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Abstract. We propose a novel use of ontologies to aid the on-
demand design of data-centric systems. By means of a process that
we call focusing, a schema for a (possibly knowledge-enriched)
database can be obtained semi-automatically from an existing on-
tology and a specification of the scope of the desired system. We for-
malize the inputs and outputs of focusing, and identify relevant com-
putational problems: finding a schema via focusing, testing its con-
sistency, and answering queries in the knowledge-enriched databases
it produces. These definitions are independent from the ontology lan-
guage. We then study focusing for selected description logics as on-
tology languages, and popular classes of queries for specifying the
scope of the system. For several representative combinations, we
study the decidability and complexity of the identified computational
problems. As a by-product, we isolate (and solve) mixed variants of
the classical satisfiability and entailment problems, where selected
predicates are required to have finite extension, as well as the nulla-
bility problem, which is closely related to query emptiness.

1 Introduction

In the design of a data-centric system, coming up with an adequate
organization of the data to be managed by the system is crucial. If
well-chosen, the database schemas, the integrity constraints, and the
conceptual models can make the implementation of the remaining
functionality more evident, as they bind the developers to a shared
and unambiguous view. But unfortunately, coming up with the right
data organization remains challenging and time-consuming, despite
the many software engineering tools and techniques that are avail-
able. Indeed, modern systems need to manage increasingly complex
structure of information, and face challenges like data incomplete-
ness, or the need for interoperability with multiple other systems [1],
together making the design tasks highly non-trivial.

Ontologies, understood here as logical theories expressing domain
knowledge, can be valuable tools towards facing these challenges as
they are able to provide a shared understanding of the domain to mul-
tiple users and systems. Successful applications of ontologies include
data integration, where they provide a unified view of heterogeneous
data sources [6, 30], as well as querying incomplete data sources,
where they are used on-line during the system operation to infer ad-
ditional facts from incomplete data [42].
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Can we also exploit the domain knowledge captured in ontolo-
gies during the design of data-centric systems, to come up quickly
and with moderate effort with a suitable data organization for the
target application? Considerable resources have been invested in the
last decade into constructing high-quality ontologies for many do-
mains [4, 19], partly motivated by their expected reusability. These
ontologies already contain a good share of the domain knowledge
that would typically guide the database modeling phase, for exam-
ple, which are the main entities to be managed, how they relate, and
which constraints they must satisfy. This knowledge is usually given
in a way that is easy to reuse and independent of any implementa-
tion specificities. It then seems natural to leverage this knowledge to
reduce the development cost of situation-specific applications. For
example, a large disaster management ontology, describing different
types of disasters and responses, may be leveraged to compile dif-
ferent applications for different disaster response situations. Such an
ontology can be maintained by the competent authorities in some
region, along with knowledge and data about the region (districts,
population, facilities such as hospitals and possible shelters, etc.); in
fact, similar ontologies already exist (e.g., [28]). Another motivating
example can be in healthcare, where the huge existing medical on-
tologies (such as SNOMED CT or GALEN) could be leveraged to
develop personalized health applications.

We aim at ontology-enriched data-centric applications, which
store structured data and query it leveraging ontological knowledge.
A well-known obstacle when going from an ontology to an ontology-
enriched data-centric system is the open-world semantics of ontolo-
gies [15, 25]: data is treated as incomplete and all that is not explicitly
forbidden by the ontology is considered possible. As a result, an on-
tology represents a (usually very large) set of possible worlds or mod-
els. Queries apply the so-called certain answers semantics, where an
answer is only retrieved if all models agree on it. This semantics is
often too weak, as potentially useful answers may be discarded be-
cause of some possible yet irrelevant model that, for example, adds
non-existing districts to a city. Concrete data-centric applications call
for some completeness assumptions that allow to trim away irrelevant
models. The most popular way to achieve this is by declaring some
predicates closed, and considering only the models of the ontology
that keep the extensions of these predicates precisely as in the data.

The setting we propose supports closed predicates and, more gen-
erally, closed queries (CL) where the completeness assumptions are
applied to the answers of a query. It also supports a closely related,
complementary type of completeness assumptions that we call fixed
queries (FIX). When we declare a query fixed, we also assume its
extension is complete, but unlike for closed queries, it will not be
a dynamic extension that changes as the system evolves. Instead, the
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extension of fixed queries is static and entailed by the ontology alone,
so it does not need to be maintained in the database. In other words,
closed queries express completeness assumptions about the data and
fixed queries express completeness assumptions about the ontology.
In our disaster management example, closed queries could include
the ordered evacuations, open shelters, and available drivers; for
these predicates, the application is committed to keep the stored con-
tent of the predicate identical to its real-world interpretation. Fixed
queries will typically correspond to ‘master data’: immutable aspects
of reality that can be accurately captured in the ontology, like all the
districts of a city. But we can also fix queries that are not populated
by the ontology (which is quite common as most ontologies focus on
terminological rather than assertional knowledge), thus forcing their
extension to remain empty. In this way, fixing can be used to avoid
reasoning about irrelevant predicates and make a potentially broad
ontology more specific on the fly, without actually modifying it.

We propose to describe schemas of partially complete ontology-
enriched databases by means of focusing solutions. A focusing so-
lution F pairs a set of predicate symbols Σ that describe a database
schema (that is, a set of predicates), with a set of assumptions on the
partial completeness on the data and the ontology (closed and fixed
queries). Each database instance (i.e., concrete set of facts over Σ) is
then interpreted as a set of intended ‘relevant’ models: the subset of
its classical models that do not adopt a fully open-world view, but a
partial open-closed view as specified in F .

We want to identify focusing solutions that describe data organiza-
tion appropriate for a concrete situation-specific application. While
some parts of this data organization may be obvious to a designer,
others may not, and we want to use automated reasoning to assist
the designer’s choices. The designer provides a partial description
of the desired system by listing some closed queries (CL) and some
fixed queries (FIX), as well as some queries that will be posed at
runtime and whose answers should be determined regardless of the
model of the ontology (DET). For a given ontology and a possibly
partial description of a system, we want to find a focusing solution
that guarantees that certain queries are determined (DET), assuming
that certain queries are closed (CL) and certain other queries are fixed
(FIX); we may need to fix or close more queries and we may be able
to guarantee that more queries are determined. This focusing solu-
tion is in general not unique; we do not tackle the problem of finding
good solutions yet, but concentrate on verifying if a given candidate
is indeed a focusing solution.

Let us stress that focusing is about choosing which parts of the
data and ontology to declare complete. While a few recent works
have considered querying ontology-enriched databases with closed
predicates, it is usually assumed that the closed predicates are given.
In contrast, here we are interested in deciding whether certain predi-
cates should be closed or can be fixed to guarantee certain behavior
of the relevant queries.

We can summarize the contributions of this paper as follows:

• We give a precise definition of focusing solutions. It is indepen-
dent of the ontology language and its generality gives many op-
tions for specifying the scope of the system.

• We identify key computational problems relevant for obtaining
and using focusing solutions. The central reasoning problem is
to decide if a candidateF is indeed a focusing solution for a given
ontology. This comprises of checking whether closed queries (CL)
are compatible with fixed queries (FIX), and whether the model set
induced by F indeed determines appropriate queries (DET) for
each input database instance. Another task is the (non)emptiness

problem, which corresponds to checking whether there exists at
least one database that is consistent with a focusing solution.
The next natural problem is entailment of various queries in the
ontology-enriched databases described by a focusing solution.

• We instantiate our general notions by considering a few choices of
ontology languages and scope specifications. For these combina-
tions, we study the decidability and complexity of the introduced
computational problems. We consider Description Logics (DLs),
which range from the members of the DL-Lite family (which is
at the core of industry-grade ontology-based data access systems)
up to expressive DLs likeALCHOIF (which is closely related to
OWL 2, a standard for writing ontologies). In addition, we study
different query languages for specifying the queries in focusing
solutions. Overall our complexity results range from tractability
to undecidability.

• As a by-product of our study of focusing-related reasoning tasks,
we isolate (and solve) variants of classical reasoning tasks in DLs
that are interesting in their own right. For instance, we study
the mixed satisfiability problem for description logics, which re-
quires finding a model of an input ontology where all concept
and role names from a given set have finite extensions. The usual
satisfiability problem and the finite satisfiability problem (which
is often considered in the context of applications of DLs in the
database setting) are special cases of mixed satisfiability. This rea-
soning task can be naturally used for the static analysis of descrip-
tion logic knowledge bases with closed predicates (also known
as DBoxes). By non-trivial adaptations of techniques from finite
model reasoning in DLs, we show worst-case optimal complexity
results for this problem for a variety of DLs. Other relevant prob-
lems are: mixed entailment, defined analogously, and nullability,
related to query emptiness.

An extended version of this paper with proofs is available [16].

2 Preliminaries

As ontology languages we use the DL ALCHOIF and its frag-
ments. Let NI, NC, and NR be countably infinite sets of individual
names, concept names, and role names. If r ∈ NR, then both r and
the inverse r− of r are roles. ALCHOIF concepts are defined as

C,D ::= >
∣∣⊥ ∣∣A ∣∣ {c} ∣∣¬C ∣∣C uD ∣∣C tD ∣∣∃p.C ∣∣ ∀p.C

where A ∈ NC, c ∈ NI, and p is a role; concepts of the form {c}
are called nominals. A concept inclusion is an expression of the form
C v D, where C,D are concepts. A role inclusion is an expression
of the form r v p, where r, p are roles. A functionality assertion is
an expression of the form func(p), where p is a role. A fact is an
expression of the form A(c) or r(c, d) for A ∈ NC, r ∈ NR, and
c, d ∈ NI. An (ALCHOIF) ontologyO is a finite set of concept in-
clusions, role inclusions, functionality assertions, and facts. The DL
that is obtained by disallowing functionality assertions, role inclu-
sions, or nominals is indicated by, respectively, dropping ‘F’, ‘H’,
or ‘O’ from its name. We define the semantics of ontologyO in terms
of instances. A (database) instance I is a set of facts. A signature Σ
is any set of concept and role names. An instance I is over a signa-
ture Σ, if facts in I use only concepts and role names from Σ. The
active domain of I, denoted by adom(I), is the set of all individual
names in the facts of I. For an instance I, we define a function ·I
that maps every concept C to a set CI ⊆ NI, and every role p to a
relation pI ⊆ NI × NI. For each concept name A, and role name r,
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we let

AI = {c | A(c) ∈ I} , rI = {(c, d) | r(c, d) ∈ I} ,

and for the remaining concepts and roles we set

>I = adom(I) , ⊥I = ∅ , {c}I = {c} ,

(C tD)I = CI ∪DI , (C uD)I = CI ∩DI ,

(¬C)I = adom(I) \ CI , (r−)I = {(c, d) | (d, c) ∈ rI} ,

(∃p.C)I = {c | ∃d : (c, d) ∈ pI and d ∈ CI} ,

(∀p.C)I = {c | ∀d : (c, d) ∈ pI implies d ∈ CI} .

We say I is a model ofO, written I |= O, if αI ⊆ βI for each con-
cept or role inclusion α v β ∈ O, pI is a partial function whenever
func(p) ∈ O, and F ∈ I for each fact F ∈ O. Note that by defin-
ing the semantics using sets of facts, we are effectively interpreting
ontologies under the Standard Name Assumption (SNA). That is, the
domain of interpretation is always the set NI, and the interpretation
of individual names is given by the identity function. However, the
active domain of the instance may well be a proper subset of NI.
Note that we adopt the SNA because it is the standard assumption in
databases, not because it is needed to make our setting work.

As query languages we consider variations of conjunctive queries
(CQs). Let CQ be the class of conjunctive queries (primitive positive
first-order formulas) over the signature NC ∪ NR, with the usual se-
mantics. We also consider the class AQ ⊆ CQ of atomic queries,
i.e. queries that retrieve the extension of a given relation symbol in a
given database. If Q ⊆ AQ, we may view Q as a set of predicates.
We also use the class IQ ⊆ AQ of instance queries, that is, atomic
queries over unary relation symbols. We will also discuss UCQ, the
class of unions of conjunctive queries (UCQs), corresponding to pos-
itive existential first-order formulas. For an instance I and a query q
we write JIKq for the set of tuples selected by the query q over the
instance I; if q is Boolean, JIKq is either {ε} or ∅ with ε being the
empty tuple, depending on whether q does or does not hold in I.
We need the notion of certain answers, which is defined as follows.
Given a query q, an ontology O and an instance I, we let JO, IKq
be the intersection of JJ Kq with J ranging over all models of O
satisfying I ⊆ J .

3 Focusing and Associated Problems

In this section, we formally define the notion of focusing solutions,
and present some basic reasoning problems that are relevant for ob-
taining and using them. We first elaborate on the role that (CL), (FIX)
and (DET) play in our framework.

(CL) Closing databases using queries. Assume an ontology O
and a finite database instance I. Under the open-word assumption,
the set of (classical) models of O and I captures all that is possible,
i.e., all possible worlds. In our approach, we use queries to shrink the
set of models by making assertions about the completeness of parts
of the data. This is is inspired by [14] and generalizes the well-known
closed predicates or DBoxes in DLs (see, e.g., [15, 25]).

Definition 1 (Query-based Closing). For an ontology O, a finite in-
stance I, and a set Q of queries, we let CL(O, I, Q) be the set of all
(possibly infinite) instances J such that

I ⊆ J , J |= O , and JIKq = JJ Kq for all q ∈ Q .

Intuitively, CL(O, I, Q) contains exactly the models ofO and I that
provide no new information about the queries in Q compared to the
information given by I alone. When we close a set QCL of queries,
their contents in our application will depend on the current database
alone, and be independent of the used ontology. For example, we
may want to keep a complete table of operating shelters, or of the re-
sponders that are licensed to drive certain type of vehicle. We do not
intend to use the open-world assumption to reason about scenarios
where other shelters and drivers could exist, since they do not.

Example 1. Consider the following ontologyO, instance I and sin-
gleton query set Q:

O =


Driver ≡ ∃hasLicense.> ,

∃hasLicense−.> v License ,
License v Prof t Generic

 ,

I =

{
Driver(Tim) , hasLicense(Tom, id1) ,

Prof(id2) , hasLicense(Ann, id2)

}
,

Q =
{

q(X,Y )← hasLicense(X,Y ),Prof(Y)
}
.

The ontology O says that drivers are exactly those objects that have
a driving license, and that a driving license can be professional or
generic. Consider the consequences of O and I. We can infer that
Tim and Tom are drivers that have driving licenses, but due to the
open-world nature of O we do not know if they are professional
drivers. Suppose we know (have complete knowledge of) all objects
possessing a professional license. This can be stated via the conjunc-
tive query inQ, which retrieves all pairs of objectsX,Y such thatX
has a professional license Y . The set CL(O, I, Q) contains only the
models ofO and I that are compatible with our completeness asser-
tion, and consequently allows us to infer additional information. For
example, in all structures in CL(O, I, Q) both Tim and Tom have
generic licenses, a fact that does not follow from O and I alone.

(FIX) Freezing query answers. We can also use queries to ex-
press completeness assertions about the ontology, similarly as we did
for the data using (CL), again restricting the set of possible worlds.

Definition 2 (Query-based Fixing). For an ontology O, a finite in-
stance I, and a set Q of queries, we let FIX(O, I, Q) be the set of
all (possibly infinite) instances J such that

I ⊆ J , J |= O , and JJ Kq = JO, ∅Kq for all q ∈ Q .

Intuitively, FIX(O, I, Q) is the set of models ofO and I that provide
no new information about the queries in Q compared to the informa-
tion produced by O alone. A set QFIX of fixed queries enables us to
specify “master data”, or information to be frozen during the design
of a system, i.e. information that is independent of database contents
at runtime. In our running example it could be the districts of a city,
or the details of key locations like train stations and airports.

Example 2. Consider the following DL ontology O:

Hospital ≡ PermHospital t FieldHospital ,

PermHospital v ∃hasAddress.> ,

PermHospital(h1) , Hospital(h2) , hasAddress(h2, a) .

The ontology O says that hospitals can either be permanent hospi-
tals or field hospitals, and that a permanent hospital must always
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have an address. The three facts (which are a part of the ontol-
ogy O) say that (i) h1 is a permanent hospital, (ii) h2 is a hospi-
tal, and (iii) h2 has the address a. Let q be the query q(X) ←
Hospital(X), hasAddress(X,Y ), which we use as a completeness
statement for the ontology O, saying that all hospitals that have an
address must be known in advance, i.e., must follow from O alone.
We have JO, ∅Kq = {h1, h2}. In consequence, h1 and h2 are frozen
to be the only hospitals with an address, i.e. for any actual database
instance I, an instance in FIX(O, I, {q}) can describe further hos-
pitals, but they must all be field hospitals.

We can also use the fixed queries to spare our situation-specific
application from reasoning about irrelevant aspects of our potentially
broad ontology. If a query does not have any instances (which is com-
mon in ontologies that define many concepts but only assert facts
about a few) then the effect of fixing a query is that its extension is
empty in all models considered by the system. By fixing aspects of
reality that are captured in the ontology but irrelevant to our applica-
tion, we restrict the ontological reasoning to the specific situation.

Example 3. Assume an ontology O′ containing the axiom

NaturalDisaster ≡ Flood t Earthquake tWildfire t Hurricane

If the query q(X) ← Flood(X) ∨ Wildfire(X) ∨ Hurricane(X)
gets fixed, then NaturalDisaster ≡ Earthquake holds in each model
in FIX(O′, I, {q}) for every instance I, and our system effectively
ignores the possible existence of other natural disasters.

(DET) Determined Queries. For an ontology O and an instance
I, the above points (CL) and (FIX) describe a natural way to shrink
the set of models of O and I. We use the notion of determined
queries to guide this shrinking process. There may be queries QDET

that are neither closed nor frozen, as they depend on both the data and
the ontology, but we would still like their contents to be independent
of the possible worlds (specific models). For example, we may want
to use the ontology to derive the existence of certain facilities in all
shelters and be sure that none other are present in any model, even
though the full facilities are neither explicitly stored in the database
nor hard-coded in the ontology.

Definition 3. Assume a query q and a set Mof database instances.
We say q is determined in M , if JJ1Kq = JJ2Kq holds for all
J1,J2 ∈ M . A set Q of queries is determined in M , if every q ∈ Q
is determined in M .

Intuitively, the above notion helps us address the ambiguity arising
when a query returns different answers in different possible worlds.
From the computational view-point, if a query q is determined in
a set M , then computing the certain answer to q over M (i.e., the
tuples that are in the answer to q in all instances in M ) can be done
by simply evaluating q in a arbitrarily chosen instance from M .

Example 4. Recall Example 2. Observe that the query q(X) ←
PermHospital(X) is not determined in the models of O (under
the usual DL semantics), but is determined in the restricted set
FIX(O, I, Q), for any database instance I.

Focusing Configurations and Solutions. We now formally define
our notion of focusing, which simply combines the ideas described
in points (CL), (FIX), and (DET) above.

Definition 4 (Focusing solutions). A focusing configuration is a tu-
ple

F = (Σ, QCL, QFIX, QDET),

where Σ is a signature, and QCL, QFIX, QDET are sets of queries.
An instance is legal for F if it is a finite instance over Σ. For such
instance I and an ontology O, let

MOD(O,F , I) = CL(O, I, QCL) ∩ FIX(O, I, QFIX).

We call F a focusing solution for O, if the following conditions are
satisfied for all instances I legal for F:

1. if CL(O, I, QCL) 6= ∅, then MOD(O,F , I) 6= ∅;
2. QDET is determined in MOD(O,F , I).

To understand Definition 4, assume an ontology O and a focusing
configuration F = (Σ, QCL, QFIX, QDET). Intuitively, F can be seen
as a description of the data that will be managed by a concrete topic-
specific application derived from the ontology O (possibly covering
a broader range of terms). In particular, such an application will con-
sider only instances over Σ as legal instances. For any such legal
instance I, the open-world view of the target application is restricted
to the set MOD(O,F , I), i.e. the application employs completeness
assumptions specified using queries, as explained in (CL) and (FIX).
For F to be a focusing solution, it has to behave well for all pos-
sible legal database instances. In particular, following the intuition
expressed in (DET), we require that the queries in QDET are deter-
mined in MOD(O,F , I) for each legal I. Finally, the point 1 in
Definition 4 requires that the assertions in QFIX are compatible with
the assertions in QCL, for each legal database instance. For this, each
instance that is consistent with the ontologyO and the completeness
assertions in QCL, must be also consistent with O and all complete-
ness assertions applied simultaneously.

Example 5. Suppose our goal is to create an application that col-
lects evacuation requests from people affected by an emergency. Nat-
urally, the kind of information that needs to be collected depends
heavily on the concrete circumstances, e.g., the type of an emer-
gency, its location, the available resources, etc. Consider the follow-
ing evacuation management ontology O:

ER v ∃requestedBy.Person ,

ER v ∃hasLoc.Location ,

ER v ∃hasEvent.Evac ,

Evac ≡ PreEvac t PostEvac ,

PreEvac v ¬PostEvac ,

ER u ∃hasEvent.PreEvac v ∃hasSeniors.({yes} t {no}) ,
ER u ∃hasEvent.PostEvac v ∃hasInjured.({yes} t {no}) ,

hasInjured v hasVulnerable ,

hasSeniors v hasVulnerable ,

PriorityER ≡ ER u ∃hasVulnerable.{yes} .

The ontology captures the following knowledge. An evacuation re-
quest (ER) must be associated to a person who requested an evacua-
tion and a location (of such person). Moreover, each request is issued
in a context of some response to an emergency. Here, a response is
simply an evacuation, which can either be a preemptive evacuation
(PreEvac), or an evacuation after a disaster strikes (PostEvac). An
evacuation request in the context of a preemptive (resp., post-event)
evacuation must have a Boolean flag to determine the presence of
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senior people (resp., injured persons). A request that includes such
vulnerable people is considered a high priority request. This general
ontology can be focused on (at least) two different scenarios (e.g., for
two different applications): handling preemptive evacuations only, or
handling post-event evacuations only. This can be done using a pair
of focusing configurations as follows:

F1 = (Σ, {ER, hasSeniors}, {PostEvac}, {PriorityER}) ,
F2 = (Σ, {ER, hasInjured}, {PreEvac}, {PriorityER}) .

Here Σ can be any signature (but it is natural to omit, respectively,
PreEvac and PostEvac from it). It is easy to check that both F1 and
F2 are focusing solutions for the above ontology. The first configu-
ration focuses on preemptive evacuations. Since the ontology does
not entail any objects in PostEvac, ‘freezing’ this query causes us
to focus on preemptive evacuations. Concretely, the axiom Evac ≡
PreEvac is entailed: it holds in all instances in MOD(O,F1, I) for
all finite instances I over Σ. In addition,F1 tells us to store complete
information about the relations ER and hasSeniors. If we do so, the
answer to the query PriorityER becomes determined, i.e., there is no
ambiguity about evacuations requests that have a high priority. The
features of F2 are symmetric to those of F1; in particular, ‘freezing’
PreEvac leads to the entailment of Evac ≡ PostEvac.

Reasoning Problems. We now identify key reasoning problems
crucial in obtaining and using focusing solutions. For each prob-
lem the input includes a focusing configuration F ; some problems
additionally take ontologies, database instances, and queries. To be
able to speak about concrete formalisms, we parameterize the prob-
lems by query and ontology languages. We write O:LONT to indi-
cate that the language used for expressing ontologies is LONT (in our
case, a fragment ofALCHOIF). Similarly, we use C:LCL, F:LFIX,
D:LDET, and Q:LQ for sets LCL,LFIX,LDET,LQ of queries.

The main problem is recognizing focusing solutions among focus-
ing configurations.

FOCUS(O:LONT,C:LCL,F:LFIX,D:LDET)

Input: A pair (O,F) where O∈LONT and
F = (Σ, QCL, QFIX, QDET) with Σ ⊆ NC ∪ NR,
QCL ⊆ LCL, QFIX ⊆ LFIX, QDET ⊆ LDET.

Question: Is F a focusing solution to O?

Thus, in FOCUS a candidate focusing configuration is given, and the
task is to decide if it is a focusing solution. Overall, we envision the
following focusing process. When a need for some topic-specific ap-
plication arises, a designer picks an existing ontology O, and comes
up with three (possibly empty) query sets Q0

CL, Q0
FIX, and Q0

DET,
which express a basic specification of data to be handled by the target
application. The goal of a focusing reasoner is then to come up with a
focusing solutionF = (Σ, QCL, QFIX, QDET) that is compatible with
the given specification, i.e., satisfies Q0

CL ⊆ QCL, Q0
FIX ⊆ QFIX, and

Q0
DET ⊆ QDET. The sets Q0

CL and Q0
FIX are extended when stronger

assumptions are needed, and Q0
DET is extended when stronger guar-

antees can be given. We do not prescribe how to produce Σ, but one
obvious option is to take for Σ the set of predicates appearing inQCL.
An ordinary database may be obtained by including in Σ and in QCL

all terms that are known to be relevant, i.e., occur in Q0
DET and Q0

CL;
QDET may then contain all queries over Σ and QFIX is irrelevant.

If we restrict ourselves to query languages that give us a finite
number of candidates (e.g., atomic queries), FOCUS can be used di-
rectly in the search for a solution by applying exhaustive search. This

search can be guided by some preferences of the designer. Note that
there are many trade-offs involved that we leave for future investiga-
tion. For example, the more queries are closed, the easier it is for a
query to be determined, but we must pay the maintenance costs for
the queries we close. On the other hand, if suitable queries are already
determined, it may be desirable to fix as much as is possible with-
out making any instances inconsistent. A basic strategy could then
be to minimize the set QCL of queries, and then maximize the set
QFIX. More sophisticated strategies could involve a specified order
in which the designer prefers queries to be added to QCL, reflecting,
for instance, the cost of maintaining them (size statistics, availabil-
ity, acquisition costs, etc). One could also consider semi-automated
approaches, like a dialog approach where successive solutions are
proposed to the designer, who adjusts the specification, or even the
ontology, and accepts some suggested choices while rejecting others,
thus converging to a satisfactory focusing solution. We leave investi-
gating such strategies to future research.

An additional criterion that is natural in validating candidate fo-
cusing solutions is the existence of at least one database instance that
is consistent with a given focusing solution. This is embodied in the
following decision problem.

EMPTINESS(P)

Input: A pair (O,F) where (O,F) ∈ FOCUS(P).

Question: Is MOD(O,F , I) = ∅ for each I legal for F?

The symbol P above stands for a collection of parameters. Note that
we identify the decision problem FOCUS(P) with the set of its pos-
itive instances; that is, (O,F) ∈ FOCUS(P) means that O and F
are expressed in the languages specified in P and F is a focusing
solution for O. Clearly, a single consistent database instance does
not guarantee that a given focusing solution is useful, but the crite-
rion can help eliminate some utterly useless solutions. We remark
that for focusing configurations of the form F = (Σ, QCL, ∅, ∅) with
QCL ⊆ AQ, non-EMPTINESS amounts to finding a model of O
where each predicate from a given set (concretely, QCL) has a finite
extension. The latter problem, dubbed mixed satisfiability, is a com-
mon generalization of the well-known satisfiability and finite satisfi-
ability problems; it reappears in Section 4.

The previous decision problems are geared towards the system de-
sign phase (they are static analysis problems). The following two
are natural on-line reasoning tasks, which assume that a satisfactory
focusing solution is given. They are reminiscent of the standard sat-
isfiability and entailment problems in logic, and thus also of the basic
problems in ontology-based data access.

CONSISTENCY(P)

Input: A triple (O,F , I), where I is legal for F and
(O,F) ∈ FOCUS(P).

Question: MOD(O,F , I) 6= ∅ ?

ENTAILMENT(Q:LQ,P)

Input: A tuple (O,F , I, q), where I is legal for F ,
(O,F)∈FOCUS(P), and q∈LQ is Boolean.

Question: Is q true in all J ∈ MOD(O,F , I)?

Note that CONSISTENCY is a special case of non-ENTAILMENT.
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4 Concrete problems
In this section we instantiate the abstract reasoning problems with se-
lected query and ontology languages. We discuss how these specific
problems can be solved, and provide complexity results for them.

In the absence of functionality assertions, FOCUS can be solved
within typical complexity bounds if completeness assertions about
data are expressed using instance queries or if there are no complete-
ness assertions about the ontology. If neither is assumed, the problem
is undecidable already for a restricted DL ELI⊥, which allows only
concept inclusions, and these must be built using only u and ∃.

Theorem 1. The problems
- FOCUS(O:ALCHOI,C: IQ,F:AQ,D: CQ),
- FOCUS(O:ALCHOI,C:AQ,F: ∅,D: CQ),
are 2EXPTIME-complete, but
- FOCUS(O: ELI⊥,C:AQ,F: IQ,D: ∅)
is undecidable.

Logics allowing nominals and disjunction, like ALCHOI, are able
to express fixing concepts and roles. Consequently, the conditions
imposed on models by a set QFIX ⊆ AQ of fixed queries can be
compiled into the ontology. This allows to reinterpret the two points
in Definition 4 as natural variants of two classical problems in DLs.
Point 1 can be cast as the following NULLABILITY problem.

NULLABILITY(O:LONT,C:LCL,Q:LQ)

Input: A tuple (O,Σ, QCL, q) with O ∈ LONT, Σ ⊆ NC ∪
NR, QCL ⊆ LCL, and q ∈ LQ.

Question: Do all I over Σ with CL(O, I, QCL) 6= ∅ admit J ∈
CL(O, I, QCL) with JJ Kq = ∅?

NULLABILITY is closely related to the query emptiness problem,
which is known to be NEXPTIME-complete for atomic queries,
ALCI ontologies, and no closed predicates [3]. We show that
NULLABILITY(O:ALCHOI,C: IQ,Q:UCQ) is in 2EXPTIME;
this is done by reduction to query entailment for ALCHOI with
an exponential instance [29]. Allowing closed roles (C:AQ) quickly
leads to undecidability, which carries over to FOCUS. 2EXPTIME-
hardness carries over from query entailment forALCO [27]. Point 2
in Definition 4 boils down to a variant of the classical query entail-
ment problem, dubbed MIXED-ENTAILMENT, that only considers
models where selected predicates have finite extensions.

MIXED-ENTAILMENT(O:LONT,Q:LQ)

Input: A tuple (O,Σ, I, q) withO ∈ LONT, Σ ⊆ NC ∪NR,
I an instance, and q ∈ LQ Boolean.

Question: Does q hold in each model J of O such that I ⊆ J
and RJ is finite for all R ∈ Σ?

MIXED-ENTAILMENT generalizes both finite and unre-
stricted entailment, but for logics enjoying finite controllabil-
ity, like ALCHOI, the three variants coincide, which makes
MIXED-ENTAILMENT 2EXPTIME-complete [10] and establishes
the lower bounds for FOCUS.

For the problem of entailment with focusing solutions, we handle
fixed atomic queries and closed conjunctive queries.

Theorem 2. The problem
- ENTAILMENT(O:ALCHOI,C: CQ,F:AQ,Q: CQ)

is 2EXPTIME-complete in combined complexity, and CONP-
complete in data complexity.

For combined complexity, the lower bound carries over from CQ en-
tailment in ALCI [23] and the upper bound is obtained by a careful
reduction to UCQ entailment forALCHOI [10]. For data complex-
ity, the lower bound carries over from IQ entailment in a sublogic of
ALCHOI [37]. For the upper bound, the approach is similar to that
used in [13, 25], where a guess-and-check algorithm is used to find
concise representations of tree-like counter-models.

The emptiness problem can be tackled for full ALCHOIF , if all
completeness assertions are expressed using atomic queries.

Theorem 3. The problem
- EMPTINESS(O:ALCHOIF ,C:AQ,F:AQ,D: CQ)

is in PTIMENEXPTIME,
- EMPTINESS(O:ALCHOIF ,C:AQ,F: ∅,D: CQ)

is CONEXPTIME-complete, and for ontologies without facts
- EMPTINESS(O:ALCHIF ,C:AQ,F: ∅,D: CQ)

is EXPTIME-complete.

The two lower bounds above are inherited from general satisfiability
in ALCHOIF [41] and ALCHIF [38]. For the upper bounds, we
cast EMPTINESS as the dual of a variant of the classical satisfiabil-
ity problem, dubbed MIXED-SAT, where one looks for a model in
which selected predicates have finite extension.

MIXED-SAT(LONT)

Input: A pair (O,Σ) with O∈LONT, Σ ⊆ NC ∪ NR.

Question: Is there a model J ofO such that RJ is finite for all
R ∈ Σ?

We solve this problem by adapting a method previously used for
finite and unrestricted satisfiability [24, 31, 32]. This involves a re-
duction to a generalization of the integer programming problem,
which, as we argue, can be solved algorithmically and yields worst-
case optimal upper bounds for ALCHOIF and ALCHIF . In the
end, we can show that MIXED-SAT(O:ALCHOIF) is NEXP-
TIME-complete, while MIXED-SAT(O:ALCHIF) is EXPTIME-
complete. This shows that, in terms of computational complexity,
mixed satisfiability in the above two DLs is computationally not
more expensive than ordinary or finite satisfiability. We remark that
this problem can be naturally seen as a static analysis problem for DL
knowledge bases with closed predicates. Following the terminology
of [25], let us consider a pair (T ,ΣC) of a DL TBox T and a set
ΣC of closed predicates. A natural static analysis problem is to test
if there is at least one finite ABox that is consistent with (T ,ΣC),
i.e., an ABox A such that T and A have a model that respects the
closed predicates in ΣC . This problem is non-trivial for DLs that do
not have the finite model property (likeALCHOIF orALCHIF ),
and is equivalent to checking whether (T ,ΣC) is a positive instance
of MIXED-SAT.

The case of DL-Lite . We now turn our attention to the DL-Lite
family of DLs. We look at three members of this family, the first
and the third of which do not enjoy the finite model property (i.e.
satisfiability does not imply the existence of a finite model). A
DL-LiteHOFBool ontology contains only statements of the forms

A1 u . . . uAk v B1 t . . . tBm ,

A1 v ∃r.> , > v ∀r.B1 , r v s , func(r) ,
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where k,m ≥ 1, Ai and Bj are >, ⊥, nominals or concept names,
r, s are roles, and functional roles have no subroles: func(s) ∈ O
and r v s ∈ O imply r = s. The DL DL-LiteOBool is obtained by
additionally prohibiting role inclusions and functionality assertions.
The DL DL-LiteHF is obtained from DL-LiteHOFBool by prohibiting
nominals, as well as t and u; that is, all concept inclusions are of the
form A v B, A v ∃r.>, or > v ∀r.B. We have

DL-LiteHF, DL-LiteOBool ⊆ DL-LiteHOFBool ⊆ ALCHOIF .

For DL-LiteOBool we regain decidability of FOCUS with com-
pleteness assertions about both the data and the ontology given by
atomic queries (cf. Theorem 1).

Theorem 4. The problem
- FOCUS(O:DL-LiteOBool,C:AQ,F:AQ,D: CQ)

is in 2EXPTIME.

The proof essentially boils down to a reduction to
FOCUS(O:ALCOI,C: IQ,F:AQ,D: CQ), relying on the
syntactic restrictions of DL-Lite .

The same restrictions open the way to different algorithms and
lower complexity for EMPTINESS.

Theorem 5. The problem
- EMPTINESS(O:DL-LiteHOFBool ,C:AQ,F:AQ,D: CQ)

is in PTIMENP,
- EMPTINESS(O:DL-LiteHOFBool ,C:AQ,F: ∅,D: CQ)

is CONP-complete, and
- EMPTINESS(O:DL-LiteHF ,C:AQ,F: ∅,D: CQ)

is PTIME-complete.

The upper bounds for O:DL-LiteHOFBool above are obtained by re-
fining our reduction to generalized integer programming and limit-
ing the number of variables with non-zero values [12, 33]; the lower
bound is inherited from satisfiability in propositional logic. As a
side result we obtain that MIXED-SAT(O:DL-LiteHOFBool ) is NP-
complete. The upper bound for DL-LiteHF can be obtained by ap-
plying the cycle reversion technique [35]. In particular, mixed satisfi-
ability in DL-LiteHF can be reduced in polynomial time to ordinary
satisfiability, which is known to be tractable.

5 Related Work
The focusing framework relates to multiple notions and problems
investigated within the KR&R and database theory fields: module
extraction, closed predicates, implicit definability, query emptiness,
and finite model reasoning.

In the context of module extraction, roughly speaking, a fragment
O1 of an ontology O2 is called a module if the terms defined in O1

have precisely the meaning they have in O2. Further, one usually re-
quires that O1 and O2 agree on the entailment of inclusions over a
given signature Σ. In this way, an application whose scope is limited
to the entities in Σ can safely use O1 instead of the full O2; see e.g.
[9, 11, 18, 21, 22, 34, 39] and references therein for more details. Un-
like module extraction, focusing will in general change the meaning
of terms (see Example 5, where the equivalence Evac ≡ PreEvac is
implied by first focusing solution, but not by the initial ontology).

Closed predicates (aka DBoxes) are used in DLs to combine
closed-world and open-world reasoning by declaring certain pred-
icates as closed and therefore forcing them to close their exten-
sions [15, 25]. Definition 1 thus generalizes the idea of closed pred-
icates in DLs. Closing extensions of predicates is similar in spirit
to circumscription [26], but instead of minimizing the inference of

new tuples in selected predicates, such inferences are prohibited al-
together. Circumscription has been studied both for expressive and
lightweight DLs [7, 8]. Note that closed predicates, or other kinds of
statements to assert information completeness have also been studied
in databases (see, e.g., [2, 5, 14]). In particular, Fan and Geerts [14]
study completeness assertions made using queries, and explored rea-
soning about databases and queries in their presence.

When QFIX = ∅ and QCL ⊆ AQ, the determinacy condition in
Definition 4 can be cast as mixed implicit definability: each query
in QDET must be implicitly definable over QCL under O over mod-
els where predicates from Σ have finite extensions. The reduction of
mixed implicit definability to mixed query entailment, underlying a
part of the proof of Theorem 1, is the same as in the finite or unre-
stricted case [40].

Our nullability problem is related to the query emptiness and
schema-level positive query implication (∃PQI) problems [3, 5]. For
Boolean queries, these three problems effectively collapse. For non-
Boolean queries, there is a slight divergence. Consider the ontology
O = {{c} v ∃r.A}, the instance query A(x), and suppose the sig-
nature of legal databases is Σ = ∅. In the sense of [3, 5], this yields
a positive instance, i.e., there is a database (the empty database) in
which the certain answer to A(x) is empty. In our setting, this is
a negative instance of the nullability problem (the extension of A
always has an element, still we cannot identify it via a constant).
Note that the undecidability result for nullability with ELI⊥ on-
tologies already holds for Boolean CQs of the form ∃xA(x). This
result thus contributes to the research on the ∃PQI problem since
ELI⊥ can be translated into guarded TGDs without constants but
extended with constraints, providing a new class of constraints for
which ∃PQI is undecidable.

Related to mixed satisfiability are the works on finite model rea-
soning in DLs and fragments of first-order logic [17, 20, 24, 31,
33, 35, 36]. In particular, we adapt and extend the inequations-based
technique from [24, 31] to establish our upper bounds.

6 Discussion

In this paper, we have introduced focusing, which makes it possible
to reuse the knowledge in an ontology as a basis for the on-demand
design of data-centric applications. We have isolated relevant compu-
tational problems and provided complexity and undecidability results
for selected combinations of description logics and query languages.
These results are not meant to paint a complexity landscape, or to
identify the best formalisms to be used for focusing. Rather, they
constitute a preliminary study of the potential and the limits of the
focusing framework. From here one could go in several directions.

One is to push the decidability results towards more and more ex-
pressive logics, for instance, involving transitive roles or counting re-
strictions. A more practical goal is to find languages for which all key
problems are decidable with reasonable complexity bounds. Here, a
natural strategy would be to try to pinpoint the complexity of FOCUS
and ENTAILMENT for logics from the DL-Lite family.

A more open-ended goal is finding the best focusing solutions.
This calls for suitable ways to capture the designer’s preferences and
to derive additional queries that may be closed or fixed. A related
challenge is to understand how completeness assertions can be used
to optimize queries or to alleviate the complexity of reasoning by
ensuring that the specific ontology is expressible in a simpler logic.
E.g., by freezing a predicate in every disjunction one could make the
ontology effectively Horn. Are there ways to decide whether this is
the case, and if so, can this be leveraged by algorithms?
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Garcı́a, Filip Murlak, Magdalena Ortiz, and Mantas Simkus, ‘On-
tology focusing: Knowledge-enriched databases on demand’, CoRR,
abs/1904.00195, (2019).
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