
Representing and Reducing Uncertainty for Enumerating
the Belief Space to Improve Endgame Play in Skat

Stefan Edelkamp
Faculty of Computer Science

University of Koblenz-Landau
stefan.edelkamp@gmail.com

Abstract.

In most fully observable board games, current AIs outperform
expert play. For partially observable trick-taking card games,
however, human experts still play consistently better. This pa-
per proposes efficient knowledge representation and reason-
ing algorithms for the internationally played three-player card
game Skat by representing, progressing, enumerating, evaluat-
ing and voting for the possible worlds, each player refers to as
his/her knowledge about the other players’ and the Skat cards.
By using expert rules, elicited from statistical information in
millions of games, this knowledge is accumulated in the first
few tricks in order to reduce the uncertainty in the players’ be-
lief. In the so-called endgame, after five to six rounds of trick
play, refined exploration algorithms suggest cards that lead to
improved play. The proposed AIs have been tested both in re-
considering recorded human games, and in interactive play.

1 Introduction
After many fully observable board games like Chess, Go, and
Shogi [25, 26], and some trick-free card games like Poker have ei-
ther been solved or AIs play beyond human strength [1], there is an
increasing number of approaches to tackle multi-player trick-taking
card games with randomness in the deal and incomplete partially-
observable information, especially in Skat, often employing ad-
vanced machine learning methods [18, 14, 7, 21, 20, 6, 27, 12, 6, 3].
According to a professional Skat player we work with, despite the
gap steadily closing, human experts still play consistently better than
computer engines. Skat itself (see Figure 1) is an internationally
played trick-taking card game [15, 9], which currently attracts re-
searchers, searching for a representative of one of the next big AI
challenges. The national card game of Germany and one of the most
popular one played in Poland and France is widely considered the
most interesting card game for three players. Skat is played with a
deck of 32 cards. After shuffling, each player gets a hand of 10 cards
with 2 cards remaining on the table, the Skat. After the initial stages
of the game, bidding (to determine one declarer and two of his oppo-
nents), Skat taking and Skat putting (optional), the crucial aspect in
the trick-taking stage is reasoning about and reducing the uncertainty
in the remaining cards that are not visible to the players.

The belief space of remaining worlds of possible hands for the
other two players and the Skat can be large, so that this informa-
tion set is usually sparsely sampled and evaluated using an open
card game solver [18, 14, 7]. Recent work suggests that drawing the

Figure 1. Skat played on our Webserver against two AI clients.

sample wrt. a non-uniform distribution leads to better results than
sampling from a uniform distributions [21]. Trick-taking, as in Skat,
leads to considerably long histories, to which refined learning al-
gorithms for partial information games like the hot topic counter-
factual regret minimization [2] hardly scale [20, 27].

Perfect information Monte-Carlo sampling (PIMC) introduced by
Levy [17] is widely considered to be the best algorithmic options
for dealing with such imperfect information games. It was already
been used in Ginsberg’s popular Bridge-playing program GIB [8],
and taken on to other trick-taking games like Skat [14, 7], or Spades/-
Hearts [28]. An analysis of PIMC is given by Long [18]. The al-
gorithmic take in PIMC is, at each decision point to select a card,
to evaluate a larger sample of the belief space and call a double-
dummy solver for each of the worlds, followed by selecting the
card with maximum score. Furtak [7] has proposed recursive Monte-
Carlo search to improve PIMC. Some limitations have been iden-
tified for Bridge play as matters of strategy fusion and non-locality
by [5], leading to the αµ search algorithms. The main observation
is that even if the full belief space would be sampled and analyzed,
the individual searches in PIMC may lead to contradicting card pro-
posals. The main contribution of αµ is to increase the lookahead
(parameter M) in PIMC for a better exploration/exploitation trade-
off. The increase in running time is reduced by further pruning rules.
In its nestedness the recursive strategy shares similarities with nested
Monte-Carlo search [4, 30] and nested rollout policy adaptation [22].

In this paper we expand the reasoning for reducing uncertainty
in the endgame, which we consider to start around the fifth or sixth

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

round of play. During the opening and middle game, other player’
cards are either included into or excluded from the belief. The smaller
the number of worlds, the faster and more accurate a complete ex-
ploration and evaluation of the entire belief space, for which we em-
ploy a confidence voting scheme to determine the next card to be
played. With an open-card solver we evaluate up to a thousand dif-
ferent worlds for a card to be chosen, with only a minor drop in the
performance. To ease play and to reduce the uncertainty in the belief
with knowledge moves the two opponent try to exchange as much of
extra information on their cards as possible. As the three players all
have different hands and beliefs, of course, the possible worlds they
are facing vary among them.

The main contributions of the paper are as follows.

1. In our set of selected we found the human expert declarer to win
with a probability of 75.3% (about 83% are common in Suit
games, with Grand games won by about 93%). The open card
solver (often called double-dummy [14]) for the declarer on the
same input wins significantly fewer games, which indicates that
Skat is a game sensible to incomplete information, many games
are won based on the uncertainty of the opponent players!

2. We solved the problem of many different worlds in the belief
space to determine an (almost) optimal playing card. After Skat
taking these are 184,756 worlds in the view of the declarer, and
42,678,636 worlds in the view of each opponent. Even for an
engineered version of our worst-case solver, for a real game the
time taken was infeasible, as in interactive play our Skat server
demands at most 1.5 minutes for the selection of a card.

3. We devised another concept to cope with uncertain information.

(a) choice of game, Skat putting and close-to optimal opening rely
on expert rules and statistical information for both parties.

(b) the first few tricks are played following expert rules with the
goal to clarify the distribution of cards, to reduce the number of
worlds in the belief space, and to weaken the opponent.

(c) all distributions of cards are determined that are consistent with
the current belief in the other players’ cards and in the cards put
into the Skat.

(d) for up to 1,000 worlds the best possible card to be played is
determined through a voting scheme on the results of an open
card game solver.

In addition to [6], who concentrates on bidding and putting strate-
gies and Null(Ouvert) play, this paper advocates advanced Trump
play, evaluating the gains of a belief-space player for the endgame.

The paper is structured as follows. We kick off with a brief look
on the Skat rules for Trump games, followed by the way to extract
knowledge contained in a database of millions of expert games for
determining probabilities of winning, the suggestion of first cards,
and neglecting Skats from the opponents’ belief. Next, based on sta-
tistical information extracted from the database, we show how to pro-
vide card recommendations that are provided to the players in form
of opening tables. A rudimentary reactive player is discussed, from
whom we refined its implementation. We discuss the impact of play-
ing conventions to transfer knowledge between opponent partners
and have a look at possible implementation for deciding the game
that lead to modeling and continuously updating the uncertainty in
form of knowledge vectors, which, in turn, are used to count, gen-
erate explore, and vote on every world in the belief of each player.
The empirical results indicate the positive effect of endgame play in
increasing the winning ratios of the players; an effect which we study
more closely by varying its parameters.

2 Skat Rules for Trump Games

The game of Skat has been well studied in the literature [10, 11,
16, 13, 19, 23, 24, 29], and goes back to Johann Friedrich Ludwig
Hempel in the year 1848 [9]. Competitive play is ruled by the Inter-
national Skat Player Association (www.ispaworld.info), The
game is played with three players. A full deck has 8 cards (A, T,
K, Q, J, 9, 8, and 7) in 4 suits (♣, ♠, ♥, ♦). After shuffling, each
player receives 10 cards, while the Skat consists of 2 cards. There
are four stages of the game: the bidding stage, taking and putting the
Skat, and the actual play for tricks. The declarer, who has won the
bidding, plays against the remaining two opponents, while usually
being able to strengthen his/her hand by taking the Skat and putting
it (can be the same ones).

Bidding usually follows a predefined order of calling subsequent
values of the game (18, 20, 22, 23, 24, 27, 30, 33, 35, . . .). Human
players frequently use a bidding strategy that hides what they would
have been able to bid for, by not bidding up to this value, jumping, or
sometimes going a step or two further. The bidding value of Suit and
Grand games depends on the distribution of Jacks, The final bids in-
dicate in which suit players are strong, so that besides the value itself
we keep a table of the at most two games fitting the final bid. In op-
ponent play this information often determines the choice of the first
card to be played. Per default the game with highest expected payoff
is chosen. In our implementation, however, we apply a dynamic bid-
ding strategy, being able to change the game aimed at that respects
the current bid.

Card values in Trump games are added for the tricks being made
and the Skat being put, with a usual split at 60 of the 120 possi-
ble points. Other contracts (89 – Schneider, and 119 – Schwarz) are
possible. Announcing higher contracts yields a better bidding values
but is only available if Hand is played (Skat not taken). The bidding
value depends on the distribution of Jacks: As the multiplier of the
suit’s value (12 = ♣, 11 = ♠, 10 = ♥, or 9 = ♦) or 24 (Grand),
1 is added to the number of consecutive Jacks in the order ♣, ♠, ♥,
and ♦; or the number of consecutive Jacks in the joint hands of the
opponents. If high Jacks are found in the Skat during Skat-taking, or,
in Hand games, at the end of the trick play, bidding values may drop,
and in the worst case lead to loosing a game that fulfills the contract.

Work on an efficient open card solver [14] went into an expert-
level Skat player [18]. Symmetries and refined search algorithms
have been studied in [7]. Besides scientific developments, there are
commercial Skat apps like Skat (https://www.skat-spiel.de) of rising
strength, where, due to the lack of public information, it is not en-
tirely clear, if the AIs look into the human player hands.

3 Winning Probabilities and Ignoring Bad Skats

For the design of top computer card game players processing a huge
set of human games is essential in order to elicit statistical knowl-
edge and, in turn, to apply machine learning algorithms. For this to
happen, we process a database of tens of millions of expert games.
The ID of the game, the hands and Skat in the deal, and the type and
contract of the game played, the maximal bidding values, the human
Skat, the tricks of human play, and the according score are recorded.

For Trump games well-selected features help to accurately predict
the probability Pw(h) of winning a hand, which, in turn is the im-
portant ingredient for bidding, for the declarer to decide on the game
being played after Skat taking, and to select two cards to be put [6].

Given 3
(

32
10,10,10,2

)
different Skat deals (including the turn) storing

a lookup table for P t
w(h) in memory clearly is infeasible and, even

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

more importantly, for many million expert games, way too sparse to
retrieve robust values for each game. Note the conceptual difference
in P t

w prior and posterior to Skat taking. Before the Skat is taken,
the maximal bidding value is determined via computing the average
payoff over all possible

(
22
2

)
= 231 Skats. For putting we take the

maximum over all
(
12
2

)
= 66 options to select the two cards for the

Skat. In fact, in the bidding stage for each of the games t played and
current bid, we enumerate all possible 231 · 66 Skats, while ruling
out some impractical ones.

In his book, Gößl [9] identified relevant winning features for
Trump games: 9 for Suit games, and 7 for Grand games, ranging
from the distribution of Jacks and the number of Non-Trump Aces
and Tens, the number of Trump cards, via the number of free suits,
and the empirically determined number of cards standing in each suit,
to the value put into the Skat and the bidding value of each player.

Based on the rich corpus of games, Edelkamp [6] showed that
using a hash table perfectly addressed with the above winning fea-
tures, the winning probability P t

w(h) of expert play for a hand h
and a given game of type t can be approximated within 3% of ac-
curacy. Together with an equally precise winning probability derived
for Null and Null-Ouvert Games and variants for Hand, Schneider
and Schwarz games, this value can be used to compare the expected
payoff for different game choices during the bidding stage, the se-
lection of the game, once the Skat is taken, and the most promising
cards to put into the Skat. For the proper retrieval of P t

w in a dis-
tributed playing scenario, as demanded by the server, we secured a
thread-safe implementation, for which we chose a plain static array
together with a binary search for finding the unique hash address.
We also used the winning probabilities P t

w(h) to separate the good
(likely) from the bad (unlikely) Skats to reduce the number of worlds
of the belief space. As we assume expert players, in the opponents
belief on the way the declarer puts, we simply ignore Skats that are
> 20% off the winning probability for the best assessed one.

4 Recommendations based on Opening Tables
Next, we extract information from the expert games for proposing
the first cards to issue, and cards recommended to take over (cut) the
trick, together with a suggestion on how to continue on playing.

Some information about the card distribution can be extracted al-
ready from the bidding stage, which via decoding the bid values, in-
dicates in which suits the opponent partner is strong, urging the play-
ers to prefer one suit over the other. For starting trick-taking play,
however, the knowledge of the distribution of the cards is still rather
weak. For further improved opening stage of the game, we have an-
alyzed millions of expert games, and distilled playing information in
tables for the both the declarer and the opponents.

In Suit games, for example, there are 211 = 2, 048 possible pat-
terns for Trump cards used for constant-time table address. (The ac-
tual table only consider 5–7 Trump cards and has 1,254 entries.) To
reduce the number of possible Skats further, we generally assume
that no Trump card is put into the Skat. For Grand games with at
most four Trump cards the tables with 24 = 16 entries are of course
smaller, and the detailed decision procedures when to play Trump
or Suit differ. Nonetheless, modern Skat theory, as reflected in our
program, unifies both types of Trump play. We have first compiled a
small table that roughly suggests card groups (low/high-value trump,
small/big jack, non-trump) for the first, a cutting, and a follow-up
card, but then we noticed that we could distill more precise table in-
formation, suggesting several exact cards to be played in the opening.
Once we know that a Trump card has to be played, another perfect

hash function is used to recommend a proper one.
For the declarer D the first two perfectly addressed tables DI

1 ,
DI

2 denote, which Trump card to issue (I) first (1), and which card
to issue second (2). The reasoning behind the decision, whether to
issue a Trump or a Non-Trump card is complex and includes not
only the number of remaining Trump cards, but also considerations,
if the hand of the declarer is trump-strong, with more than 7 Trump
cards, or if it is trump-weak with less than 5 Trump cards.

Similar to the tables for card-issuing, by analyzing the expert
games, we generated two perfectly addressable tables for cutting
DC

1 , DC
2 denoting the Trump card to overtake the trick, once the

issued card on the table cannot be obeyed. The declarer’s decision
whether to take over, or to let go, relies on rather involved criteria,
including the position in the trick and the points that are on the table.

If a non-Trump card is chosen by the declarer, then the suit to
choose the next card from is essential, as some suits provide better
long-term opportunities e.g., by manifesting standing cards. As there
are 7 non-Trumps in each suit, we use priorities DO in {1, . . . , 10}
for each distribution on which one has best outcome, and, once a suit
has been selected, which cardDS in {A, T,K,Q, 9, 8, 7}within this
suit to choose.

We also have compiled opening tables for the opponents, e.g,, to
prioritize which non-trump suit to select first, and to return the card
within the chosen suit offers the highest probability of winning. For
the opponents we additionally store with each priority of a suit to
be issued, a probability in case he plays the Ace or prefers a card
below (so-called Under-Ace play [9]). There are many other sins in
Skat, that must be avoided to concentrate the play and maximize the
knowledge transfer between the players, like replaying the suit that
has just been played by the partner, not opening a third non-trump
suit, adjusting the play according to the bidding value, etc. [9].

5 Reactive and Advanced Player
Together with the opening card recommendation it is possible to de-
vise a very first reactive AI player, which was the basis for later
development of players that covered more strategic play, up to ad-
vanced techniques like a) showing the antisuit, a strong weapon in
Grandplay, b) dropping a card in a suit mainly to indicate that the
suit that is paired up with, should be played by the opponent partner
as he has an Ace, or c) the red-jack rule that prefers playing ♥J in
case of having ♦J, to indicate to the opponent that s/he and not the
declarer has it [9], and more refined card dropping strategies.

To leave the reader with a very rough impression on the flow of
reactive play, we exemplify such naive player for the declarer in fore-
hand position.

• if non-trump-card playing criterion is met,

– if non-trump hand card present in hand,

∗ if recommendation on non-trump card exists, return it
∗ else return high-value non-trump card

– else return high-value trump card

• else // criterion not met

– if low-trump game, return high-card

– if high-trump game ,return low-card

– if recommendation on trump card exists, return it

– return low-value card

The naive player declarer-middlehand roughly looks as follows.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

• if high or low-trump game is played,

– if trump card is issued,

∗ if trump card present in hand,
· if issued card higher than hand cards, return low trump card
· else return high trump card

• else // no trump played, or standard game

– if issued suit in hand, return obey-suit

– else return take-or-drop

• if trump card is issued

– if trump card present in hand,

∗ if issued card higher than hand cards, return low trump card,

return high-value trump card

• else // no trump card is issue

– if issued card can be be cut,

∗ if low-card played and singleton exist, return it
∗ if recommendation card exists, return it
∗ if issued trump card higher than all hand cards, return low

trump
∗ if trump card present in hand, return high-trump card, else

return low-value card

– else return has-to-obey

return low-value card

The pseudo-codes of the functions declarer-rearhand, opponent-
forehand, opponent-middlehand, opponent-rear-hand are similar in
spirit. Wrt. the basic player, several expert rule refinements have been
implemented since, e.g., to prefer or secure high-value cards (10s or
Aces), to immediately return the suit an opponent partner has played,
and to take care if the number of trumps is getting small.

6 Knowledge Exploitation and Transfer
Due to the lack of information about the cards of the other players
and the Skat, the belief-space is defined as the number fully observ-
able worlds that are consistent with his/her knowledge, and a player
might be truly facing.

As cards that have been played are removed from the players’
hand, the amount of uncertainty in the number of possible hands
shrinks naturally over time, but —depending on the cards being
played— more information on the other players’ hands and the Skat
can be derived, especially if the players collaborate in following play-
ing conventions, and prefer playing information-providing cards that
reduce the number of possible hands and Skats.

Especially for opponent play, there are expert information-
conveying rules like

if declarer leads the trick, select lowest-valued card; otherwise
choose the one with the highest value.

The point is that by knowing that the partner’s card is highest (or
lowest), one can exclude all cards, that are higher than the played one
from the belief. This information is used to strengthen the knowledge
by memorizing cards that another player must not have.

This belief, as maintained in the exploration, is sometimes charac-
terized as the information set. There are many rules to decrease the
sizes of the information sets significantly. One of the strongest option
for reducing the degree of uncertainty is available via looking at the
cards being played when a suit is not being obeyed.

7 Worst-Case Belief-Space Search

An efficient open card solver has been proposed by Edelkamp [6].
Another fast double-dummy solver has been contributed by Kupfer-
schmid and Helmert [14]. Therefore, in this section we concentrate
on presenting a worst-case belief-space search algorithm. As with
the High-Card Theorem for Grandplay [6] for all three players it is
important to infer, when the game is decided, i.e., won by certain, re-
gardless of the remaining uncertainty of the game. In other words, the
game is won in all possible worlds of the belief space, and suggests
what is called strong play.

As the belief-space may only be approximated, (e.g., by the as-
sumption on a good Skat putting) one may not be able to fold the
game directly, but use the proposed cards of this exploration as an
autopilot. For this worst-case analysis, there are basically two differ-
ent implementations.

7.1 Iterated Open-Card Search

The first approach is to generate all the possible distributions com-
patible with the current belief, and to subsequently start the open card
solver (alias glassbox), to decide, whether or not all individual games
are won (or lost). They all have to agree on a game-deciding card.

The glassbox refers to an efficient algorithm in the form of a And-
Or tree search. We exemplify our considerations for the declarer’s
perspective at the beginning of the game with 20 unknown cards, we
have 20!/(10!10!) = 184, 756 different distributions, of which only
one is true. For the opponents who additionally don’t know the Skat
there are 22!(10!10!2!) > 42M possible card distributions.

For the start of the game, it is, therefore, impossible to analyze all
possible words in the decision time of up to 90s. If the card set is
reduced to say 5 cards, however, the search is much faster, due to the
number of world shrinking exponentially to 10!/(5! · 5!) = 252 (de-
clarer’s view). And, of course, there is also the acquired knowledge
about the distribution of the cards resulting from the play and can
greatly reduce the number of possible worlds.

We will use this approach later on to vote on the best card in the
endgame.

7.2 Paranoia Search

Another analysis is to unify the search tree and the possible card
distributions into a single worst-case analysis. As a first insight, the
many individual analyzes in iterated search can be cast as a single
root choice node.

In the following Paranoia analysis, the declarer plays against all
possible hands of opponent cards simultaneously. For example, if
Opponent 1 does not obey one suit, (alternatively, Trump), all cards
of that suit in the part of the search tree will automatically be trans-
mitted to Opponent 2 (and vice versa). Players must first obey the
issued card with the already permanently ones assigned to them, be-
fore they can choose a free card from the pile of remaining ones.

The concept of this Paranoia analysis of the declarer is tricky to
understand because the search tree of card choices is interleaved with
the choice points for hidden cards, so that the entire tree is solving a
game of uncertainty.

First of all, the procedure (shown in Figure 2) needs access to the
hand, of course of the declarer (hands[0]), the Skat, the position
within the trick, the points scored on both sides so far, etc. As the de-
clarer knows its hand, for his And search node in the And-Or search
tree, nothing changes to the open card analysis.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

If we assume deciding the entire game, and do not include infor-
mation conveyed in the bidding, the declarer has no prior knowl-
edge about the current distribution of the opponent cards at the be-
ginning. S/he initially only knows the set of 20 cards, but not the
individual hands. All cards are managed in one vector both, ini-
tialized with all 20 cards of the opponents. Their hands are initially
empty. We monitor, e.g., when one opponent player is not obeying a
suit, which allows moving all unknown cards to the other opponent’s
hand. The currently certain knowledge about the cards in the search
tree is stored in vectors (here belief[1..2]).

The cards assigned to the one opponent players are no longer avail-
able to the other opponents. One important observation is that no
more than 10 cards can be shifted to a one opponent player. In that
case, the movement of cards must be stopped, pruning the search
tree. This avoids that a player suddenly serves a suit, which he has
to discard. In other words: we have significantly reduced the level of
uncertainty, since we know, where some cards are located.

The beliefs are updated within the search tree. We carry out a
search in such mixed search tree of a) cards being played and b)
inferences being enforced. In the tree, we have to test all possibilities
consistent with the knowledge at the node, so the tree grows quickly.
If during search, an opponent has to obey an issued card with a card
assigned to him/her, no longer there is a free choice from the other
unassigned cards in the current turn.

Implementing the mixed search was far more involved than pro-
gramming an open card solver, as it is not only about progressing
the vectors hands[0], belief[1] and belief[2] in the nodes
of the tree search, but also to perform a proper restoration from the
recursion in case of backtracking. This includes updating the score
(stored in as for the declarer and in as for the opponents). For the
opponents knowledge vectors might have to be unified.

Two subtleties. Open-card and Paranoid solvers avoid searching
previously considered states. A transposition table stores states with
their analysis result. Without the transposition table, search becomes
inefficient. We encountered that the existing encoding of a state in
open-card play required only 32 bits of an unsigned int, while for
Paranoia search called for a unsigned long.

We tested the Paranoia search engine. While it worked and was
much faster than the enumeration of open card solver calls, at the end
of the day, however, we could decide only very few simple full games
in reasonable time. By looking at the even larger belief-space for
the opponent, we neglected Paranoia search from our player. While
a worst-case solver helps to solve puzzles, during play, we aim at
collect guiding information on good cards, not only on perfect, 100%
winning cards.

Nonetheless, the algorithm design and ideas on knowledge pro-
gression in the search tree, guided us to the model of uncertainty that
we chose for the players.

8 Modeling Uncertainty

While players in the Skat game can see the cards on the table, based
on their knowledge of their own hand, they all have to draw differ-
ent individual conclusions on the remaining set of possible or at least
very likely card distributions. To model the uncertainty in the Skat
game, we store and update knowledge vectors (32-bit unsigned inte-
gers), each of which denotes a set of cards believed not to be present
at another players’ disposal. For example, if one player fails to obey
the suit of the issued card, either by dropping a card or cutting it,
we know for certain that none of the remaining cards in the suit can
reside on the players’ hand.

OR1(playable)
if (cardontable)
reduced = reduce(playable & ∼belief[2]);

while (reduced)
s = select(playable);
b = belief[2];
if (obey(s))

if (!playable(hands[1],index,1))
playable &= ∼s; continue;

else
if (trump(cardontable))

if (!(trump(s)))
hands[2] |= trump(both);
if (|belief[2]| < 10)

belief[2] = b; playable &= ∼s; continue;
else

if (!(suit(cardontable,s))
belief[2] |= suit(c) & ∼trump(both);
if (|belief[2]| > 10)

belief[2] = b; playable &= ∼s; continue;
both &= ∼s; hands[1] |= s;
if (|hands[1]| > 10)

belief[2] = b; hands[1] &= ∼s;
playable &= ∼s; continue;

played |= s; t[1] = s;
if (trickdone)

turn = winner(2,0,1);
if (turn) gs +=score(i); else as += score(i);
t0 = t[0], t2 = t[2]; t[0] = t[1] = t[2] = -1;
rval = (gs >= 120-LIMIT) ? 0 : (as > LIMIT) ? 1 :

(turn == 0) ? AND(hands[0]) :
(turn == 1) ? OR1(both) : OR2(both);

t[0] = t0; t[2] = t2;
if (turn) gs -=score; else as -= score;

else rval = OR2(both);
t[1] = -1; both |= s; played &= ∼s;
belief[2] = b; hands[1] &= ∼s; playable &= ∼s;
if (rval == 0) return 0;

return 1;

Figure 2. Worst-case tree search, opponents move, declarer’s view.

First, for each player we maintain and update knowledge vectors
Ai, i ∈ {0, 1, 2}, denoting all cards that have not being played and
that can be still assigned to the other two players’ hand or the Skat.
This vector Ai is initialized with the current hand of the player.

Next, we have knowledge vectors split into four vectors for each
of the players 0, 1, 2 and the Skat. The forbidden cards kept in knowl-
edge vectors are denoted by F j

i keeping track of the knowledge in the
view of player i ∈ {0, 1, 2} on player j with j ∈ {0, 1, 2, Skat},
i 6= j for not having a card. For example F 1

2 contains all the cards
that Player 1 knows Player 2 cannot have. For the declarers view on
the Skat (at least for games that are not Hand) we initialize the vector
FSkat
0 with the other 30 cards.

8.1 Counting and Evaluating the Belief-Space
For mapping the knowledge, succinctly encoded in the knowledge
vectors, to the belief-space of possible hands and Skats, we use a
constructive approach. For Player i, takes all three vectors of forbid-
den cards F j

i together with Ai (i.e., the cards to distribute) and re-
cursively generates all possible worlds. More precisely, we use two
different almost matching function, one to count the number of possi-
ble worlds, and one to generate them to subsequently apply the open
card solver. Counting allows to set a threshold to the maximal num-
ber of worlds in the belief space for the open card analysis, without
actually starting the solver. By the speed of modern computers, hun-
dreds of thousands of worlds can be generated and counted in less
than 1s.

The recursive pseudo code for generating all possible cards wrt.
a set of knowledge card vectors known not to be at the other play-

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

enum1(r,h1,h2,sk,not-h1,not-h2,not-skat)
if (|r| == 0)

sk1 = select(sk)
sk2 = select(sk & ∼sk1)
if (!declarer)

p = winprob(h1,sk1,sk2)
if (p >= best) best = p
if (p >= thresh) solve(h1,sk1,sk2)

else solve(h1,sk1,sk2)
return 1;

c = select(r)
if (|h1| < 10-r && !(c & not-h1))

enum1(r&∼c,h1|c,h2,sk,not-h1,not-h2,not-skat)
if (|sk| < 2 && !(c & not-skat))
enum1(r&∼c,h1,h2,sk|c,not-h1,not-h2,not-skat)

return 0

enum(m,r,h1,h2,sk,not-h1,not-h2,not-skat)
if (|r| == 0)

best = thresh = 0
enum1(rem,h1,h2,sk,not-h1,not-h2,not-skat)
thresh = best - best * p/100
enum1(m,h1,h2,sk,not-h1,not-h2,not-skat)
return 0

c = select(r)
if ((|h2|<10-t) && !(c & not-h2))

enum(m,r&∼c,h1,h2|c,sk,not-h1,not-h2,not-skat)
if (|m| < 12-t)
enum(m|c,r&∼c,h1,h2,sk,not-h1,not-h2,not-skat)

return 0

hands(all,not-h1,not-h2,not-skat)
h1 = h2 = sk = 0;
enum(0,all,h1,h2,sk,not-h1,not-h2,not-skat)

Figure 3. Enumerating information set of one player.

ers hand or in the Skat is shown in Fig. 3. The procedure mainly
distributes the cards in Ai into the hands and the Skat, in an enumer-
ating backtrack procedure of in- and exclusion until the pool of cards
runs empty, in which case one of all possible distribution of cards (a
world) is established.

The code itself chooses the next undecided card in either of the
hands or in the Skat, while satisfying the imposed constraints. The
advanced part of the procedure is to organize the enumeration of
worlds in a way that keep same Skats together, which in turn is
needed to determine the best one and to limit the deviation in its
winning probability. This option allows opponents to determine good
Skats and neglect bad ones.

Therefore, in the algorithms of Fig. 3 we discard distributions with
bad Skat-putting that we expect a reasonably well-playing declarer
not to have put. We use the winning probability function that for this
and discard ones that are of by p% from the best one (e.g., p =
20). For this we retrieve the best possible Skat putting for a given
distribution of cards to the hands. To enumerate all possible Skats
for each hand together, the recursion is two-staged and first split wrt.
the declarers’ cards, and then to distribute wrt. the skat.

Another complexity that is not reflected in the pseudo- but present
in the real code is the recommendation of cards for tricks with cards
on the table, inducing an unbalanced number of cards in the proce-
dure.

8.2 Voting with Confidence
Once all worlds have been generated, pruned and evaluated with the
open card solver, proposing at least one valid playing card, we start
voting on the best one applicable to most worlds. We use a simple
vector B of size 32 initialized to zero, and increase the value at
position i if the card index that has been proposed has value i (in
one suitable encoding). In a second loop we determine the one that

has been given the maximum number of votes, i.e., the card i with
maximum value maxi=1,...,32Bi. With the total amount of votes V ,
which equals to the number of worlds in the belief space of the player,
we can compute the confidence C in the decision, defined as the ra-
tio C = (maxi=1,...,32Bi)/V . In the experiments we impose differ-
ent thresholds on C. The higher the threshold, the stronger the con-
fidence required to accept the recommendation of the belief-space
analysis. If the value of C is too small for exceeding the threshold,
we resort to the default recommendation of the expert rules, which is
always applicable.

9 Experimental Evaluation

We implemented our Skat AI in C++ (gcc, version 7.4.0 Ubuntu-
8.04.1). Depending on the makefile chosen, it features interactive
play on the server, or database play from a file of recorded expert
games. The players itself run in (p)threads and are connected via a
base (client-pool) API to the remote server.

The implementation uses one player class for bidding, Skat
putting, and Skat taking, and virtual functions for trick-taking play,
covering the entire taxonomy of games to be played: a base class
for all types of play, and derived ones for Null and Null-Ouvert and
Trump games, with the latter being used as a super class for Grand
and Suit games, on which we stress our attention.

In the server GUI (see Fig. 1), which runs in any Internet browser,
the user can choose among different AI client-pools, and let them
play against each other or against humans that are logged in. Inter-
acting with the server, the AI players support all stages of the game.
All AI games are recorded and can be used for a detailed analysis
including forensic replay. One default AI chooses random but valid
cards. It serves as a dummy C++ player implementation for the devel-
opment of an own Skat engine, suitable for a face-to-face comparison
in an AI on-line Skat tournament.

Using a C/C++ library for web-sockets and a textual JSON proto-
col exchange format, we have attached our AI players as clients to an
existing server for human players. To avoid concurrency problems, in
the client all global information is static. We can conveniently add up
to three different AIs (of the same or different client-pool), playing
against each other. In a series of 1,000 games, played on the server in
12m22s two default AIs scored 47 (wins) to 235 (losses) with a score
-15,411, and 49 (wins) 276 (losses) with a score of -20,818, while
our AI won 317 games and lost 19 games with a score of 50,595.
A professional player participating in World, European and National
championships frequently wins against the AI by a large margin, but
managed to loose at least one series of 12 games (validating that Skat
is a game of chance).

Evaluations on randomly chosen games leads to rather inconclu-
sive evaluations, as some hands clearly feature the one game se-
lection, and not the other (simply compare playing cards strong
for Grand with strong playing cards for Null). For the evaluation
we, therefore, extracted 60,000 expert games of all kinds from our
database and took the result of the human bidding stage to select the
type of game. For a clear comparison, we looked at Trump especially
Suit games (no Hand nor Ouvert). The AIs select the same game that
was chosen by the expert declarer. We also selected the Skat that was
put by the human declarer. We tested, whether or not endgame rec-
ommendations by enumerating and evaluating the belief space, helps
the players. The computer runs an Intel(R) Core(TM) i7-7600U CPU
@ 2.8 GHz and has 16 GB RAM.

We started with an initial series of 1,000 Suit games (of the 60,000)
and found that the human declarer won 800, the glassbox solver only

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

217, and the AI 826. With endgame support for the declarer the last
value increased to 838, and with opponent endgame support dropped
to 793. While the margin appears small on the first glance, by the
level of play, it is significant.

In the following, we analyze the findings in more detail. For
10,000 Suit games Table 1 shows the results obtained, partitioned
along the possible outcomes of human and glassbox solver play.
We varied the setting with the declarer and/or the opponent using
endgame support. The CPU time for the analysis in all settings we
examined, varied between 10m and 14m, so that each individual
game was played in less than 0.1s. In the table we can see that
endgame support for the declarer pays off, increasing the number of
games won. Similarly, the endgame support of opponents decreases
the number of declarer victories.

Human Glassbox AI D+O− D−O+ D−O− D+O+

loses looses wins 1,132 1,075 1,095 1,157
loses wins wins 134 128 131 129
wins loses wins 5,054 4816 4984 4,979
wins wins wins 1990 1952 1,991 1,961

* * wins 8,310 7,871 8,301 8,226

Table 1. Declarer wins of playing 10,000 Suit games with (+)/without(-)
belief-space suggestion for declarer (D) and opponent (O). The human

declarer determined the two cards for the Skat.

If instead, we look at the number of games won by the human
expert, the AI declarer establishes significantly more wins: 8,310 vs.
7,999. This is an indication of considerably good play of the AI, but
does not necessarily mean that the AI declarer is playing superior to
the human one, as the result could at least partly be assigned to the
case that human opponents are playing stronger than the AI ones.

Next, we analyze the effect of changing the confidence, namely the
minimum percentage of card proposals have to be best. In Table 2 we
see that requesting a higher confidence level leads to better results.
In fact, insisting on a matching card recommendation in all worlds of
the belief space led to the best result.

Human Glassbox AI 0.1 0.4 0.8 1.0
loses looses wins 1,130 1,132 1,172 1,176
loses wins wins 134 134 135 132
wins loses wins 5,052 5,054 5,102 5,103
wins wins wins 1,990 1,990 2,011 2,014

* * * 8,306 8,310 8,420 8,425

Table 2. Declarer wins of playing 10,000 Suit games with belief-space
suggestion for declarer, a belief-space size of < 1, 000 and varying

confidence level. The human expert declarer selected the Skat.

In Table 3 we also tested the influence of changing the maximum
size of the belief space. We expected that large sizes of the belief
space do not change the outcome significantly, as the number of be-
lief states after 5 rounds of trick play, especially for the declarer, is
often small. To our surprise, a very smaller belief space of 10 led
to even better results. This is likely due to more concentrated card
proposals.

Table 4 shows the result of varying the number of tricks, afters
which the endgame assistance is invoked. We see a sweet spot at
about round 5 and 6.

For finding card recommendations automatically we chose an

Human Glassbox AI 10 100 1000 10000
loses looses wins 1,146 1,132 1,132 1,132
loses wins wins 135 135 134 134
wins loses wins 5,033 5,054 5,054 5,054
wins wins wins 1,999 1,990 1,990 1,990

* * wins 8,313 8,311 8,310 8,310

Table 3. Declarer wins of playing 10,000 games with belief-space
suggestion for declarer, a required confidence of > 40% and varying size of

the belief-space. The human expert declarer selected the two cards for the
Skat.

Human Glassbox AI 4 5 6 7
loses looses wins 1,096 1,132 1,145 1,108
loses wins wins 135 134 133 133
wins loses wins 5,000 5,052 5,046 4,991
wins wins wins 1,982 1,990 1,993 1,996

* * wins 8,213 8,310 8,317 8,228

Table 4. Declarer wins of playing 10,000 Suit games with belief-space
suggestion for declarer after a varying number of trick-taking rounds, a
belief-space size of < 1, 000 and required confidence of > 40%. The

human expert declarer selected the two cards for the Skat.

highly engineered open-card solver that selects a card, but only based
on satisfying the contract (in most cases 60 points). We also tried to
find the card that gives the best possible score, utilizing a divide-
and-conquer search on this threshold with mixed results: the time for
analyzing the belief space went up, while the winning rate did not
improve significantly.

As an evaluation summary we have that expert rule play in the
opening, and endgame recommendation are in a competition for the
middle game. Sometimes the one has the better card proposal, some-
times the other. In the beginning of the game the former is far better,
while to the end of the game the latter becomes more prominent. Both
quickly determine the card, which in many possible circumstances
will be good. We see the positive effect of using endgame recom-
mendations after a sweet spot of 5-6 tricks. If the declarer takes on a
card recommendation of high confidence, the number of games won
significantly increases. When varying the number of tricks to start the
analysis there is a trade-off but there is a clear advantage of applying
expert rules to the beginning of the game, and starting the analysis
with the open card solver in the belief space to the end of the game,
suggesting that the proposed architecture of the AI is appropriate.

10 Conclusion

We have seen an approach for refined belief-space search in Trump
games for the game of Skat, and illustrated, how to represent the
belief in form of knowledge vectors, how to refine this knowledge
based while tricks are being played, and how to enumerate the re-
sulting information to generate a set of all possible worlds for each
player. While other authors sample the belief-space throughout the
trick-taking stage of the Skat game, we incorporate our open card
solver extensively and successfully on the complete belief space for
the endgame, to vote on the next card to be played.

It is well-known that open-card game solving and subsequent play
is fast, but it severely lacks handling the information exchange of the
players, which in Skat especially for the cooperating opponents is
crucial. Our proposed mix of statistical information for opening play,

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

expert rules for handling exceptions and incorporating information-
gathering moves, and endgame belief-space enumeration for decid-
ing the game exploiting the accumulated information, pays off to
greatly improve the players’ performance. Confidence voting on the
reduced belief space is based on experience, empirical evidence, and
numerical observations. For example, if one of the 184,756 worlds
a declarer might be facing after Skat-taking is evaluated in one sec-
ond, it would take 51.4h to complete a series of 48 games, which is
already limited to 2h of play.

There are several other trick-taking games, like Hearts, Spades,
Bridge, Tarrot, that share related playing principles, but which are
also different in the specifics of the games. We think that the pre-
sented approaches for bidding, trick opening and endgame play,
though implemented domain-specifically, are general and can be ap-
plied to them as well, starting with changing the card encoding and
obeying rules for playing the games, followed by extracting the fea-
tures for winning probabilities and first cards to be played using a
large corpus of expert games, together with a fast open-card game
solver to decide the game especially for later stages of trick-taking.

In the server implementation we currently aim to unite database
and interactive play, so that reproducible experiments become avail-
able, in the web-GUI. This improves debugging as well allow for
measuring official strength values (similar to ELO in Chess). For a re-
liable value we will run several series being played against advanced
human opponents. Unfortunately, as by today, all good Skat AIs use
their own server technology and exchange format. Hence, it is hardly
possible to cross-compare their strength. To overcome this hurdle,
we will try organizing or participating in a Computer Olympiad in
Skat. Using the server, we also plan to participate in mixed human-
computer tournaments.

Acknowledgement This research work would not exist without
the help of Rainer Gößl, a Skat expert and world-class caliber player.

REFERENCES
[1] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tam-

melin, ‘Heads-up limit hold’em poker is solved’, Commun. ACM,
60(11), 81–88, (2017).

[2] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm, ‘Deep
counterfactual regret minimization’, CoRR, abs/1811.00164, (2018).

[3] Michael Buro, Jeffrey Richard Long, Timothy Furtak, and Nathan R.
Sturtevant, ‘Improving state evaluation, inference, and search in trick-
based card games’, in IJCAI 2009, Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence, Pasadena, California,
USA, July 11-17, 2009, pp. 1407–1413, (2009).

[4] Tristan Cazenave, ‘Nested monte-carlo search’, in IJCAI 2009, Pro-
ceedings of the 21st International Joint Conference on Artificial Intel-
ligence, Pasadena, California, USA, July 11-17, 2009, pp. 456–461,
(2009).

[5] Tristan Cazenave and Véronique Ventos, ‘The αµ search algorithm for
the game of bridge’, CoRR, abs/1911.07960, (2019).

[6] Stefan Edelkamp, ‘Challenging human supremacy in Skat’, in Proceed-
ings of the Twelfth International Symposium on Combinatorial Search,
SOCS 2019, Napa, California, 16-17 July 2019, pp. 52–60, (2019).

[7] Timothy Michael Furtak, Symmetries and Search in Trick-Taking Card
Games, Ph.D. dissertation, University of Alberta, 2013.

[8] M. Ginsberg, ‘Step toward an expert-level Bridge-playing program’, in
IJCAI, pp. 584–589, (1999).

[9] Rainer Gößl, Der Skatfuchs – Gewinnen im Skatspiel mit Mathematis-
che Methoden, Selfpublisher. Dämmig, Chemnitz, Available from the
Author or via DSKV Altenburg, 2019.

[10] S. Grandmontagne, Meisterhaft Skat spielen, Selfpublisher, Krüger
Druck+Verlag, 2005.

[11] Siegfried Harmel, Skat–Zahlen, Klabautermann-Verlag, Pünderich
(Mosel), 2016.

[12] Thomas Keller and Sebastian Kupferschmid, ‘Automatic bidding for
the game of Skat’, in KI, pp. 95–102, (2008).

[13] Thomas Kinback, Skat-Rätsel – 50 lehrreiche Skataufgaben mit
Lösungen und Analysen, Books on Demand, Norderstedt, 2007.

[14] Sebastian Kupferschmid and Malte Helmert, ‘A Skat player based
on Monte-Carlo simulation’, in Computers and Games, pp. 135–147,
(2006).

[15] Emanuel Lasker, Das verständige Kartenspiel, August Scherl Verlag,
Berlin, 1929.

[16] Emanuel Lasker, Strategie der Spiele – Skat, August Scherl Verlag,
Berlin, 1938.

[17] David N. L. Levy, ‘The Million Pound Bridge program’, in Heuristic
Programming in Artificial Intelligence, (1989).

[18] Jeffrey Richard Long, Search, Inference and Opponent Modelling in an
Expert-Caliber Skat Player, Ph.D. dissertation, University of Alberta,
2011.

[19] Manfred Quambusch, Gläserne Karten – Gewinnen beim Skat, Stomi
Verlag, Schwerte Rau Verlag, Düsseldorf, 1990.

[20] Douglas Rebstock, Christopher Solinas, and Michael Buro, ‘Learning
policies from human data for Skat’, CoRR, abs/1905.10907, (2019).

[21] Douglas Rebstock, Christopher Solinas, Michael Buro, and Nathan R.
Sturtevant, ‘Policy based inference in trick-taking card games’, CoRR,
abs/1905.10911, (2019).

[22] Christopher D Rosin, ‘Nested rollout policy adaptation for Monte Carlo
tree search’, in IJCAI, pp. 649–654, (2011).

[23] F. Schettler and G. Kirschbach, Das große Skatvergnügen, Urania Ver-
lag, Leipzig, Jena, Berlin, 1988.

[24] Hermann Schubert, Das Skatspiel im Lichte der Wahrscheinlichkeit-
srechnung, J. F. Richter, Hamburg, 1887.

[25] David Silver and Aja Huang et al., ‘Mastering the game of Go with
deep neural networks and tree search’, Nature, 529, 484, (2016).

[26] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent
Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis, ‘Mastering Chess and Shogi by
self-play with a general reinforcement learning algorithm’, Technical
Report 1712.018, arxiv, (2017).

[27] Christopher Solinas, Douglas Rebstock, and Michael Buro, ‘Improv-
ing search with supervised learning in trick-based card games’, CoRR,
abs/1903.09604, (2019).

[28] Nathan R. Sturtevant and Adam M. White, ‘Feature construction for
reinforcement learning in hearts’, in Computers and Games, 5th Inter-
national Conference, CG 2006, Turin, Italy, May 29-31, 2006. Revised
Papers, pp. 122–134, (2006).

[29] Joseph Petrus Wergin, Wergin on Skat and Sheepshead, Wergin Dis-
tributing, Mc. Farland, USA, 1975.

[30] Mark HM Winands, Yngvi Björnsson, and Jahn-Takeshi Saito, ‘Monte-
carlo tree search solver’, Computers and Games, 5131, 25–36, (2008).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

