training problems.

Summarizing the results, DBMP with ADL macros performs bet-
ter than MACROFF, and thus, ADL operator synthesis is a viable
approach to macro planning with ADL domains. On the other hand,
DBMP with ADL macros does not perform better than LAMA with-
out macros on the test set, which may partly be due to an over-fitting
macro selection process. This may be remedied by modifying the
training and selection process, e.g., by determining training problems
based on the structural similarity [4] of the problems.

6 Creating a Plan Library with ADL Macros

A plan library is a collection of pre-computed plans, which are either
collected from previous runs or manually created. Such a plan library
can be used directly, e.g., for planning on robots [1, 18], for case-
based planning [15, 12], or to define abstract tasks that are distributed
to agents in a multi-agent environment [16]. Similar to macros, a
plan in a library can be represented by the sequence of actions that it
consists of, as a single operator with preconditions and effects, or as
grounded plan instances. Using macro operator synthesis can simplify
the creation and maintenance of such plan libraries. Instead of man-
ually specifying the preconditions and effects of the (abstract) plan,
those can be computed automatically from the observed or manually
specified plans. Additionally, the parameter reduction technique de-
scribed in Section 5 can be used to generalize a set of observed plans
into a parameterized plan.

We present an example from a production logistics scenario [18]:
In this domain, a team of robots has to operate a number of machines
to manufacture products. The approach presented in [18] uses a pre-
defined plan library of PDDL actions to accomplish simple tasks and
combines those tasks to achieve the overall objective. Those plans
are hand-crafted. The preconditions of the plan actions are checked

(location-lock ?mps INPUT)
(move ?robot ?from ?from-side ?mps INPUT)
(wp-get-shelf ?robot ?cap-carrier ?mps ?shelf-spot)
(wp-put ?robot ?cap-carrier ?mps)
(location-unlock ?mps INPUT)

Listing 3. A plan from the logistics robots plan library.

(:action wp-put
:parameters (?r - robot ?wp - workpiece ?m - mps)
:precondition (and (at ?r ?m INPUT)
(wp-usable ?wp) (holding ?r ?wp)
(mps-side-free ?m INPUT))
:effect (and (wp-at ?wp ?m INPUT)
(not (holding ?r ?wp)) (can-hold ?r)
(not (mps-side-free ?m INPUT))))

Listing 4. The action wp-put, one action of the plan in Listing 3.

during execution to make sure the actions are actually executable, and
the actions’ effects are applied on the agent’s world model. However,
the decision criteria when to use which plan is manually engineered.
Thus, a plan may be selected even though it is not executable or does
not accomplish the desired goal. By using macro operator synthesis,
we can compute the preconditions and effects of the overall plan and
check them before selecting a plan. Listing 3 shows an example for
such a plan from the library: In this plan, a robot moves to a machine
(move), gets a workpiece from the shelf (wp-get-shelf), and feeds
it into the machine with wp-put, whose action definition is shown in
Listing 4. To ensure that no other robot uses the machine at the same
time, it locks the location before moving there (location-lock) and
unlocks it when it has finished the other actions (location-unlock).
Listing 5 shows the macro operator generated from the plan.

7 Conclusion

We introduced a formal method to synthesize an ADL macro oper-
ator from an ADL operator sequence and showed that the resulting
operator has the same preconditions and effects as the respective se-
quence, using an ADL semantics based on the Situation Calculus.
The presented approach is the first synthesis method for ADL macro
operators and is able to synthesize operators with quantified precondi-
tions and effects, disjunctive preconditions, and conditional effects.
By representing a macro operator as a regular PDDL operator, we are
able to use off-the-shelf planners such as LAMA without any mod-
ifications to the planner. We applied the synthesis method to macro

(:action prefill-cap-station
:parameters (?mps - mps ?robot - robot
?from - location ?from-side - mps-side
?cap-carrier - cap-carrier ?spot - shelf-spot)

:precondition (and
(not (location-locked ?mps ?p2))
(at ?robot ?from ?from-side)
(or (not (= ?mps ?from))

(not (= ?from-side INPUT)))
(wp-on-shelf ?cap-carrier ?mps ?spot)
(can-hold ?robot) (mps-side-free ?mps INPUT))
:effect (and
(wp-at ?cap-carrier ?mps INPUT)
(not (mps-side-free ?mps INPUT))
(not (wp-on-shelf ?cap-carrier ?mps ?spot))
(wp-usable ?cap-carrier) (spot-free ?mps ?spot)
(not (at ?robot ?from ?from-side))
(at ?robot ?mps INPUT)))

Listing 5. The computed macro operator for the plan in Listing 3.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



planning using the macro planner DBMP and showed that it outper-
forms MACROFF, a state-of-the-art ADL macro planner, but it could
not always improve the performance of LAMA. Finally, we described
that ADL macro operators can also be useful for maintaining a plan
library by computing the precondition and effects of the plans in the
library, and for generating such a plan library by generalizing a set of
observed plans.

Acknowledgments
T. Hofmann is supported by the DFG grant GL-747/23-1 on
Constraint-based Transformations of Abstract Task Plans into Ex-
ecutable Actions for Autonomous Robots.2

REFERENCES
[1] Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz

Mösenlechner, Dejan Pangercic, Thomas Rühr, and Moritz Tenorth,
‘Robotic roommates making pancakes’, in Proceedings of the 11th IEEE-
RAS International Conference on Humanoid Robots, (2011).

[2] Adi Botea, Markus Enzenberger, Martin Müller, and Jonathan Schaeffer,
‘Macro-FF: Improving AI planning with automatically learned macro-
operators’, Journal of Artificial Intelligence Research (JAIR), 24, (2005).

[3] Adi Botea, M. Müller, and Jonathan Schaeffer, ‘Learning partial-order
macros from solutions’, in Proceedings of the 15th International Con-
ference on Automated Planning and Scheduling (ICAPS), (2005).

[4] L. Chrpa and M. Vallati, ‘Determining representativeness of training
plans: A case of macro-operators’, in Proceedings of the 30th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI),
(2018).

[5] Lukáš Chrpa, ‘Generation of macro-operators via investigation of action
dependencies in plans’, The Knowledge Engineering Review, 25(3),
(2010).

[6] Lukáš Chrpa and Thomas Leo McCluskey, ‘On exploiting structures of
classical planning problems: Generalizing entanglements’, in Proceed-
ings of the 20th European Conference on Artificial Intelligence (ECAI),
(2012).

[7] Lukáš Chrpa and Fazlul Siddiqui, ‘Exploiting block deordering for
improving planners efficiency’, in Proceedings of the 24th International
Joint Conference on Artificial Intelligence (IJCAI), (2015).

[8] Lukáš Chrpa, Mauro Vallati, and Thomas Leo McCluskey, ‘MUM: A
technique for maximising the utility of macro-operators by constrained
generation and use’, in Proceedings of the 24th International Conference
on Automated Planning and Scheduling, (2014).

[9] Jens Claßen, Patrick Eyerich, Gerhard Lakemeyer, and Bernhard Nebel,
‘Towards an integration of planning and Golog’, in Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI),
(2007).

[10] Andrew Coles, Maria Fox, and Amanda Smith, ‘Online identification of
useful macro-actions for planning’, Artificial Intelligence, (2007).

[11] Andrew Coles and Amanda Smith, ‘Marvin: A heuristic search planner
with online macro-action learning’, Journal of Artificial Intelligence
Research (JAIR), 28, (2007).

[12] Michael T. Cox, Héctor Muñoz-Avila, and Ralph Bergmann, ‘Case-
based planning’, The Knowledge Engineering Review, 20(3), 283–287,
(September 2005).

[13] Christian Dornhege and Andreas Hertle, ‘Integrated symbolic planning
in the tidyup-robot project’, in AAAI Spring Symposium - Designing
Intelligent Robots: Reintegrating AI II, (2013).

[14] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson, ‘Learning and
executing generalized robot plans’, Artificial Intelligence, 3, (1972).

[15] Kristian J. Hammond, Case-Based Planning: Viewing Planning As a
Memory Task, Academic Press, Inc., 2016.

[16] Andreas Hertle and Bernhard Nebel, ‘Efficient auction based coordi-
nation for distributed multi-agent planning in temporal domains using
resource abstraction’, in Proceedings of the 41st German Conference on
Artificial Intelligence (KI), (2018).

[17] Jörg Hoffmann and Bernhard Nebel, ‘The FF planning system: Fast plan
generation through heuristic search’, Journal of Artificial Intelligence
Research (JAIR), 14, (2001).

2 http://gepris.dfg.de/gepris/projekt/288705857

[18] Till Hofmann, Nicolas Limpert, Victor Mataré, Alexander Ferrein, and
Gerhard Lakemeyer, ‘Winning the RoboCup Logistics League with
fast navigation, precise manipulation, and robust goal reasoning’, in
RoboCup 2019: Robot World Cup XXIII, (2019).

[19] Till Hofmann, Tim Niemueller, Jens Claßen, and Gerhard Lakemeyer,
‘Continual planning in Golog’, in Proceedings of the 30th Conference
on Artificial Intelligence (AAAI), (2016).

[20] Till Hofmann, Tim Niemueller, and Gerhard Lakemeyer, ‘Initial re-
sults on generating macro actions from a plan database for planning
on autonomous mobile robots’, in 27th International Conference on
Automated Planning and Scheduling (ICAPS), (2017).

[21] Gerhard Lakemeyer and Hector Levesque, ‘Semantics for a useful frag-
ment of the Situation Calculus’, in Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI), (2005).

[22] Gerhard Lakemeyer and Hector J Levesque, ‘Situations, si! Situation
terms, no!’, in Proceedings of the 9th Conference on Principles of
Knowledge Representation and Reasoning (KR), (2004).

[23] Hector Levesque and Gerhard Lakemeyer, The Logic of Knowledge
Bases, MIT Press, 2001.

[24] Hector Levesque, Fiora Pirri, and Ray Reiter, ‘Foundations for the
Situation Calculus’, Linköping Electronic Articles in Computer and
Information Science, 3(18), (1998).

[25] John McCarthy, ‘Situations, actions, and causal laws’, Technical report,
Stanford University, (1963).

[26] M.A. Hakim Newton, John Levine, Maria Fox, and Derek Long, ‘Learn-
ing macro-actions for arbitrary planners and domains’, in Proceedings of
the 17th International Conference on Automated Planning and Schedul-
ing (ICAPS), (2007).

[27] M.A. Hakim Newton, John Levine, Maria Fox, and Derek Long, ‘Wizard:
Compiled macro-actions for planner-domain pairs’, in Booklet for the
6th International Planning Competition Learning Track, (2008).

[28] Raymond Reiter, Knowledge in action: logical foundations for specifying
and implementing dynamical systems, MIT Press, 2001.

[29] S. Richter and M. Westphal, ‘The LAMA planner: Guiding cost-based
anytime planning with landmarks’, Journal of Artificial Intelligence
Research (JAIR), 39, (2010).

[30] Jussi Rintanen, ‘Regression for classical and nondeterministic planning’,
Proceedings of the 18th European Conference on Artificial Intelligence
(ECAI), (2008).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain


