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Abstract. Network Embedding (NE) aims at modeling network
graph by encoding vertices and edges into a low-dimensional space.
These learned vectors which preserve proximities can be used for
subsequent applications, such as vertex classification and link pre-
diction. Skip-gram with negative sampling is the most widely used
method for existing NE models to approximate their objective func-
tions. However, this method only focuses on learning representation
from the local connectivity of vertices (i.e., neighbors). In real-world
scenarios, a vertex may have multifaceted aspects and should belong
to overlapping communities. For example, in a social network, a user
may subscribe to political, economic and sports channels simultane-
ously, but the politics share more common attributes with the econ-
omy and less with the sports. In this paper, we propose an adversarial
learning approach for modeling overlapping communities of vertices.
Each community and vertex are mapped into an embedding space,
while we also learn the association between each pair of community
and vertex. The experimental results show that our proposed model
not only can outperform the state-of-the-art (including GANs-based)
models on vertex classification tasks but also can achieve superior
performances on overlapping community detection.

1 Introduction

Graph structures are ubiquitous in real-world applications, such as ci-
tation networks and social networks. Network embedding (NE) can
map the semantic similarity of graph vertices into a low-dimensional
space where the similar vertices are assigned to the nearby areas [5].
The learned embeddings are useful for the subsequent applications,
such as link prediction [14] and vertex classification [24]. Lots of
previous works have been devoted to NE for preserving the proxim-
ities in networks. For example, DeepWalk [24] performs truncated
random walks to explore the networks. Line [29] extends DeepWalk
by using depth-first search (DFS) and breadth-first search (BFS)
strategies. Then, Node2vec [14] is proposed to take both BFS and
DFS into consideration and designs a biased random walk proce-
dure to explore diverse neighborhoods. After searching out neigh-
bors of vertices, these methods adopt Skip-gram with negative sam-
pling [20, 21], a language model that maximizes the probability of
word co-occurrences (corresponding to vertex neighbors in graphs)
within a sliding window, to learn vertex representations. The major
idea of NE is to encourage a target vertex to be close to its neighbors
and meanwhile be far from its negative samples.
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Figure 1: An example of overlapping communities within a graph,
which is built from an online video website where users are denoted
as vertices and edges represents the relation of subscribing common
video genres (note that this figure is referred to [25].). The objective
is to learn the representations which preserve the vertex and commu-
nity proximities in the embedding space.

Nevertheless, most exiting NE models only focus on learning the
local connectivity of neighbor vertices but ignore global patterns
which are known as communities in many complex networks. As
shown in many real-world scenarios, entities may contain disparate
aspects [23, 26]. In networks, different paths stretching out from a
vertex to its n-step neighbors may result from the expression of its
aspects (i.e., communities). For example, a social network of an on-
line video website is shown in Figure 1 where users are denoted as
vertices and edges represent the relations of subscribing to common
video genres. Since a user may simultaneously subscribe to political,
economic and sports channels (represented as communities in the fol-
lowings), if we neglect community structure information in network
embedding, the learned representations of the user and its communi-
ties have to be close to each other in the embedding space, while the
politics community share more common users with the economy and
less with the sports. Therefore, the community structure is an impor-
tant pattern of vertices and expected to benefit network embedding
as well as overlapping community detection.

The challenges of developing overlapped community-aware net-
work embedding modes are three-fold: (1) How to determine the
communities of vertices; (2) How to map the community assign-
ments from discrete space to continuous embedding space; (3) How
to customize the objective function to make the embedding vectors of
vertices and their assigned communities be close to each other while
be far away from irrelevant communities. Recently, generative ad-
versarial networks (GANs) [12] have received a lot of attention and
achieved success in various applications [36]. One important effect
of GANs is to learn a map of an input from a simple distribution to
a complicated distribution (e.g., embedding space) [11]. Some pre-
vious works have introduced GANs into NE. For instance, Graph-
GAN [33] firstly unifies generative and discriminative models of ver-
tices to boost NE performance. A-RNE [7] employs triplet ranking
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Figure 2: The training framework of ACNE.

loss to generate high-quality negative nodes and leverages GANs in
the training. ProGAN [11] discovers ordinary underlying proximities
with GANs to benefit NE. AIDW [6] proposes an improved version
of DeepWalk [24] with GAN-based regularization method. However,
all of these methods adopt standard GANs to generate samples of ver-
tices rather than communities. Thus, how to incorporate community
information into GANs is still challenging.

To address the aforementioned problems, in this paper, we pro-
pose an adversarial learning method (ACNE) for overlapping com-
munity detection and network embedding. Specifically, communities
and vertices are represented as embedding vectors. For each vertex,
we firstly sample a community from its random walking path. Then,
to map the relation of a discrete vertex community assignment into
a continuous vertex-community embedding space, we utilize a dis-
criminator to learn the vertex representation by jointly maximizing
the probabilities of predicting its context vertices and assigned com-
munity. In this way, the correlation of vertex-vertex from local con-
nectivity and vertex-community from network structure can be uni-
formly preserved in our model. Furthermore, to capture the underly-
ing community proximity and obtain distinguishable embedding vec-
tors, ACNE employs a softmax generator to construct high-quality
negative communities instead of a simple uniform sampling method,
i.e., the pairs of targeted vertex and negative communities with higher
probabilities from discriminator will be encouraged to be generated.
At last, to evaluate whether considering community structure and
vertex connectivity could actually benefit NE, we conduct experi-
ments of overlapping community detection and vertex classification
on a variety of real-world networks to compare the performance be-
tween our proposed ACNE and state-of-the-art models. Our major
contributions are as follows:
• We propose an adversarial learning method (ACNE) for incor-

porating overlapping community information into network rep-
resentation learning. We exploit the GANs technique to learn a
map between discrete vertex community assignments and vertex-
community embeddings. Moreover, ACNE is able to learn the
correlations of vertex-vertex from local connectivity and vertex-
community from network structure jointly.

• We leverage a softmax generator for generating high-quality neg-
ative communities with respect to a given target, and thus can ob-
tain more discriminative community representations in the embed-
ding space.

• We empirically evaluate ACNE through several network analy-
sis tasks, including overlapping community detection and vertex
classification. Experimental results show that ACNE achieves sig-
nificant and consistent improvements than state-of-the-art models.
The code and datasets are at https://github.com/junyachen/ACNE.

The rest of this paper is organized as follows. In Section 2, we in-
troduce the core idea of our proposed model and present the ACNE
algorithm. We discuss experimental results in Section 3 and intro-
duce the related work in Section 4. Section 5 concludes our work.

2 Proposed ACNE Model
In this section, we will first introduce the problem formulation and
notations. Then, we will present an overview of the training frame-
work of ACNE shown in Figure 2, followed by detailed descriptions
of each component.

2.1 Problem Formulation and Notations
Since we aim to detect overlapping communities and learn network
embedding. The problems can be formulated as follows:

Network embedding. We denote a network as G = (V,E),
where V is the set of vertices and E ⊆ V × V denotes the set of
edges. For each vertex v ∈ V , NE aims to learn a low-dimensional
embedding v ∈ Rd which preserves the network proximity. Here
d� |V | represents the dimension of representation space.

Community embedding. The number of communities is regarded
as prior knowledge denoted as C. For each community c, we also
want to learn a low-dimensional embedding c ∈ Rd which has
the same dimension as vertex representations. In general, mapping
vertex-vertex and vertex-community relations into the same embed-
ding space can help to integrate the information of local connectivity
and network structure, which also benefits overlapping community
detection. In this way, we can measure the similarity of vertices and
communities by calculating the inner product of their vectors.

Random walk. It is a widely used method for exploring the neigh-
borhood of vertices in a given network [6, 8, 24, 31]. Then, the net-
work can be transformed into vertex sequences which contain the
semantic relations between vertices. The set of walk sequences is de-
noted as S = {s1, ..., sN} and each sequence is s = {v1, ..., v|s|}.
N denotes the total number of walk sequences.
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2.2 Context-aware Community Assignment
As shown in the left side of Figure 2, to explore the neighborhood of
vertices, we firstly generate paths from a given networkG. For exam-
ple, start with vertex 1, multiple paths can be generated with random
walks. As mentioned before, in network structures, different paths
stretching out from a vertex to its n-step neighbors may result from
the expression of its communities. Therefore, the community assign-
ment of each vertex in a sequence should be related to its context
vertices. Then, for each given vertex and its associated sentence, fol-
lowing the Gibbs Sampling method [13], the conditional probability
of community assignments can be estimated as:

p(c|v, s) ∝ p(c|s¬v)
∏

v̂∈s,v̂ 6=v

p(c|v̂) (1)

where p(c|s¬v) represents the community distribution in the se-
quence s except vertex v, p(c|v̂) denotes the vertex-community dis-
tribution learned from global network structures which we assume
it as prior knowledge (we will discuss how to obtain this distribu-
tion later). Then, we can further formulate p(c|s¬v), the conditional
probability of a community c given a sequence s, as follows:

p(c|s¬v) =
N(c, s¬v)∑C
ĉ N(ĉ, s¬v)

(2)

where C denotes the set of communities, N(c, s¬v) represents the
number of vertices assigned to community c in sequence s ex-
cept current vertex v. Then, we discuss how we obtain the vertex-
community distribution. Let M ∈ RV×V be the asymmetric adja-
cency matrix of a network, non-negative matrix factorization (NMF)
can be performed for learning community distributions [16, 38] by
solving:

min
W≥0

||M−W ·WT ||2F + α||W||2F (3)

where W ∈ RV×C indicates the vertex-community distribution
which encodes the global understanding of the network states, || · ||F
is Frobenius norm of the matrix and α is a harmonic factor to balance
two components. The probability of vertex v̂ assigned to community
c can be calculated as follows:

p(c|v̂) = Wv̂,c∑C
ĉ Wv̂,ĉ

(4)

In general, the reason why not simply using W for community de-
tection or network embedding is that we want to preserve the correla-
tion of vertex-vertex from local connectivity and vertex-community
from global network structure into the same embedding space when
learning the vertex and community representations. More concretely,
for each vertex in a specific sequence, we firstly sample a commu-
nity from its context vertices in the walking path. Then, we utilize a
discriminator to learn the vertex representation by jointly maximiz-
ing the probabilities of predicting its context vertices and discrete as-
signed community. Experimental results also indicate that this jointly
learning method outperforms the separate learning way (we represent
the general network embedding and the jointly modeling for compar-
ison). All details will be introduced in the following sections.

2.3 Adversarial Learning of Vertices and
Communities

Inspired by the development of the GANs technique, we can map
the discrete results learned from generative models into a continu-

ous embedding space. However, the standard GANs is designed to
generate samples of vertices rather than communities. Hence, how to
generate the underlying community is still challenging.

Generator G. The purpose of the generator in ACNE is to con-
struct high-quality negative communities with respect to a given tar-
get vertex. We employ softmax function over a set of negative candi-
dates in the generator which is defined as follows:

G(cn|vt; θG) =
exp(cn · vTt )∑
ĉ∈C exp(ĉ · vTt )

(5)

where vt is the target vertex, cn is the generated negative commu-
nity, θG is the union of all vertex and community embeddings in the
generator, C is the set of communities and its size is a predefined
parameter usually set |C| � |V |. Thus, the summation term inside
Eq. (5) only takes the slight expense of computation. Moreover, the
loss function of the generator can be defined as:

LG =
∑
vt∈B

Ecn∼G(·|vt;θG)D(cn, vt; θD) (6)

where B denotes a batch in the training process, θD is the union of
all vertex and community embeddings in the discriminator, and D(·)
indicates sigmoid function, i.e., D(cn, vt; θD) = σ(cn · vt

T ) =
1

1+exp(−cn·vt
T )

. In summary, this formulated generator aims to sam-
ple high-quality negative communities from the softmax probability
distribution G(cn|vt; θG) instead of uniform sampling which may
generate totally unrelated communities. However, the output of the
generator is a discrete index of the communities. Therefore, stochas-
tic gradient descent (SGD) method can not be directly used for op-
timization. According to [27, 41], we can use policy gradient based
reinforcement learning method to optimize the generator loss as:

∇θGLG = ∇θG
∑
vt∈B

Ecn∼G(·|vt;θG)D(cn, vt; θD)

=
∑
vt∈B

Ecn∼G(·|vt;θG)D(cn, vt; θD)∇θG logG(cn|vt; θG)

(7)
where the gradient of LG is an expected summation of ∇θG log
G(cn|vt; θG) weighted by D(·) which is calculated with the dis-
criminator. In the field of reinforcement learning, D(·) in Eq. (7)
can be regarded as a reward function and the generator is trained
to maximize the expected reward. In order to achieve a higher re-
ward, for each negative pair (cn, vt), the policy used by the gener-
ator network would punish trivial negative communities by lower-
ing down their corresponding probability and encourage the discrim-
inator network to distribute high-quality negative communities, i.e.,
pair (cn, vt) with higher similarity from discriminator parameterized
by θD will be encouraged to be generated. Moreover, in practice,
the reinforcement-based algorithms may suffer from unstable perfor-
mance and achieve high variance results[37]. According to [28], this
problem can be alleviated by adding a baseline function to the reward
term in the gradient loss. Then, D(·) can be replaced by:

D(cn, vt; θD) +

∑
B∈P

∑
vt∈B Ecn∼G(·|vt;θG)D(cn, vt; θD)

|P|
(8)

where P denotes the whole batches in the training set, and the base-
line function is the average reward obtained in the training process.

Discriminator D. The discriminator of our proposed ACNE aims
to complete two goals. The first one is to distinguish the context ver-
tices and the negative vertices, which is the same as the Skip-gram
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model [20, 21]. The second goal is to determine whether the gen-
erated triplet satisfies D(cp, vt) � D(cn, vt), where cp, cn, vt in-
dicate positive community, negative community, and target vertex,
respectively. To achieve these goals, as shown in the right side of Fig-
ure 2, for each target vertex vt and its generated tuple {vc, vn, cp, cn}
in a given sequence s ∈ B, we will learn their representations by
jointly maximizing the probabilities of predicting its context vertices
and assigned community, which can be formalized as:

LD =
∑
s∈B

∑
vt∈s

Ecn∼G(·|vt;θG)[logD(vt, vc)

+ logD(−vt, vn) + logD(vc, cp) + logD(−vt, cn)

+ λ(||vt||2F + ||vc||2F + ||vn||2F + ||cp||2F + ||cn||2F )]

(9)

where vc denotes the context vertex of vt, vn is the negative ver-
tex generated by negative sampling [20], the generation of vc and
vn is a common practice in NE literature [24, 29], cp is the positive
community sampled by using Eq. (1), cn is the negative commu-
nity generated with Eq. (5), || · ||F is Frobenius norm of vectors,
{vt,vc,vn, cp, cn} are the embedding vectors in θD , and λ is a
harmonic factor for regularization. The discriminator D can be opti-
mized with gradient descent technique.

2.4 Training Process of ACNE
The overall training process of our proposed ACNE is summa-
rized in Algorithm 1. To be specific, similar to the learning pro-
cess in [2, 33, 34], we iterate the whole training set in mini-batch
to train the generator while the parameters of the discriminator are
fixed. Then, we train the discriminator while fixing the parameters
of the generator. The GAN-based training process of ACNE aims to
make the generator search for high-quality negative communities as
the inputs of training the discriminator. In addition, both the discrimi-
nator and generator are trained with Adam gradient descent [15] and
L2 regularization is applied to the parameters. When ACNE con-
verges, we take the parameters learned by the discriminator as our
final representations for vertices and communities. More details of
experimental settings will be introduced in the next section.

3 Experiments
In experiments, we evaluate the performance of vertex and commu-
nity representations on real-world datasets with the tasks of vertex
classification and overlapping community detection.

3.1 Datasets
We conduct experiments on four widely used network datasets with
the statistics listed in Table 1.

Cora5 is a research citation network constructed by [19]. It con-
tains 2708 machine learning papers with 7 labels.

Citeseer6 is another extensively adopted research paper set which
contains 3264 publications and 6 labels.

Wiki7 is a language network which contains 2405 web pages from
19 groups and 12761 edges between them. This dataset is firstly pub-
lished from LBC8 project and has been widely used for evaluating
vertex classification tasks [39].

5 https://people.cs.umass.edu/∼mccallum/data.html
6 https://github.com/wonniu/AdvT4NE WWW2019
7 https://github.com/albertyang33/TADW
8 https://linqs.soe.ucsc.edu/

Algorithm 1: Training Process of ACNE
Input: Graph G = (V,E), number of community |C|, batch

size |B|, dimension d
Result: Parameters of Discriminator θD and Generator θG

1 begin
2 Initialize θD and θG randomly;
3 Generate walk sequences S via random walk based

method [24];
4 while not converge do
5 Sample a batch B of walk sequences from S;
6 for G-steps do
7 Use G to sample negative communities for each

target vertex vt according to Eq. (5);
8 Update the parameters of θG via policy gradient

in Eq. (7);
9 end

10 for D-steps do
11 For each target vertex vt in sequence s of batch

B, calculate D loss w.r.t Eq. (9);
12 Update the parameters of θD via gradient descent;
13 end
14 end
15 end

Table 1: Statistics of datasets

Datasets |V | |E| |L|
Cora 2708 5278 7

Citeseer 3264 4551 6
Wiki 2405 12761 19

DBLP C4 17725 52914 4

DBLP C49 consists of bibliography data in computer science con-
structed by [30]. In the experiments, we select a list of conference
papers from 4 research fields: database, data mining, AI, and CV.

3.2 Baseline Models

The descriptions of the baseline models can be divided into four
groups as follows:

General network embedding. DeepWalk [24] is an efficient repre-
sentation learning model by performing random walks on networks
to generate vertex sequences and using the Skip-gram model [20]
to learn vertex embeddings. Line [29] preserves the first-order and
second-order proximity among vertices in networks. Node2vec [14]
is an extension of DeepWalk by designing a biased random walk to
explore the network structures. SDNE [32] firstly proposes a deep
neural network to learn network embedding. GraRep [3] applies the
SVD technique on k-step probability matrices to learn vertex embed-
dings and concatenates them as the global representations.

GAN-based network embedding. AIDW [6] is an inductive ver-
sion of DeepWalk with GAN-based regularization method. Graph-
GAN [33] unifies the generative models and discriminative models
of network embedding to boost the performance. ARNE [7] focuses
on sampling high-quality negative vertices to achieve better results.

General community detection. SCP [17] detects communities by
searching for adjacent cliques. LC [1] proposes to find link commu-
nities instead of vertices. MDL [22] proposes a minimum descrip-
tion length method to perform clustering. BigCLAM [40] uses non-

9 http://arnetminer.org/citation (V4 version is used)
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Table 2: Accuracy (%) of vertex classification on Cora

% Label Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
DeepWalk 64.60 69.85 74.21 76.68 77.59 77.68 78.63 79.35 79.23

Line 66.59 66.06 72.25 73.94 74.03 74.65 75.12 75.30 75.76
Node2vec 73.96 78.04 80.07 81.62 82.16 82.25 82.85 84.02 84.91

SDNE 70.97 75.08 76.90 77.82 78.26 79.11 79.37 79.46 79.37
GraRep 74.98 77.48 78.57 79.38 79.53 79.68 79.75 80.89 80.74
AIDW 73.83 77.93 79.43 81.16 81.79 82.27 82.93 84.11 83.69

GraphGAN 76.43 79.14 81.62 81.91 82.12 82.83 83.28 84.65 84.93
ARNE 68.09 72.86 75.14 75.83 76.97 77.30 79.22 78.90 78.43
MNMF 75.08 77.85 79.05 79.53 79.82 80.21 79.98 80.11 79.41
ComE 76.72 79.25 80.73 80.97 81.53 82.10 82.19 82.42 82.65

PolyDeepwalk 76.00 79.51 80.49 81.06 81.46 81.73 84.02 84.76 83.66
CNE 78.17 81.67 82.70 82.89 83.97 84.68 85.91 85.60 85.97

ACNE 78.84 81.82 83.49 83.69 84.05 84.59 85.85 86.35 88.19

Table 3: Accuracy (%) of vertex classification on Citeseer

% Label Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
DeepWalk 45.53 50.98 53.79 55.25 56.05 56.84 57.36 58.15 59.11

LINE 47.03 50.09 52.71 53.52 54.20 55.42 55.87 55.93 57.22
node2vec 50.78 55.89 57.93 58.60 59.44 59.97 60.32 60.75 61.04

SDNE 47.35 51.10 52.45 53.20 53.70 54.20 54.79 55.26 54.46
GraRep 50.60 53.56 54.63 55.44 55.20 55.07 56.04 55.48 56.39
AIDW 50.77 54.82 56.96 58.04 59.65 60.03 60.99 61.18 62.84

GraphGAN 53.68 56.28 57.77 59.52 59.74 59.34 58.06 57.58 56.27
ARNE 54.12 56.09 56.46 56.92 56.99 57.81 57.55 56.97 52.60
MNMF 51.62 53.80 55.47 56.94 56.81 57.04 57.05 57.00 57.22
ComE 54.71 57.70 58.84 59.67 59.93 60.30 61.12 61.62 61.11

PolyDeepwalk 52.25 53.75 56.46 56.92 57.48 57.19 58.43 58.66 58.98
CNE 56.33 59.57 62.88 63.75 65.01 66.84 67.02 67.32 64.22

ACNE 55.34 58.46 62.80 65.08 65.63 67.08 67.14 67.99 68.50

negative matrix factorization to detect overlapping and hierarchically
nested communities in massive networks. NMF [16] exploits non-
negative matrix factorization to obtain vertex-community distribu-
tion in a global understanding of networks. We include NMF as one
of the baseline models because we apply it to gaining prior knowl-
edge for our model.

Jointly modeling. MNMF [35] employs a matrix factorization
technique for jointly detecting non-overlapping communities and
learning network representations. ComE [4] adopts multivariate
Gaussian distributions to represent communities, which aims to learn
network representation and overlapping communities jointly. Poly-
Deepwalk [18] proposes a polysemous embedding approach for
modeling multiple facets of vertices by mapping each facet of a node
into an embedding vector.

Besides, for ablation study, we take CNE as a variant of ACNE
which omits the generator component in adversarial training and
samples negative communities from a uniform distribution.

3.3 Parameter Settings and Evaluation Metrics

For the models requiring random walk preprocessing, we uniformly
set the window size, the walk length, and the number of walks as
10, 30, and 50, respectively. Since the desirable representation di-
mension settings are not the same in different models, we adopt
grid-search for searching their best performance by varying d ∈
{128, 200, 256, 300, 400}. For other parameters of models, we fol-
low the preferred settings in their corresponding papers. In addition,
in ACNE, we use Adam optimizer [15] with initial learning rate 1e-

3. And λ in Eq. (9) is set to 1e-5. For vertex classification, we adopt
Liblinear package [9] with default settings to build the classifier, and
employ classification Accuracy [6] as metrics. For community detec-
tion, we use modified Modularity [42] which is specially designed for
overlapping community detection tasks to evaluate the results.

3.4 Evaluation on Vertex Classification
As shown in Table 2, Table 3, and Table 4, we evaluate the clas-
sification accuracies of various models under different training ra-
tios. For each ratio, we randomly select vertices as a training set and
the remaining ones as a test set. Note that we exclude the baseline
models in general community detection group because they are not
designed for network embedding (we also omit NMF since its accu-
racy scores are much lower than other models). The highest scores
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Figure 3: Vertex classification evaluation on DBLP C4
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Table 4: Accuracy (%) of vertex classification on Wiki

% Label Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
DeepWalk 46.60 54.48 59.05 62.70 64.66 65.95 66.98 68.37 68.78

LINE 57.88 61.08 63.50 64.68 66.29 66.91 67.43 67.46 68.61
node2vec 55.94 59.67 61.11 64.21 65.08 65.58 66.76 67.19 68.73

SDNE 52.42 57.34 60.15 62.35 63.18 64.21 64.71 65.63 65.60
GraRep 58.57 61.91 63.58 63.77 64.68 65.39 65.92 65.18 67.05
AIDW 57.32 61.84 63.54 64.90 65.58 66.54 65.59 66.58 68.02

GraphGAN 57.97 62.57 63.79 65.39 66.01 66.67 67.83 68.23 68.87
ARNE 58.43 60.45 62.23 62.44 62.59 62.89 62.47 62.79 62.66
MNMF 54.76 58.82 60.43 61.66 62.74 63.23 63.46 63.45 64.77
ComE 59.11 62.46 64.38 65.45 65.98 67.38 67.49 67.92 67.89

PolyDeepwalk 56.44 61.90 62.59 63.76 64.09 64.35 64.96 65.90 66.49
CNE 58.89 63.38 65.20 66.87 67.31 67.85 68.28 69.23 68.46

ACNE 59.68 63.41 64.45 66.11 67.41 68.09 68.98 69.65 69.71

Table 5: Modularity of community detection results

Datasets SCP LC MDL BigCLAM NMF MNMF ComE PolyDeepwalk CNE ACNE
Cora 0.142 0.544 0.771 0.796 0.759 0.832 0.912 0.964 1.317 1.334

Citeseer 0.068 0.457 0.469 0.649 1.037 1.123 1.192 1.151 1.242 1.276
Wiki 0.113 0.480 0.550 0.522 1.303 1.413 1.614 1.576 1.705 1.734

DBLP C4 0.067 0.586 0.685 0.616 0.651 0.687 0.701 0.693 0.757 0.779

are highlighted in boldface. From the above tables, we have the fol-
lowing observations:

(1) Our proposed models, ACNE and CNE, consistently outper-
form the state-of-the-art models on all datasets with different train-
ing ratios, which demonstrates the effectiveness of our adversarial
training for incorporating overlapping community information into
network representation learning.

(2) Specifically, ACNE achieves better performance than MNMF,
ComE and PolyDeepwalk, although they jointly learn community
structures and network embedding. It indicates that our ACNE can
learn more discriminative representations with our proposed adver-
sarial learning targets. Moreover, we also can see that ACNE has
significant improvements compared with the GAN-based network
embedding models (AIDW, GraphGAN, and ARNE) because they
neglect community information in the learning process.

In addition, we utilize smaller training ratios on DBLP C4 to ac-
celerate the training speed of classifiers and evaluate the performance
of ACNE under sparse scenes. The classification results are shown in
Figure 3. Note that, for easy presentation, we only keep three mod-
els that have the best performance in DBLP C4 from each baseline
group. From Figure 3, we can see that ACNE still outperforms the
baseline methods in the sparse situation.

3.5 Evaluation on Community Detection

We evaluate the community detection performance of baseline mod-
els from general community detection group and jointly modeling
group. From Table 5, we can obtain the following observations:

(1) ACNE significantly outperforms the baselines. It indicates that
ACNE can learn more desirable community embeddings and detect
meaningful communities, which also verifies the effectiveness of our
proposed generator for generating high-quality negative communi-
ties in the adversarial learning.

(2) Moreover, ACNE performs better than NMF, which demon-
strates that the superiority of ACNE comes beyond the prior knowl-
edge obtained from NMF (we applied it to estimate the global com-

munities contained in networks). The performance of ACNE also
conforms to our assumption that the community assignment of each
vertex is related to its context. Details are mentioned in Section 2.2.

In summary, all the network analysis tasks, including overlapping
community detection and vertex classification, demonstrate the ef-
fectiveness of ACNE for incorporating GANs technique to jointly
modeling community structures and vertex connectivity. Our model
achieves consistent improvements comparing with the baselines.
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Figure 4: Parameter sensitivity analysis of dimension in ACNE

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



5 10
80

82

84

86

88

90
Cora

5 10
60

62

64

66

68

70
Citeseer

15 20 25
60

62

64

66

68

70

# Community

Ac
cu

ra
cy

Wiki

Figure 5: Influence of community setting on accuracy

5 10
0

1

2

3
Cora

5 10
0

1

2

3
Citeseer

15 20 25
0

1

2

3

# Community

M
od

ul
ar

ity

Wiki

Figure 6: Influence of community setting on modularity

3.6 Parameter Sensitivity
In this part, we analyze the sensitivity of ACNE to the key param-
eters when conducting vertex classification and community detec-
tion tasks. Firstly, we try to investigate how the representation di-
mension d affects the performance of ACNE by varying its numbers
in {128, 200, 256, 300, 400}. The experiment results are reported in
Figure 4. For classification accuracy, as shown in Figure 4a, we can
see that ACNE can achieve relatively stable performance on Cora,
Citeseer, and Wiki datasets, respectively. Here, we report the average
accuracy with training ratios from 10% to 90%. Note that the curve
of Citeseer grows with dimension size in the beginning and becomes
relatively smooth after 250. For modularity shown in Figure 4b, there
are slight fluctuations in the curves of datasets (around 0.03 points in
Cora, 0.05 points in Citeseer and 0.08 points in Wiki).

Then, we want to estimate how the setting of community number
C affects the performance of ACNE. We test C in {5, 7, 9, 11, 13},
{4, 6, 8, 10, 12}, and {15, 17, 19, 21, 23} on Cora, Citeseer, and
Wiki, respectively. From Figure 5, we can see that ACNE can achieve
the best performance when the community numbers set to 7 and 19
on Cora and Wiki. And ACNE can obtain stable performance on
Citeseer when the number is set to around 7. These detected num-
bers are matched the ground truth of total numbers of communities in
the datasets, which indicates that ACNE can dynamically detect the
community number in the network. Besides, from Figure 6, we can
see that the modularity curves increase with community number. One
possible reason is that we can discover more fine-grained communi-
ties when increasing C. However, the accuracy results will decrease
as shown in Figure 5, because ACNE may fall into local optimum
when learning the vertex representations. Therefore, it is a trade-off
between detecting more fine-grained communities and learning bet-
ter network embedding.

4 Related Work
Since we propose an adversarial learning method for incorporating
overlapping community information into network embedding, our
work can be categorized into network representation learning and
overlapping community detection.

Network representation learning (NRL), i.e., network embed-
ding, has received a lot of attention in recent years. Specifically,
inspired by word2vec [21], DeepWalk proposed by Perozzi et al.
[24] performs truncated random walks to generate node sequences

which are treated as sentences and fed into Skip-gram model [20]
to learn representations. Then, Tang et al. propose LINE [29] which
extends DeepWalk by employing breadth-first and depth-first graph
search strategies to optimize proximities. After that, Node2vec [14]
is proposed to take these two strategies into consideration and de-
signs a biased random walk procedure to explore diverse neighbor-
hoods. More recently, generative adversarial networks (GANs) [12]
have presented promising performances in a wide variety of tasks
in various applications [36]. Inspired by the development of GANs,
some GAN-based models are proposed for NRL. GraphGAN [33]
firstly unifies generative and discriminative models of vertices to
boost embedding performance. AIDW [6] proposes an inductive ver-
sion of DeepWalk which utilizes the adversarial technique to regular-
ize the learned representation. ARNE [7] leverages GANs to sample
high-quality negative vertices to facilitate network embedding. How-
ever, all these models only focus on learning the local connectivity
of neighbor vertices but ignore global patterns which are known as
communities in many complex networks.

Community detection is a critical task in social science [10]. Tra-
ditional detection only focuses on detecting non-overlapping com-
munities, which may not conform to real-world scenarios. For exam-
ple, each vertex may belong to different communities when it plays
multiple roles. Therefore, models for overlapping community detec-
tion are proposed. SCP [17] proposes a sequential algorithm for fast
overlapping community detection. LC [1] exploits a link clustering
based detection algorithm by partitioning the links instead of ver-
tices. MDL [22] utilizes a minimum description length method to
detect overlapping groups. BigCLAM [40] and NMF [16] both em-
ploy non-negative matrix factorization to obtain vertex-community
strength vectors and assign communities to vertices according to the
learned vectors. Nevertheless, these methods neglect the local con-
nectivity of vertices and are not designed for NRL.

Jointly modeling aims to perform the above two tasks in one
model. For instance, community affiliation based algorithms, such
as MNMF [35], employ a matrix factorization technique for jointly
detecting communities and learning network representations. Be-
sides, ComE [4] adopts multivariate Gaussian distributions to repre-
sent communities for unified learning. PolyDeepwalk [18] proposes
a polysemous embedding approach for modeling multiple facets (i.e.,
communities) of vertices by mapping each node facet into a vector.

5 Conclusion
In this paper, we propose an adversarial training method called
ACNE for overlapping community detection and network embed-
ding. Current GAN-based NRL methods only adopt standard GANs
to generate samples of vertices instead of communities. How to in-
corporate community information into GANs is still a challenge.
In ACNE, we firstly obtain different paths expanding from a ver-
tex to its n-step neighbors which may represent the expression of its
communities. Then, we sample a community for each vertex with a
context-aware community assignment method. Meanwhile, we lever-
age a softmax generator for generating high-quality negative commu-
nities. Lastly, we design a discriminator to jointly learn the vertex and
community representations. Experimental results demonstrate that
ACNE can achieve better performance than state-of-the-art models.
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