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Abstract. Recurrent Neural Networks (RNNs) are one of the most
successful neural network architectures that deal with temporal se-
quences, e.g., speech and text recognition. Recently, RNNs have been
shown to be useful in cognitive neuroscience as a model of decision-
making. RNNs can be trained to solve the same behavioral tasks
performed by humans and other animals in decision-making experi-
ments, allowing for a direct comparison between networks and exper-
imental subjects. Analysis of RNNs is expected to be a simpler prob-
lem than the analysis of neural activity. However, in practice, reason-
ing about an RNN’s behaviour is a challenging problem. In this work,
we take an approach based on formal verification for the analysis of
RNNs. We make two main contributions. First, we consider the cog-
nitive domain and formally define a set of useful properties to analyse
for a popular experimental task. Second, we employ and adapt well-
known verification techniques for reachability analysis to our focus
domain, i.e., polytope propagation, invariant detection, and counter-
example-guided abstraction refinement. Our experiments show that
our techniques can effectively solve classes of benchmark problems
that are challenging for state-of-the-art verification tools.

1 Introduction

Deep neural networks are among the most successful artificial in-
telligence technologies making impact in a variety of practical ap-
plications, including computer vision and natural language process-
ing. Recently, RNNs have been employed in cognitive neuroscience
to help us to understand decision-making in humans and other ani-
mals [22, 25, 36, 28]. However, whether we use neural networks for
a computer vision task or for a cognitive task, we would like to better
understand the mechanistic process behind this technology.

One way to understand neural networks is to formally analyse their
properties. Indeed, formal verification of neural networks is a rapidly
growing research area [16, 44, 32]. The main question that verifi-
cation tackles is: given a network structure and a set of properties,
check whether a neural network fulfills these properties. For exam-
ple, properties may include whether an image is susceptible to an
adversarial perturbation in a computer vision classification task [32],
or whether a controller avoids unnecessary turning action for an air-
craft control problem [16].

Roughly speaking, there are two main approaches in verification:
complete and incomplete methods. A complete verification frame-
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work guarantees that a method either proves that the property holds
or finds a counterexample to this property. So, if it terminates, it gives
an exact answer regarding satisfaction of a property to check [16, 20].
An incomplete verification framework provides a method that can ei-
ther prove a property or it remains unknown whether the property
holds. Unlike complete verification methods, incomplete methods
cannot always provide definite answers. However, by judiciously us-
ing approximations, they can be more computationally efficient.

A lot of progress has been made in verifying neural networks over
the last few years. The majority of work focuses on analysing feed-
forward neural networks [16, 17, 47, 30], while verification of recur-
rent neural networks has received significantly less attention [3, 42].
One reason for this is that, conceptually, verification of recurrent net-
works is no different from verification of feed-forward networks if
we assume that the depth of unfolding is bounded. One can convert
a recurrent network to a feed-forward network by unfolding the net-
work’s transition relation, i.e., by repeating it for a fixed number of
steps [3]. Unfortunately, in practice, the depth of the unfolding can be
large since we might need to repeat the transition relation more than a
hundred times, leading to deep networks. Reasoning about such deep
networks is very challenging for both complete methods, where the
number of neurons is large, and incomplete methods, where approx-
imation errors accumulate with network depth.

In this work, we propose a novel approach to analyse RNNs. The
main idea is to identify and exploit special properties of recurrent
networks that allow us to reason about them efficiently. Here we fo-
cus on an important special class of recurrent neural networks which
are trained to solve cognitive behavioral tasks [34], analogous to the
tasks given to human and animal subjects in decision-making stud-
ies. Subjects and trained networks exhibit similar task performance
as measured by response time and the probability of a correct re-
sponse across difficulty levels [22]. Additionally, linear projections
of RELU unit activations correspond qualitatively and quantitatively
to neural activity as measured through electrophysiological record-
ings [22, 25, 36, 28]. Cognitive tasks can be solved with recurrent
networks which have a shallow transition relation, a deep unfold-
ing depth, and, more importantly, have only a few modes of oper-
ation. The domain specific properties of these networks make them
amenable to formal analysis. Our proposed approach employs three
building blocks for analysis of these networks: polytope propaga-
tion, invariant detection and counterexample-guided abstraction re-
finement (CEGAR) [7]. Polytope propagation is feasible (an exact
propagation up to some depth and approximate afterward) because
the transition relation of RNN is a shallow perception. Invariant de-
tection is possible because we have only a few modes of operation
and each mode spans over a prolonged time interval. Finally, CEGAR
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is effective because computed approximate reachability regions are
often sufficient to prove a property, so only a few refinements are
needed.

We make the following contributions. First, we analyse the cogni-
tive domain and define properties of the network that are important
to verify in this domain. Second, we propose new methods to ver-
ify properties of RNNs. Our approach consists of two phases. We
adapt the ”easy-to-verify networks” paradigm for training recurrent
networks. Then, we perform verification using a hybrid polytope
propagation, invariant detection and counterexample-guided refine-
ment technique. Third, we perform a comparative analysis of our ap-
proach with several modern verification tools. We provide insights
on why these networks are hard to reason about for existing tools,
like SMT-based solvers. The main challenges are: how to handle
an exponential number of polytopes during exact reachability analy-
sis, and how/where to employ approximation while enabling enough
precision to prove the required properties. Our experimental results
demonstrate that our proposed techniques offer solutions in address-
ing these challenges.

In Section 2 and 3, we will briefly introduce background on RNN
and verification of neural networks. In Section 4, we explain why and
how RNN is used in cognitive domains. Section 5 explains reacha-
bility analysis and Section 6 gives details of our verification methods
for RNN, followed by experiments and discussion.

2 Background
We give details of feed-forward NNs and Mixed Integer Linear Pro-
gramming (MILP) in Appendix A of the full version of the paper [1].

Recurrent Neural Networks. A Recurrent Neural Network (RNN)
is a neural network that operates over a sequence of inputs [13]. At
each time-step k, a network consumes an input xk and its hidden
state sk, produces the next hidden state sk+1 and an output ok. A
simple version of recurrent network can be described using the fol-
lowing transition function:

sk+1 = f(Wrecs
k +Winx

k + brec), (1)

ok = g(Wouts
k + bout), (2)

where f and g are non-linear functions, Wrec,Win,Wout, brec and
bout are parameters to learn. In this work, f and g are RELU opera-
tors. We define the exact structure of the network in Section 4. If we
assume that the length of input is bounded by n, we can transform an
RNN to a feed-forward network by unrolling the transition relation
of an RNN for n time steps, e.g. [13]. There are two main struc-
tural differences between feed-forward networks and recurrent neu-
ral networks that are relevant from the verification standpoint. The
first difference is the depth of the networks. As RNNs operate over
long input sequences, unrolling the transition relation leads to deep
networks with a large number of layers. Therefore, the resulting un-
folded network is very challenging to reason about for both complete
and incomplete methods. The second difference is that feed-forward
networks apply different transformations on each layer, whereas un-
rolled recurrent networks use the same transformation.
Polytope and its representation. We recall the definition of a closed
convex polytope (or polytope for short) and its two representations:
V-polytope andH-polytope [15]. A V-polytope is a convex hull of a
finite set Y = {y1, . . . , yn} of points in Rd:

V-P = conv(Y ) := {
n∑
i=1

λiy
i | λ1, . . . , λn ≥ 0,

n∑
i=1

λi = 1}

AnH-polytope is the solution of a finite system of linear inequalities:
H-P = H-P(A, b) := {y ∈ Rd | aTi y ≤ bi, i ∈ [1,m]}

assuming that the set of solutions is bounded, where A ∈ Rm×d is a
real matrix with rows aTi and b ∈ Rm is a real vector with entries bi.

A polytope is a convex closed subset P of Rd that can be rep-
resented as a V-polytope or an H-polytope. We use both represen-
tations in our algorithms. There are existing libraries, for example
CDD [10] and PPL [6], which provide the functionality for the con-
version between the two representations.

Safe Inductive Invariant of a State Transition System. An RNN
can also be treated as state transition system. For a state transition
system over state variables V , input variables Inp, transition relation
Tr and initial states Init : 〈V , Inp,Tr , Init〉, and a set of error states
Bad , a safe inductive invariant is defined as a formula Inv such that
the following formulas are valid:

Init(V ) =⇒ Inv(V ) (3)

Inv(V ) ∧ Tr(V , Inp,V ′) =⇒ Inv(V ′) (4)

Inv(V ) ∧ Bad(V ) =⇒ ⊥ (5)
The safe inductive invariant Inv , if it exists, guarantees that the

error states are unreachable. Additionally, assumptions on Inp may
be added to describe invariants under a certain input condition. Init
in (3) can be replaced with a state predicate p(V ), which represents
the safe inductive invariant for transitions starting from the particular
set of states that satisfies predicate p(V ).

Interval Arithmetic or Bound Propagation. Interval arithmetic
computes the upper and lower bounds for a layer based on the bounds
of the previous layer. It is a fast but relatively conservative bound es-
timation. Recently, Xiao et al. [45] proposed an improvement: to es-
timate the bound of a layer, it backtracks as much as possible rather
than directly using the bounds of the previous layer. This gives a
tighter bound without incurring much computational overhead.

3 Related work
A complete verification framework guarantees that a method either

proves that the property holds or finds a counterexample to this prop-
erty. For example, frameworks like Reluplex [16], Marabou [17],
MIPVerify [38] provide complete verification algorithms. These
frameworks are based on Satisfiablity Modulo Theories (SMT)
or/and MILP search engines. The main issue with these methods is
scalability. For example, neural networks used for computer vision
tasks contain millions of parameters. In practice, formalizations of
large networks are challenging to reason about for modern solvers.
For example, SMT-based verification frameworks, like Reluplex [16]
and Marabou [17], are able to deal with networks containing about
a thousand neurons [18]. Another complete verification approach
is to perform reachability analysis [40, 39]. Representing the ex-
act reachable space often results in high computation cost. There-
fore reachability analysis is usually combined with abstraction tech-
niques [11, 31], resulting in an incomplete verification framework.
Compared to the previous work [40] that uses the star set representa-
tion for exact analysis, our usage of the generic H- and V-polytope
representations allows us to leverage existing polytope libraries, and
these representations are more friendly for convex hull computation
and invariant construction.

An incomplete verification framework provides a method that
either guarantees that a given property holds, or it remains un-
known whether the property holds. Examples of such frameworks are
FastLin [44], Crown [47], and DeepZ [30]. The main idea is to per-
form safe approximate reasoning about the behaviour of a network.
If the approximate reasoning is sufficient to prove a property, an in-
complete method succeeds; otherwise it fails. When the number of
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Figure 1. The random dot motion task [27, 29] as shown to subjects
(above), and as adapted for a recurrent neural network via two inputs x1 and
x2 and one expected output y (below).

layers is large, e.g., more than a hundred layers, over-approximation
methods tend to produce loose bounds and are not able to check prop-
erties.

Another relevant line of work is invariant detection in feed-
forward networks. The term invariant was previously used in the
verification efforts of feed-forward networks to refer to a region in
the input space that implies the same output property [21]. In another
work [14], the authors propose to search for invariance properties
that form decision patterns of neurons activations. In our work, the
term invariant refers to an inductive invariant (well-studied in state
transition systems), i.e., it refers to a region in the input space of a
layer whose image (output region) does not fall outside the region,
under the same mode of operation.

Finally, Vengertsev ‘et al. [41] define a set of state and temporal
safety properties for RNNs, and use a Monte Carlo approach to ver-
ify the defined properties. Their approach is based on probabilistic
verification, which is very different from our reachability analysis.

4 RNNs for cognitive domains

RNNs have become increasingly import in neurosicence, because
they can perform adapted versions of the same cognitive tasks as
experimental subjects. Trained RNNs exhibit behavioral similarities
to subjects [34, 46], and also show patterns of RELU unit activations
that correspond to signals from brain recordings [22, 25, 36, 28].
Thus, understanding the mechanism of action of RNNs may have
implications for linking brain activity to behavior. Here we focus on
the random dot motion task in perceptual decision-making.

Cognitive task. The random dot motion task (Figure 1) [27, 29] is
a cognitive task given to humans and other animals in order to study
decision-making in the presence of noisy stimuli [12]. In this task,
dots on a video screen move in random directions, but with a mean
direction either to the left or right. After a fixed duration stimulus
presentation, subjects must identify and report this mean direction
of motion. Task difficulty varies trial to trial through increased or
decreased total strength of motion in either direction, known as mo-
tion coherence. Subjects interact with the task using eye movements,
as captured by a high-speed camera and real-time eye-tracking soft-
ware. This task consists of three phases:

• fixation: the subject initiates a trial by directing their gaze to the
fixation cross at the center of the screen,

• stimulus presentation: a moving dots stimulus (sensory evidence)
is presented to the subject for a fixed duration of time,

• response: the subject responds to the stimulus by directing their
gaze to the left or right target, indicating the perceived mean di-
rection of motion.

In
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m
e 
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ep

s fixation stimulus presentation response

Figure 2. An unfolded RNN for n time steps. At each step the network
consumes two inputs and emits an output. The state space is represented by
state neurons skj , j ∈ [1, p], k ∈ [1, n]. Each mode of operation, fixation,
stimulus and response, run for nf , ns and nr time steps, respectively.

Successful performance on this task is thought to rely on integrating
the noisy sensory evidence across time [23, 24, 27, 12].

To adapt this task for a recurrent neural network (Figure 1), the
task elements are encapsulated within two input streams x1 and x2,
and the expected output within a single stream y. The first input x1
represents the noisy stimulus (sensory evidence) via a Gaussian ran-
dom variable with fixed variance and non-zero mean, where positive
(negative) values indicate perceived rightward (leftward) direction of
motion, and zero indicates the lack of the stimulus on the screen. The
second input x2 changes from 0 to 1 to indicate the beginning of the
response period, which in this study was fixed to the end of stimu-
lus presentation. The expected output of the network y represents the
horizontal position of an eye movement, which is zero during the fix-
ation and stimulus presentation periods and +1 or -1 for the response
period, matching the mean direction of motion in a given trial.

Overview of the network. The RNN is trained to perform the ran-
dom dot motion task. Figure 2 shows a schematic representation of
the recurrent network. The network operates over n times steps. We
split the interval [1, n] into three sub-intervals spanning each of the
three phases of the task: FX ∪ SM ∪ RS = [1, n]. The fixation phase
spans over the interval FX = [1, nf ], the stimulus presentation spans
over the interval SM = [nf + 1, nf + ns] and the response spans
over the interval RS = [nf+ns+1, nf+ns+nr]. At each step, the
network consumes an input signal xk and produces an output signal
ok, k = 1, . . . , n.

Network specification. Each input xk consists of two input values:
xk1 and xk2 . Figure 1 shows an example of input signal (xk1 and xk2 ,
k ∈ [1, n]). The first input, xk1 , corresponds to the stimulus signal.
Note that it is constant over the fixation and response phases:

if k ∈ SM then xk1 ∼ N (µ, σ2) otherwise xk1 = 0 (6)

During the stimulus presentation phase, xk1 are samples from a Gaus-
sian distribution with a task parameters µ and σ, where µ > 0 repre-
sents the case when dots (noisy stimuli) move to the left, and µ < 0
to the right. The second input, xk2 , k = 1, . . . , n, is an indicator input
that signals whether the network is in the response phase or not.

if k ∈ RS then xk2 = 1 otherwise xk2 = 0 (7)

At each step the network produced an output ok, k = 1, . . . , n.
During training, our loss function encouraged the output to stay 0 in
FX ∪ SM phases, and move toward −1/1 during the RS phase.

The transition relation of the network for the cognitive task has the
following structure, k = 1, . . . , n:
sk+1 := F (sk, xk) =WrecRELU(sk) +Winx

k + brec (8)

ok := O(sk) =WoutRELU(sk) + bout, (9)
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where RELU(z) = max(z, 0), Wrec and brec are the recurrent con-
nectivity matrix and bias, respectively, Win is an input connectivity
matrix, Wout and bout are output connectivity matrix and bias, re-
spectively. We recall that the purpose of the network is to mimic the
cognitive experiment. During an experiment, the subject makes a de-
cision, e.g. left or right. Given a trained RNNR, we define a decision
function of the network, CR(o), as follows:

CR(o) =


1 if ok ≥ 0.5, ∀k ∈ [n− r, n],
−1 if ok ≤ −0.5, ∀k ∈ [n− r, n],
0 otherwise,

(10)

Given an input x, we say that the network chooses 1 if the last r
outputs are above 0.5, where r is a parameter specified by a user.
The network chooses −1 if the last r outputs are below −0.5. No
decision is made otherwise.

Training the network. In order to train the network with a simi-
lar reward structure to human and animal subjects, we wanted the
network to make a choice of ±1 during the response period, even
when the stimulus was ambiguous. This reflects the fact that subjects
are only rewarded for correct responses, so a random response will
be rewarded on 50% of trials but a failure to respond is never re-
warded. Under a mean squared error loss, an optimal network would
not make a choice if the stimulus was unclear. To encourage the net-
work to guess, we designed a loss function such that a random choice
of±1 has a lower expected value than a zero output. This was accom-
plished using a slope proportional to the square root of the error for
outputs ranging from -1 to 1, and squared error outside of this region.
More concretely, the loss function is defined as

L =
∑

t∈FX∪SM

(yt − ot)2 +
∑
t∈RS

h(yt, ot)

h(y, o) =


1 + (o×sign(y) + 1)2, o×sign(y) < −1
(|o×sign(y)− 1|/2)1/2, −1 ≤ o×sign(y) ≤ 1

(o×sign(y)− 1)2, 1 < o×sign(y)
Properties of the network. We highlight several properties relevant
to verification of the above recurrent network. First, as the network
encodes a simple behavioral pattern, the transitions relation can be
described with a small numbers of neurons. Second, the network dy-
namics mimic the three phases of the original experiment, so it has
only three modes of operation. We can disregard the first phase dur-
ing verification because all inputs are constants. Third, the input sig-
nal is well defined in the sense that points are sampled from a known
distribution. This contrasts with computer vision tasks, where we
cannot formally define all images of cars, for example. Finally, the
depth of the recurrent network is large, namely a hundred layers (110
time steps where the first 10 fixation steps can be pre-computed).

Properties to verify. We define a set of properties for networks that
solve the random dot motion task.
Property 1 checks whether the network always makes the correct
choice when all evidence falls above (below) a given threshold value
of p > 0 (p′ < 0), where p and p′ are parameters of the property:

min
k∈SM

(xk1) > p⇒ CR(o) = 1, (11)

max
k∈SM

(xk1) < p′ ⇒ CR(o) = −1. (12)

In other words, if the stimulus is sufficiently strong, the network
should output the correct response.
A weaker version of this property focuses on testing a hypothesis
about the mechanism of this network. While classical theories of
decision-making [23, 24] suggest that subjects integrate (in the math-

ematical sense) sensory evidence over time, recent approaches have
questioned this perspective [35, 43, 48, 37]. This weaker version tests
whether there exists a stream of sensory evidence which indicates
the network is not integrating all available information. It verifies
whether the network always makes the correct choice given a suffi-
ciently large mean strength of evidence:∑
k∈SM

xk1
nf

> p⇒ CR(o) = 1;
∑
k∈SM

xk1
nf

< p′ ⇒ CR(o) = −1.

Property 2 checks whether an instantaneous large sample at the j-th
point can trigger a choice when opposed by all remaining evidence.

(xj1 < p′) ∧ (∀k ∈ SM \ {j}, xk1 > p)⇒ CR(o) = 1, (13)

(xj1 > p) ∧ (∀k ∈ SM \ {j}, xk1 < p′)⇒ CR(o) = −1. (14)
If subjects do not integrate sensory evidence, alternative hypotheses
imply that an instantaneous spike in evidence may trigger a choice
[43, 37, 35], even if it opposes the mean direction of evidence. This
property tests if evidence at a single point can trigger a choice despite
consistent sensory evidence in the opposite direction.
In our experiments, we focus on verification of Property 1 and Prop-
erty 2. We also define the following property for future exploration.
Property 3 checks whether there exists an input that leads to oscil-
lating output state or a change in decision during the last steps:

max
k∈[n−r,n]

(| ok − ok−1 |) > 1, (15)

where r is a parameter specified by a user. Subjects experience
changes of mind in the random-dot motion task [26]. These changes
were not explicitly discouraged in the behavioral task, and likewise,
are not explicitly penalized by objective function.

5 Overview of the proposed approach

Our approach consists of two phases. In the first phase we train an
easier to verify network following ideas from [45]. While we had
to adapt this approach to work for recurrent neural networks, we
achieved a significant reduction of the network size without losing
performance on the main cognitive task. We discuss our result of the
first phase in Appendix B in the full version [1].

In the second phase, we perform property verification on RNN
via reachability analysis. Suppose the property is of the form
C(s0, x0, x1, ...) =⇒ P (on). In reachability analysis, we start
from state s0 and compute the set of states Reach〈i〉 : {si | si =
F (si−1, xi−1), si−1 ∈ Reach〈i−1〉} for each layer until reaching
layer n, where F is as defined in (8). Then, we compute the output
range based on Reach〈n〉 and check if it satisfies P . To this end, we
need to (1) have a representation of the set of reachable states, and
(2) compute the reachable set for each layer till the final output.

We use a finite union of convex polytopes as the representation
of the reachable set on a layer. We compute the reachable set layer
by layer, which we call propagating polytopes. The details are given
in Section 6.1. As the number of polytopes usually increases along
with the number of layers, we discuss two techniques in Section 6.2
and Section 6.3 to keep the representation tractable.

6 Verification of RNNs

In this paper, we use a union of convex polytopes to represent the
set of reachable states. This is more precise than other similar rep-
resentations, such as Zonotope [11]. In particular, our representation
captures precisely (i.e., without any over-approximation) the output
region of an RNN with ReLU activation functions applied to an input
that is a finite union of polytopes.
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Algorithm 1: PROPAGATEPOLYTOPEONELAYER(Wrec, Win,
brec, H , I): Propagate one polytope for one layer.

Input: Wrec,Win, brec, : weights and bias of a layer, H:
H-representation of the polytope to propagate, I: input constraints.

Output: Pout: set of polytopes.
1 Pout ← ∅;
2 F ← ENCODEMILP(Wrec,Win, brec);
3 C ← H ∧ I ∧ F ;
4 A← GETFEASIBLEASSIGNMENTS(C);
5 for each a ∈ A do
6 RS ← RELUSTATUSCONSTR(a);
7 Psub ← H ∧ I ∧ RS;
8 Vsub ← GETVERTICES(Psub);
9 T ← GETTRANSFORMMATRIX(Wrec,Win, brec, a);

10 V ′
sub ← MATRIXMUL(T, Vsub);

11 H′
sub ← GETHRESP(V ′

sub);
12 Pout ← Pout ∪ {POLYTOPE(V ′

sub, H
′
sub)}

13 return Pout;

6.1 Polytope Propagation
The core of reachability analysis is to efficiently propagate the reach-
able set throughout the network. Our general method of propagat-
ing a polytope over one layer is presented as the function PROPA-
GATEPOLYTOPEONELAYER in Algorithm 1. It takes a polytope in one
layer as an input and maps it to a set of convex polytopes in the next
layer. We first encode the given polytope and input/output relation of
a layer as an MILP problem and use a solver to find sub-polytopes,
such that each can be linearly mapped to obtain a convex polytope in
the next layer (essentially a linearization of ReLU). In this process,
we make use of bothH- and V-representations. We omit showing the
function PROPAGATEPOLYTOPE for the whole network, which simply
loops through polytopes and layers using Algorithm 1.

The MILP encoding. We follow an MILP encoding [9] that uses
binary indicator variables and slack variables for ReLU activation
functions. We use the IBM ILOG CPLEX solver to solve the MILP
problem. CPLEX computes all feasible assignments of the indicator
variables. This is represented by the function GETFEASIBLEASSIGN-
MENTS in Algorithm 1.

Example 6.1. Consider an RNN with two neurons (n = 2) and one
input, and the following weight matrices:

Wrec =

[
0.1 0.2
0.3 −0.4

]
,Win =

[
0.2
−0.1

]
, brec =

[
−0.2
0.5

]
Suppose for a layer k, a polytope to propagate is given as: H =
{0.1 ≤ ŝk0 ≤ 0.2, 1.0 ≤ ŝk1 ≤ 1.2}, I = {−1 ≤ xk0 ≤ 1}
(where ŝk represents max(sk, 0)). This is a polytope in 3-D space as
shown in Figure 3(a). The linearly mapped polytope (before ReLU)
is shown in Figure 3(b). By solving an MILP problem, we can get the
set of feasible indicator variable assignments {(0, 0), (1, 0), (0, 1)},
where the three tuples correspond to the three pieces marked as I, II
and IV, and value 1 of the indicator variable implies the correspond-
ing ReLU is inactive (output stays 0), while value 0 indicates the
ReLU is active (output is equal to input). Each of the three pieces is
itself a polytope (therefore a sub-polytope) and will be mapped dif-
ferently by the ReLUs, as the mapping from Figure 3(b) to (c) shows.

(a) Input polytope (b) After linear transformation (c) Output polytopes

I

IV

II
IV

I
II

𝑠̂଴
௞

𝑠̂ଵ
௞

𝑥଴
௞

𝑠଴
௞ାଵ

𝑠ଵ
௞ାଵ

𝑠̂଴
௞ାଵ

𝑠̂ଵ
௞ାଵ

Figure 3. Polytope propagation on Example 6.1.

Get the representation of each sub-polytope. As each sub-
polytope corresponds to a different ReLU activation status, its H-
representation can be constructed by adding the ReLU status con-
straints, which are generated by the function RELUSTATUSCONSTR.
It constrains the sign of ReLU inputs according to a given indica-
tor variable assignment. For instance, for sub-polytope II in Exam-
ple 6.1, the two ReLUs are (inactive, active). Therefore it has the
following ReLU status constraint (here ⊗ and ≤ are element-wise
product and comparison on vectors):

(1,−1)T ⊗
(
Wrec(ŝ

k
0 , ŝ

k
1)
T +Winx

k
0 + brec

)
≤ ~0

Apply transformation for each sub-polytope. For each sub-
polytope obtained in the previous step, we construct a transformation
matrix that captures its unique ReLU mapping and the same linear
mapping related to the weights and bias. This matrix operates on the
V-representation (which can be obtained from H-representation us-
ing conversion functions in libraries like PPL or CDD, as represented
by GETVERTICES in Algorithm 1). After applying the transformation
on vertices, we reconstruct the H-representation of the new poly-
tope using existing libraries (function GETHRESP). In Example 6.1
(b), sub-polytope I to IV are subject to different mapping, and the
resulting polytopes are shown in Figure 6.1 (c).

An additional note on the implementation: when constructing the
H-representation we take special care for the degenerate polytopes
(low-dimensional polytopes in a high-dimensional space). They are
projected into the appropriate low-dimensional space where we con-
struct a low-dimensionalH-polytope. We use singular value decom-
position (SVD) for dimensionality reduction and its results provide
the projection matrix to and from the low-dimensional space. This
allows us to interchangeably use the QuickHull method and the dou-
ble description method in computing H-representation, as on cer-
tain cases one outperforms the other. On the other hand, ELINA [33]
and PPL [6] use only double description method in the conversion as
QuickHull suffers from degenerate cases.

The above describes findingH- and V-representation after apply-
ing linear and ReLU transformation of a given polytope in computing
the reachable set of a layer. It uses generic polytope libraries Quick-
Hull and CDD and existing algorithms. Our results are sensitive to
numerical errors that are incurred by underlying tools. We believe
that these errors are insignificant, e.g. CPLEX precision error is 10−8.
This is a common trade-off between numeric and symbolic methods.

Bound estimation with polytope propagation. Recall that a big
challenge in polytope propagation is coping with an increasing num-
ber of polytopes. A simple solution is to integrate interval arithmetic
from Section 2 with polytope propagation. For each polytope P , we
estimate the interval bound on the output layers F (P ), which gives
us a bounding boxB around F (P ). IfB is sufficient to conclude that
F (P ) is safe, we skip the computation of F (P ) and use B instead.

6.2 The CEGAR Approach
Abstraction via over-approximation is another common approach to
cope with an increasing number of polytopes. One abstraction is to
group the polytopes that are close to each other and use their convex
hull (computed from their vertices) as the abstraction of the reach-
able regions. Testing the distances between polytopes is expensive.
Instead, we use a simple heuristic: we group the sub-polytopes that
come from the same polytope in the previous layer. This heuristic is
based on the fact that these sub-polytopes are connected, and thus
would not be too far from each other. This grouping is an over-
approximation — it can make unreachable states seem reachable,
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Algorithm 2: CEGAR(F, Pinit, I, T,N, S, U ): Polytope
propagation using the CEGAR method.

Input: F : RNN’s input-output relation of one layer, Pinit: initial polytopes,
I: input constraints, T : abstraction threshold, N : number of layers,
S, and U : safe and unsafe regions, respectively.

Output: SAFE or UNSAFE.
1 PolytopeSet← Pinit; layer ← 0;
2 while PolytopeSet 6= ∅ do
3 OutputPolytopes←

PROPAGATEPOLYTOPE(F, S, I, T,N − layer);
4 PolytopeSet← ∅;
5 for each p ∈ OutputPolytopes do
6 if p ⊆ U then return UNSAFE;
7 if p ⊆ S then continue;
8 layer, Pprecise ← GETPRECISE(p);
9 if layer = N then return UNSAFE;

10 PolytopeSet← PolytopeSet ∪ Pprecise

11 return SAFE;

but not the other way around. In the implementation, we start this
abstraction when the number of polytopes exceed a user-controlled
threshold. We keep a record of the layer where we start to use abstrac-
tion. For each abstracted polytope in this layer, we keep a reference
to the corresponding precise polytopes. Once abstraction is started in
one layer, it is also applied in all subsequent layers.

Sometimes, our abstraction is too coarse to prove the desired prop-
erties. In such cases, we apply the counterexample-guided abstrac-
tion refinement (CEGAR) principle [7]. For a polytope P that in-
tersects with the unsafe region where some property fails (in other
words, the polytope is ambiguous), we backtrace to a polytope
Pprecise in the previous layer where we are about to apply abstrac-
tion. From Pprecise, we again start propagation, first using the exact
propagation method, until the threshold is reached again. This re-
finement may lead to success in proving the property (Line 6) or dis-
proving it (there exists at least one output polytope that is completely
inside the unsafe region, Line 7). In either case, the CEGAR proce-
dure on this polytope finishes. Otherwise, for the ambiguous poly-
topes, we again backtrace to the previous layer to refine the abstrac-
tions. Our detailed CEGAR procedure is presented in Algorithm 2.
The CEGAR loop is guaranteed to terminate as it makes at least one
refinement per iteration, and there are only finitely many (though ex-
ponential) number of exact polytopes.

We note that our abstraction function (the convex hull of trans-
formed polytopes) and our refinement function (replace the convex
hull with union of convex polytopes) are an application of the stan-
dard finite-power-set domain from abstract interpretation on the con-
vex polytopes [4].

6.3 Learning Invariants
Another technique to avoid an explosion in the number of polytopes
is to find polytopes that represent a safe inductive invariant. For a
given RNN with a fixed constraint on the inputs for each layer, we
can define an inductive invariant polytope similar to a safe inductive
invariant in a state transition system. We use Q = F (P ) to denote
the image of P under transformation F . If Q is completely inside P ,
then P is an inductive invariant polytope. Unlike in FNN, in RNN P
and Q are comparable as RNN uses the same hidden neurons for all
iterations. Additionally, if such P is safe (does not fall out of the safe
region), we can conclude P and all states reachable from P are safe.
Thus, there is no need to propagate P further.

We construct an inductive invariant polytope from a given poly-
tope. Given polytope P0, let Q0 be its image (a union of convex
polytopes). P0 is an inductive invariant if Q0 is contained in P0. If
this is not the case, let P1 be the “join” of P0 and Q0. It is guaran-
teed that P1 ⊇ Q0 and P1 ⊇ P0. If P1 contains its image Q1, then

଴

଴ ଵ

…

௡

௡

Until 
 𝑃௡ ⊇ 𝑄௡

ଵ

Figure 4. Illustration of constructing safe inductive invariant polytopes.

P1 is inductive. If not, let P2 be the “join” of P1 and Q1, and we
continue to check on P2. This process continues until either Pi be-
comes inductive or unsafe. If Pi becomes inductive, we successfully
find a safe inductive invariant polytope Pi which contains the given
polytope P0. If Pi grows out of the safe region, the construction fails
as our relaxation creates too abstract a polytope. We will go with the
exact image of P0, namelyQ0 and try in the next layer if we can con-
struct a safe inductive invariant polytope from any polytope in Q0.
This procedure is illustrated in Figure 4.

In the above procedure, we use a “join” operation that produces a
convex polytope containing the given polytopes. There are different
choices on its implementation. Theoretically, to guarantee the termi-
nation of the above iterative procedure, the standard widening oper-
ator from the finite powerset of convex polytopes [5] can be used.
However, it could be too abstract as each of its application either
results in an increase of the dimension of the polytope or in a de-
crease of the number of constraints. On the other hand, the tight
join achieved using the convex hull of polytopes could incur a higher
computation cost, and it might take more iterations (or never) get to a
fixed point. Here, we propose a light-weight join operator called con-
straint relaxation. For an H-polytope P : {y ∈ Rd | aTi y ≤ bi, i ∈
[1,m]}, joined with a V-polytope Q : conv({y1, ..., yn}), we relax
the constraints aTi y ≤ bi, i ∈ [1,m] for each vertex of Q. If for
a vertex yk, the left-hand-side of the i-th inequality constraint aTi y
is greater than the right-hand-side bi, we increase bi to match with
aTi y. Geometrically, this is equivalent to translating the hyperplanes
that form P to include Q. Additionally, to ensure the resulted poly-
tope is still closed, we intersect it with the smallest box that contains
all vertices of P and Q.

The invariants are relative to the input constraints. As our RNN op-
erates in three modes with different input constraints, the invariants
we construct are only for one mode of operation. As the states at the
end of fixation period can be pre-computed, we only construct invari-
ants in the stimulus period and response period. In order to estimate
whether an invariant in the stimulus period is safe or not, we again
use the interval arithmetic to estimate the bounds in the response pe-
riod for a candidate invariant polytope, and terminate the iteration if
such conservative estimation already concludes it is unsafe.

7 Experimental Evaluation

Network specification. The network specification is as described
by transitions (8)–(9), where sk ∈ R7, k ∈ [1, n]. We unfold
the network for 110 steps, so nf = 10, ns = 50 and nr = 50.
Inputs of the network are specified in Section 4. The parame-
ters of the stimulus noise are as follows: µ is from a given set
C = ∪h∈{0}∪[4,10]{−2h/1000, 2h/1000} and σ = 0.3. We
use TensorFlow via PsychRNN [2] to train RNNs. For the choice
function (10), we used r = 10. Verification is done on a machine
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with i5-8300H CPU and 32GB of memory.

Property specification. We consider Property 1 and Property 2.
For Property 1, we limit the stimulus to be in a range (all pos-
itive or all negative) for a bounded input space, and test the
strong version of Property 1 within that range. We constructed
30 ranges using coherence values C from the training data.
Ranges are in the form [c · 2−δ sign(c), c · 2δ sign(c)] where c ∈
∪h∈{0,5,7,9,10}{−2h/1000, 2h/1000}, and δ ∈ {0.2, 0.5, 0.7}.

For Property 2, we enumerate a few positions of the pulses at the
i-th input, (i ∈ {1, ..., 4}), while keeping the rest in a fixed range in
the opposite direction (in similar ranges as Property 1).

We set 100 minutes as the timeout limit for each stimulus range.
For simplicity, we name our methods as PP (polytope propagation
with interval arithmetic), CEGAR (PP plus counterexample-guided
abstraction refinement) and Inv. (PP plus invariant construction). For
CEGAR, the polytope bound to start approximation is set to be as
small as 50 to favor a more abstract representation. There is no theo-
retical obstacle to integrate CEGAR and invariant, however, through
experiments, we found that this often worsens the overall perfor-
mance as the invariant construction will be using a more abstract
polytope as the starting point, which will more likely result in a fail-
ure of reaching a safe inductive invariant.

NNV framework. NNV is used for direct comparison to the poly-
tope propagation methods we used. It is a MATLAB toolbox for neu-
ral network verification and performs reachability analysis using the
star set representation [39]. Polytopes can be precisely captured by
this representation. As the number of star sets increases, NNV can
also over-approximate the reachable region on a layer using an inter-
val hull. We refer to the exact and interval hull approximation meth-
ods as NNV-ex. and NNV-app., respectively.

The computation in polytope propagation is easily parallelizable
to scale with the number of threads since the polytopes on the same
layer are independent. Therefore, in our experiments, we focus on
comparing single-thread performance and limit all methods to using
a single thread.

SPACER model checker. We have also experimented with
SPACER [19], a state-of-the-art model checker included in Z3 [8].
SPACER has been successfully applied for verification of a variety
of recurrent models in the domain of software verification, smart-
contract analysis, and verification of control systems. Conceptually,
SPACER is also based on polytope propagation. However, it propa-
gates an under-approximation of bad states backwards from a prop-
erty violation towards the initial condition. Throughout, it general-
izes the polytopes based on symbolic reasoning on the transition re-
lation. Unlike other techniques in this paper, SPACER is based on
symbolic (as opposed to numeric) computation, using infinite preci-
sion arithmetic and symbolic quantifier elimination. While it is able
to solve variants of Property 1, the running time is not competitive
(over 20 hours). The main bottleneck is the blow up due to infinite
precision arithmetic. It would be interesting to explore whether sim-
ilar techniques or ideas can be lifted to the numerical setting.

Metrics. The number of solved instances, within the time and re-
source limits, is one of the metrics we can use to compare the perfor-
mance. For solving time, we report the average time-to-termination.
In the time-out cases, the maximum time limit is counted instead.
Evaluation results. For Property 1, among the 30 stimulus ranges,
3 violate the property: [m · 2−δ,m · 2δ], where m = 20/1000, δ ∈
{0.2, 0.5, 0.7}. For the remaining cases, the property is checked to be
valid. According to the difficulty and the sign of the checked stimulus

Table 1. Summary of Results on Property 1 (Time in Seconds)

Regions PP CEGAR Inv. NNV-ex. NNV-app.

Simple (19) #. solved 19 19 19 16 19
tmean 0.2 0.2 0.2 947.6 21.8

Positive (8) #. solved 4 7 8 0 3
tmean 3105.0 2216.6 1133.9 6000 449.4

Negative (3) #. solved 0 0 0 3 3
tmean 6000 6000 6000 0.5 0.5

All (30) #. solved 23 25 27 19 25
#. fastest 16 0 4 7 3

ranges, we categorized them into three types:
• simple region (I): solvable by interval arithmetic.
• challenging regions: positive (II) and negative (III), both unsolv-

able by interval arithmetic.
A summary of the experimental results is listed in Table 1. In gen-

eral, our techniques perform well on the simple regions and posi-
tive challenging regions, and NNV-ex. and NNV-app. work well on
the negative challenging regions. In positive challenging regions, al-
though NNV-app. on average takes the shortest time to terminate, its
abstraction is too coarse to verify 5 of 8 ranges. The invariant method
solves the most instances, although on average it does not rank the
fastest on the instances it can solve. The hybrid polytope propagation
method (PP) achieves the fastest time on most instances.

Property 2 is shown to be harder than Property 1 as the spike in
the opposite direction usually adds a significant disturbance on the
states and drives the reachable region. For this property, we only ex-
perimented with the Inv and NNV-ex. method. The experiment re-
sults are summarized in Table 2 (detailed results can be found in the
Appendix C in the full version [1]). NNV-ex. is capable of solving
6 more ranges, with a relatively lower average solving time. How-
ever, the two have the same number of uniquely solved instances.
Although not tested here, we expect the NNV-app. method will be
able to solve more instances than NNV-ex. within the time-limit.

Table 2. Summary of Results on Property 2

Regions Inv. NNV-ex.

All (48)
#. solved 23 29
Ave. time (solved) 804.3 29.58
Ave. time (all) 3510.4 2392.9
Uniquely solved 4 4

Discussion and Lessons Learned. For Property 1, the difference of
performance pattern on the positive and negative categories leads us
to a further investigation on the underlying causes. It turned out that
the challenges in the positive regions are mainly the explosion on the
number of polytopes. Among them, the “invariant” method solves
the most regions in the time limit, as its invariants save the efforts of
propagating safe polytopes. The challenges in the negative regions
are mainly due to an increasing number of facets. The H- and V-
polytope representations are known to have issues in scaling with an
exponential increase in number of facets; this is also the reason that
our methods fail in the negative regions (in the experiments, the num-
ber of facets quickly increased to 105 within the first 15 timesteps).
On the other hand, the star set representation is able to handle better
a large number of facets, since it uses a higher dimension space for
coefficients and does not keep the representation of facets in the orig-
inal space. This trade-off delays the blow-up. However, at the time
of the containment check (required by the invariant method), one
still needs to convert the star-set representation to projected H- and
V-polytopes, as is implemented by NNV. And as the previous work
noted, obtaining the convex hull (required by the CEGAR method)
on the star set representation becomes more expensive [45].
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For Property 2, in the case of having a spike in evidence in the
opposite direction, there is no clear separation between where the
number of polytope dominates vs. where the number of facets dom-
inates. The two challenges are now mixed up. To successfully verify
this property, the analysis method must be able to handle both the
exponential increase of the number of polytopes and the exponential
increase of the number of facets. Exploring solutions to both chal-
lenges is left for future work.
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