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Abstract. Reiter’s HS-Tree is one of the most popular diagnostic
search algorithms due to its desirable properties and general appli-
cability. In sequential diagnosis, where the addressed diagnosis pro-
blem is subject to successive change through the acquisition of addi-
tional knowledge about the diagnosed system, HS-Tree is used in a
stateless fashion. That is, the existing search tree is discarded when
new knowledge is obtained, albeit often large parts of the tree are still
relevant and have to be rebuilt in the next iteration, involving redun-
dant operations and costly reasoner calls. As a remedy, we propose
DynamicHS, a variant of HS-Tree that avoids these redundancy is-
sues by maintaining state throughout sequential diagnosis while pre-
serving all desirable properties of HS-Tree. Evaluations in a problem
domain where HS-Tree is the state-of-the-art diagnostic method re-
veal stable and significant time savings achieved by DynamicHS.

1 Introduction

In model-based diagnosis, given a diagnosis problem instance
(DPI)—consisting of the system description, the system compo-
nents, and the observations—a (minimal) diagnosis is an (irreduci-
ble) set of components that, when assumed abnormal, leads to con-
sistency between system description (predicted behavior) and obser-
vations (real behavior). In many cases, there is a substantial number
of competing (minimal) diagnoses. To isolate the actual diagnosis
(which pinpoints the actually faulty components), sequential diagno-
sis [11] methods collect additional system observations (called mea-
surements) to gradually refine the set of diagnoses.

One of the most popular and widely used algorithms for the com-
putation of diagnoses in model-based diagnosis is Reiter’s HS-Tree
[32]. It is adopted in various domains such as for the debugging of
software [2, 53] ontologies and knowledge bases [16, 23, 27, 33],
hardware [17], recommender systems [15], configuration systems
[13], and circuits [32]. The reasons for its widespread adoption are
that (i) it is broadly applicable, because all it needs is a system des-
cription in some monotonic knowledge representation language for
which a sound and complete inference method exists, (ii) it is sound
and complete, as it computes only minimal diagnoses and can, in
principle, output all minimal diagnoses, and (iii) it computes diagno-
ses in best-first order according to a given preference criterion.

However, HS-Tree per se does not encompass any specific provi-
sions for being used in an iterative way. In other words, the DPI to be
solved is assumed constant throughout the execution of HS-Tree. As
a consequence of that, the question we address in this work is whet-
her HS-Tree can be optimized for adoption in a sequential diagnosis
scenario, where the DPI to be solved is subject to successive change
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(information acquisition through measurements). Already Raymond
Reiter, in his seminal paper [32] from 1987, asked:

When new diagnoses do arise as a result of system measure-
ments, can we determine these new diagnoses in a reasonable
way from the (. . . ) HS-Tree already computed in determining
the old diagnoses?

To the best of our knowledge, no algorithm has yet been proposed
that sheds light on this very question.

As a result, state-of-the-art sequential approaches which draw on
HS-Tree for diagnosis computation handle the varying DPI to be
solved by re-invoking HS-Tree each time a new piece of system
knowledge (measurement outcome) is obtained. This amounts to a
discard-and-rebuild usage of HS-Tree, where the search tree produ-
ced in one iteration is dropped prior to the next iteration, where a new
one is built from scratch. As the new tree obtained after incorpora-
ting the information about one measurement outcome usually quite
closely resembles the existing tree, this approach generally requires
substantial redundant computations, which often involve a significant
number of expensive reasoner calls.

Motivated by that, we propose DynamicHS, a stateful variant
of HS-Tree that pursues a reuse-and-adapt strategy and is able to
manage the dynamicity of the DPI throughout sequential diagnosis
while avoiding the mentioned redundancy issues. The idea is to main-
tain one (successively refined) tree data structure and to exploit the
information it contains to enhance computations in the subsequent
iteration(s), e.g., by circumventing costly reasoner invocations. The
main objective of DynamicHS is to allow for a better efficiency than
HS-Tree while maintaining all aforementioned advantages (genera-
lity, soundness, completeness, best-first property) of the latter. Eva-
luations on various knowledge-base debugging problems—a dom-
ain where HS-Tree is the prevalent means for diagnosis computa-
tion [16, 20, 23, 27, 33, 44]—prove the reasonability of DynamicHS,
which exhibits significant (up to more than 70 %, on average more
than 50 %) performance gains over HS-Tree and tops the latter in
more than 98 % of the executed experiments.

2 Preliminaries
We briefly characterize technical concepts used throughout this
work, based on the framework of [33] which is (slightly) more ge-
neral [38] than Reiter’s theory of diagnosis [32].2

Diagnosis Problem Instance (DPI). We assume that the diagnosed
system, consisting of a set of components {c1, . . . , ck}, is descri-
bed by a finite set of logical sentences K ∪ B, where K (possi-

2The main reason for using this more general framework is its ability to
handle negative measurements (things that must not be entailed), which are
helpful, e.g., for diagnosing knowledge bases [13, 44].
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bly faulty sentences) includes knowledge about the behavior of the
system components, and B (correct background knowledge) com-
prises any additional available system knowledge and observations.
More precisely, there is a one-to-one relationship between sentences
ax i ∈ K and components ci, where ax i describes the nominal beha-
vior of ci (weak fault model). E.g., if ci is an AND-gate in a circuit,
then ax i := out(ci) = and(in1(ci), in2(ci)); B in this case might
contain sentences stating, e.g., which components are connected by
wires, or observed circuit outputs. The inclusion of a sentence ax i

in K corresponds to the (implicit) assumption that ci is healthy. Evi-
dence about the system behavior is captured by sets of positive (P )
and negative (N ) measurements [11, 13, 32]. Each measurement is
a logical sentence; positive ones p ∈ P must be true and nega-
tive ones n ∈ N must not be true. The former can be, depending
on the context, e.g., observations about the system, probes or requi-
red system properties. The latter model properties that must not hold
for the system, e.g., if K is a medical knowledge base to be debug-
ged, a negative test case might be “every tumor causes pain.” We call
〈K,B,P ,N 〉 a diagnosis problem instance (DPI).
Diagnoses. Given that the system description along with the posi-
tive measurements (under the assumption K that all components are
healthy) is inconsistent, i.e., K ∪ B ∪ P |= ⊥, or some negative me-
asurement is entailed, i.e., K ∪ B ∪ P |= n for some n ∈ N , some
assumption(s) about the healthiness of components, i.e., some sen-
tences inK, must be retracted. We call such a set of sentencesD ⊆ K
a diagnosis for the DPI 〈K,B,P ,N 〉 iff (K \ D) ∪ B ∪ P 6|= x for
all x ∈ N ∪ {⊥}. We say that D is a minimal diagnosis for dpi iff
there is no diagnosis D′ ⊂ D for dpi . The set of minimal diagnoses
is representative for all diagnoses (under the weak fault model [24]),
i.e., the set of all diagnoses is exactly given by the set of all supersets
of all minimal diagnoses. Therefore, diagnosis approaches usually
restrict their focus to only minimal diagnoses. In the following, we
denote the set of all minimal diagnoses for a DPI dpi by diag(dpi).
We furthermore denote by D∗ the actual diagnosis (sought solution
for DPI) which pinpoints the actually faulty axioms, i.e., all elements
ofD∗ are in fact faulty and all elements ofK\D∗ are in fact correct.
Conflicts. Useful for diagnosis computation is the notion of a con-
flict [11, 32]. A conflict is a set of healthiness assumptions for com-
ponents ci that cannot all hold given the current knowledge about the
system. More formally, C ⊆ K is a conflict for the DPI 〈K,B,P ,N 〉
iff C∪B∪P |= x for some x ∈ N∪{⊥}. We call C a minimal conflict
for dpi iff there is no conflict C′ ⊂ C for dpi . In the following, we
denote the set of all minimal conflicts for a DPI dpi by conf(dpi).
A (minimal) diagnosis for dpi is then a (minimal) hitting set of all
minimal conflicts for dpi [32]. X is a hitting set of a collection of
sets S iff X ⊆

⋃
Si∈S Si and X ∩ Si 6= ∅ for all Si ∈ S.

Sequential Diagnosis. Given multiple minimal diagnoses for a DPI,
a sequential diagnosis process can be initiated. It involves a recurring
execution of four phases, (i) computation of a set of leading (e.g.,
most probable) minimal diagnoses, (ii) selection of the best measu-
rement based on these, (iii) conduction of measurement actions, and
(iv) exploitation of the measurement outcome to refine the system
knowledge. The goal in sequential diagnosis is to achieve sufficient
diagnostic certainty (e.g., a single or highly probable remaining di-
agnosis) with highest efficiency. At this, the overall efficiency is de-
termined by the costs for measurement conduction and for computa-
tions of the diagnosis engine. Whereas the former—which is not the
topic of this work—can be ruled by proposing appropriate (low-cost,
informative) measurements [11, 30, 35, 39, 40, 41, 44], the latter is
composed of the time required for diagnosis computation, for mea-
surement selection, as well as for the system knowledge update. We

Algorithm 1 Sequential Diagnosis
Input: DPI dpi0 := 〈K,B,P,N 〉, probability measure pr , number ld (≥ 2) of

minimal diagnoses to be computed per iteration, heuristic heur for measurement
selection, boolean dynamic (use DynamicHS if true, HS-Tree otherwise)

Output: {D} where D is the only remaining diagnosis for the extended DPI
〈K,B,P ∪ P ′,N ∪ N ′〉

1: P ′ ← ∅,N ′ ← ∅ . performed measurements
2: DX ← ∅,D× ← ∅, state← 〈[ [] ], [ ], ∅, ∅〉 . initial state of DynamicHS
3: while true do
4: if dynamic then
5: 〈D, state〉 ← DYNAMICHS(dpi0,P

′,N ′, pr , ld,DX,D×, state)
6: else
7: D← HS-TREE(dpi0,P

′,N ′, pr , ld)
8: if |D| = 1 then return D
9: mp← COMPUTEBESTMEASPOINT(D, dpi0,P

′,N ′, pr , heur)
10: outcome ← PERFORMMEAS(mp) . oracle inquiry (user interaction)
11:

〈
P ′,N ′

〉
← ADDMEAS(mp, outcome,P ′,N ′)

12: if dynamic then
13: 〈DX,D×〉 ← ASSIGNDIAGSOKNOK(D, dpi0,P

′,N ′)

address the efficiency optimization problem in sequential diagnosis
by suggesting new methods (DynamicHS algorithm) for the diagno-
sis computation and knowledge update processes.

3 DynamicHS Algorithm
Inputs and Outputs. DynamicHS (Alg. 2) accepts the following ar-
guments: (1) an initial DPI dpi0 = 〈K,B,P ,N 〉, (2) the already
accumulated positive and negative measurements P ′ and N ′, (3) a
probability measure pr (allowing to compute the probability of diag-
noses), (4) a stipulated number ld ≥ 2 of diagnoses to be returned,
(5) the set of those diagnoses returned by the previous DynamicHS
run that are consistent (DX) and those that are inconsistent (D×)
with the latest added measurement, and (6) a tuple of variables state
(cf. Alg. 2), which altogether describe DynamicHS’s current state. It
outputs the ld (if existent) minimal diagnoses of maximal probability
wrt. pr for the DPI 〈K,B,P ∪ P ′,N ∪N ′〉.
Embedding in Sequential Diagnosis Process. Alg. 1 sketches a ge-
neric sequential diagnosis algorithm and shows how it accommoda-
tes DynamicHS (line 5) or, alternatively, Reiter’s HS-Tree (line 7), as
methods for iterative diagnosis computation. The algorithm iterates
in a while-loop (line 3) until the solution space of minimal diagno-
ses includes only a single element. This is the case iff a diagnosis
set D with |D| = 1 is output (line 8) since both DynamicHS and
HS-Tree are complete and always attempt to compute at least two
diagnoses (ld ≥ 2). On the other hand, as long as |D| > 1, the al-
gorithm seeks to acquire additional information to rule out further
elements in D. To this end, the best next measurement point mp is
computed (line 9), using the current system information—dpi0, D,
and acquired measurements P ′, N ′—as well as the given probabi-
listic information pr and some measurement selection heuristic heur
(which defines what “best” means, cf. [35]). The conduction of the
measurement at mp (line 10) is usually accomplished by a qualified
user (oracle) that interacts with the sequential diagnosis system, e.g.,
an electrical engineer for a defective circuit, or a domain expert in
case of a faulty ontology. The measurement point mp along with its
result outcome are used to formulate a logical sentence m that is
either added to P ′ if m constitutes a positive measurement, and to
N ′ otherwise (line 11). Finally, if DynamicHS is adopted, the set
of diagnoses D is partitioned into those consistent (DX) and those
inconsistent (D×) with the newly added measurement m (line 13).
Reiter’s HS-Tree. DynamicHS inherits many of its aspects from
Reiter’s HS-Tree. Hence, we first recapitulate HS-Tree and then fo-
cus on the differences to and idiosyncrasies of DynamicHS.

HS-Tree computes minimal diagnoses for dpi = 〈K,B, P ∪
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P ′,N ∪ N ′〉 in a sound, complete3 and best-first way. Starting from
a priority queue of unlabeled nodes Q, initially comprising only an
unlabeled root node, the algorithm continues to remove and label the
first ranked node from Q (GETANDDELETEFIRST) until all nodes
are labeled (Q = [ ]) or ld minimal diagnoses have been compu-
ted. The possible node labels are minimal conflicts (for internal tree
nodes) and valid as well as closed (for leaf nodes). All minimal
conflicts that have already been computed and used as node labels
are stored in the (initially empty) set Ccalc. Each edge in the con-
structed tree has a label. For ease of notation, each tree node nd
is conceived of as the set of edge labels along the branch from the
root node to itself. E.g., the node at location 12© in iteration 1 of
Fig. 2 is referred to as {1, 2, 5}. Once the tree has been comple-
ted (Q = [ ]), i.e., there are no more unlabeled nodes, it holds that
diag(dpi) = {nd | nd is labeled by valid}.

To label a node nd, the algorithm calls a labeling function (LABEL)
which executes the following tests in the given order and returns as
soon as a label for nd has been determined:
(L1) (non-minimality): Check if nd is non-minimal (i.e. whether

there is a node n with label valid where nd ⊇ n). If so, nd
is labeled by closed .

(L2) (duplicate): Check if nd is duplicate (i.e. whether nd = n for
some other n in Q). If so, nd is labeled by closed .

(L3) (reuse label): Scan Ccalc for some C such that nd ∩ C = ∅. If
so, nd is labeled by C.

(L4) (compute label): Invoke FINDMINCONFLICT, a (sound and
complete) minimal conflict searcher, e.g., QuickXPlain [22],
to get a minimal conflict for 〈K \ nd,B,P ∪ P ′,N ∪N ′〉. If
a minimal conflict C is output, nd is labeled by C. Otherwise,
if ’no conflict’ is returned, then nd is labeled by valid .

All nodes labeled by closed or valid have no successors and are
leaf nodes. For each node nd labeled by a minimal conflict L, one
outgoing edge is constructed for each element e ∈ L, where this
edge is labeled by e and pointing to a newly created unlabeled node
nd ∪ {e}. Each new node is added to Q such that Q’s sorting is
preserved (INSERTSORTED). Q might be, e.g., (i) a FIFO queue,
entailing that HS-Tree computes diagnoses in minimum-cardinality-
first order (breadth-first search), or (ii) sorted in descending order by
pr , where most probable diagnoses are generated first (uniform-cost
search; for details see [33, Sec. 4.6]).

Finally, note the statelessness of Reiter’s HS-Tree, reflected by Q
initially including only an unlabeled root node, and Ccalc being ini-
tially empty. That is, a HS-Tree is built from scratch in each iteration,
every time for different measurement sets P ′,N ′.
Dynamicity of DPI in Sequential Diagnosis. In the course of se-
quential diagnosis (Alg. 1), where additional system knowledge is
gathered in terms of measurements, the DPI is subject to gradual
change—it is dynamic. At this, each addition of a new (informative)
measurement to the DPI also effectuates a transition of the sets of
(minimal) diagnoses and (minimal) conflicts. Whereas this fact is of
no concern to a stateless diagnosis computation strategy, it has to be
carefully taken into account when engineering a stateful approach.
Towards Stateful Hitting Set Computation. To understand the ne-
cessary design decisions to devise a sound and complete stateful hit-
ting set search, we look at more specifics of the conflicts and diagno-
ses evolution in sequential diagnosis:4

Property 1. Let dpij = 〈K,B,P ,N 〉 be a DPI and let T be Reiter’s

3Unlike Reiter, we assume that only minimal conflicts are used as node
labels. Thus, the issue pointed out by [18] does not arise.

4See [33, Sec. 12.4] for a more formal treatment and proofs.

HS-Tree for dpij (executed until) producing the diagnoses D where
|D| ≥ 2. Further, let dpij+1 be the DPI resulting from dpij by
adding an informative5 measurement m to either P or N . Then:
1. T is not a correct HS-Tree for dpij+1, i.e., (at least) some node

labeled by valid in T is incorrectly labeled.
That is, to reuse T for dpij+1, T must be updated.

2. For all D′ ∈ diag(dpij+1) there is some D ∈ diag(dpij) such
that D′ ⊇ D.
That is, minimal diagnoses can grow or remain unchanged, but
cannot shrink. Consequently, to reuse T for sound and complete
minimal diagnosis computation for dpij+1, existing nodes must
never be reduced—either a node is left as is, deleted as a whole,
or (prepared to be) extended.

3. For all C ∈ conf(dpij) there is some C′ ∈ conf(dpij+1) such
that C′ ⊆ C.
That is, existing minimal conflicts can only shrink or remain un-
affected, but cannot grow. Hence, priorly computed minimal con-
flicts (for an old DPI) might not be minimal for the current DPI.
In other words, node-labeling conflicts in T can, but do not need
to be, correct for dpij+1.

4. (a) There is some C ∈ conf(dpij) for which there is a C′ ∈
conf(dpij+1) with C′ ⊂ C, and/or
(b) there is some Cnew ∈ conf(dpij+1) where Cnew 6⊆ C and
Cnew 6⊇ C for all C ∈ conf(dpij).
That is, (a) some minimal conflict is reduced in size, and/or
(b) some entirely new minimal conflict (not in any subset-
relationship with existing ones) arises. Some existing node in T
which represents a minimal diagnosis for dpij (a) can be deleted
since it would not be present when using C′ as node label in T
wherever C is used, or (b) must be extended to constitute a diag-
nosis for dpij+1, since it does not hit Cnew .

Major Modifications to Reiter’s HS-Tree. Based on Property 1, the
following principal amendments to Reiter’s HS-Tree are necessary to
make it a properly-working stateful diagnosis computation method:
(Mod1) Non-minimal diagnoses (test (L1) in HS-Tree) and dupli-
cate nodes (test (L2)) are stored in collections D⊃ and Qdup, re-
spectively, instead of being closed and discarded.
Justification: Property 1.2 suggests to store also non-minimal diag-
noses, as they might be (sub-branches of) minimal diagnoses in the
subsequent iteration. Further, Property 1.4(a) suggests to record all
duplicates for completeness of the diagnosis search. Because, some
node nd representing this duplicate in the current tree could become
obsolete due to the shrinkage of some conflict, and the duplicate
might be non-obsolete and eligible to replace nd in the tree.
(Mod2) Each node nd is no longer identified with the set of edge
labels along its branch, but as an ordered list of these edge la-
bels. In addition, an ordered list of the conflicts used to label in-
ternal nodes along this branch is stored in terms of nd.cs. E.g., for
node nd at location 9© in iteration 1 of Fig. 1, nd = [2, 5] and
nd.cs = [〈1, 2〉 , 〈1, 3, 5〉].
Justification: (Property 1.4) The reason for storing both the edge la-
bels and the internal node labels as lists lies in the replacement of ob-
solete tree branches by stored duplicates. In fact, any duplicate used
to replace a node must correspond to the same set of edge labels as
the replaced node. However, in the branch of the obsolete node, some
node-labeling conflict has been reduced to make the node redundant,
whereas for a suitable duplicate replacing the node, no redundancy-

5That is, adding m to the (positive or negative) measurements of the DPI
effectuates an invalidation of some diagnosis in D.
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Algorithm 2 DynamicHS

Input: . tuple
〈
dpi,P ′,N ′, pr , ld,DX,D×, state

〉
comprising

• a DPI dpi = 〈K,B,P,N 〉
• the acquired sets of positive (P ′) and negative (N ′) measurements so far
• a function pr assigning a fault probability to each element inK
• the number ld of leading minimal diagnoses to be computed
• the set DX of all elements of the set Dcalc (returned by the previous DYNA-

MICHS run) which are minimal diagnoses wrt. 〈K,B,P ∪ P ′,N ∪ N ′〉
• the set D× of all elements of the set Dcalc (returned by the previous DYNA-

MICHS run) which are no diagnoses wrt. 〈K,B,P ∪ P ′,N ∪ N ′〉
• state = 〈Q,Qdup,D⊃,Ccalc〉 where

– Q is the current queue of unlabeled nodes,
– Qdup is the current queue of duplicate nodes,
– D⊃ is the current set of computed non-minimal diagnoses,
– Ccalc is the current set of computed minimal conflict sets.

Output: tuple 〈D, state〉 where

• D is the set of the ld (if existent) most probable (as per pr ) minimal diagnoses
wrt. 〈K,B,P ∪ P ′,N ∪ N ′〉
• state is as described above

1: procedure DYNAMICHS(dpi,P ′,N ′, pr , ld,DX,D×, state)
2: Dcalc ← ∅
3: state← UPDATETREE(dpi,P ′,N ′, pr ,DX,D×, state)
4: while Q 6= [ ] ∧ ( |Dcalc| < ld ) do
5: node← GETANDDELETEFIRST(Q) . node is processed
6: if node ∈ DX then . DX includes only min...
7: L← valid . ...diags wrt. current DPI
8: else
9: 〈L, state〉 ← DLABEL(dpi,P ′,N ′, pr , node,Dcalc, state)

10: if L = valid then
11: Dcalc ← Dcalc ∪ {node} . node is a min diag wrt. current DPI
12: else if L = nonmin then
13: D⊃ ← D⊃ ∪ {node} . node is a non-min diag wrt. current DPI
14: else
15: for e ∈ L do . L is a min conflict wrt. current DPI
16: nodee ← APPEND(node, e) . nodee is generated
17: nodee.cs← APPEND(node.cs, L)
18: if nodee ∈ Q ∨ nodee ∈ D⊃ then
19: . nodee is (set-equal) duplicate of some node in Q or D⊃
20: Qdup ← INSERTSORTED(nodee,Qdup, card, <)
21: else
22: Q← INSERTSORTED(nodee,Q, pr , >)
23: return 〈Dcalc, state〉

24: procedure DLABEL(〈K,B,P,N 〉,P ′,N ′, pr , node,Dcalc, state)
25: for nd ∈ Dcalc do
26: if node ⊃ nd then . node is a non-min diag
27: return 〈nonmin, state〉
28: for C ∈ Ccalc do . Ccalc includes conflicts wrt. current DPI
29: if C ∩ node = ∅ then . reuse (a subset of) C to label node
30: X ← FINDMINCONFLICT(〈C,B,P ∪ P ′,N ∪ N ′〉)
31: if X = C then
32: return 〈C, state〉
33: else . X ⊂ C
34: state← PRUNE(X, state, pr)
35: return 〈X, state〉
36: L← FINDMINCONFLICT(〈K \ node,B,P ∪ P ′,N ∪ N ′〉)
37: if L = ’no conflict’ then . node is a diag
38: return 〈valid, state〉
39: else . L is a new min conflict (/∈ Ccalc)
40: Ccalc ← Ccalc ∪ {L}
41: return 〈L, state〉

42: procedure UPDATETREE(dpi,P ′,N ′, pr ,DX,D×, state)
43: for nd ∈ D× do . search for redundant nodes among invalidated diags
44: if REDUNDANT(nd, dpi) then
45: state← PRUNE(X, state, pr)
46: for nd ∈ D× do . add all (non-pruned) nodes in D× to Q
47: Q← INSERTSORTED(nd,Q, pr , >)
48: D× ← D× \ {nd}
49: for nd ∈ D⊃ do . add all (non-pruned) nodes in D⊃ to Q, which...
50: nonmin ← false . ...are no longer supersets of any diag in DX

51: for nd′ ∈ DX do
52: if nd ⊃ nd′ then
53: nonmin ← true
54: break
55: if nonmin = false then
56: Q← INSERTSORTED(nd,Q, pr , >)
57: D⊃ ← D⊃ \ {nd}
58: forD ∈ DX do . add known min diags in DX to Q to find diags...
59: Q← INSERTSORTED(D,Q, pr , >) . ...in best-first order (as per pr )
60: return state

causing changes to conflicts along its branch have occurred. By sto-
ring only sets of edge labels, we could not differentiate between the

redundant and the non-redundant nodes.
(Mod3) Before reusing a conflict C (test (L3) in HS-Tree), a mini-
mality check for C is performed. If it leads to the identification of a
conflict X ⊂ C for the current DPI, X is used to prune obsolete tree
branches, to replace node-labeling conflicts that are supersets of X ,
and to update Ccalc in that X is added and its supersets are deleted.
Justification: (Property 1.3) Conflicts in Ccalc and those appearing
as labels in the existing tree (elements of lists nd.cs for tree nodes nd)
might not be minimal for the current DPI (as they might have been
computed for a prior DPI). This minimality check helps both to prune
the tree (reduction of number of nodes) and to ensure that extensions
to the tree use only minimal conflicts wrt. the current DPI as node
labels (avoidance of the introduction of unnecessary new edges).
(Mod4) Execution of a tree update at start of each DynamicHS exe-
cution, where the tree produced for a previous DPI is adapted to a
tree that allows to compute minimal diagnoses for the current DPI in
a sound, complete and best-first way.
Justification: Property 1.1.
(Mod5) State of DynamicHS (in terms of the so-far produced tree) is
stored over all its iterations executed throughout sequential diagnosis
(Alg. 1) by means of the tuple state.
Justification: Statefulness of DynamicHS.
DynamicHS: Algorithm Walkthrough. Like HS-Tree, DynamicHS
(Alg. 2) is processing a priority queue Q of nodes (while-loop). In
each iteration, the top-ranked node node is removed from Q to be la-
beled (GETANDDELETEFIRST). Before calling the labeling function
(DLABEL), however, the algorithm checks if node is among the
known minimal diagnoses DX from the previous iteration (line 6). If
so, the node is directly labeled valid (line 7). Otherwise DLABEL is
invoked to compute a label for node (line 9).

DLABEL: First, the non-minimality check is performed (lines 25–
27), just as in (L1) in HS-Tree. If negative, a conflict-reuse check
is carried out (lines 28–35). Note, the duplicate check ((L2) in HS-
Tree) is obsolete since no duplicate nodes can ever be elements of Q
in DynamicHS (duplicates are identified and added to Qdup at node
generation time, lines 18–20). The conflict-reuse check starts equally
as in HS-Tree. However, if a conflict C for reuse is found in Ccalc

(line 29), then the minimality of C wrt. the current DPI is checked
using FINDMINCONFLICT (line 30). If a conflict X ⊂ C is detected
(line 33), then X is used to prune the current hitting set tree (line 34;
PRUNE function, see below). Finally, the found minimal conflict (C or
X , depending on minimality check) is used to label node (lines 32,
35). The case where there is no conflict for reuse is handled just as in
HS-Tree (lines 36–41, cf. (L4)). Finally, note that DLABEL gets and
returns the tuple state (current tree state) as an argument, since the
potentially performed pruning actions (line 34) might modify state.

The output of DLABEL is then processed by DynamicHS (li-
nes 10–23) Specifically, node is assigned to Dcalc if the returned
label is valid (line 11), and to D⊃ if the label is nonmin (line 13).
If the label is a minimal conflict L, then a child node nodee is cre-
ated for each element e ∈ L and assigned to either Qdup (line 20)
if there is a node in Q that is set-equal to nodee, or to Q otherwise
(line 22). At this, nodee is constructed from node via the APPEND

function (lines 16 and 17), which appends the element e to the list
node, and the conflict L to the list node.cs (cf. (Mod2) above).

When the hitting set tree has been completed (Q = [ ]), or ld di-
agnoses have been found (|Dcalc| = ld ), DynamicHS returns Dcalc

along with the current tree state state.

UPDATETREE: The goal is to adapt the existing tree in a way
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it constitutes a basis for finding all and only minimal diagnoses in
highest-probability-first order for the current DPI. The strategy is to
search for non-minimal conflicts to be updated, and tree branches to
be pruned, among the minimal diagnoses (D×) for the previous DPI
that have been invalidated by the latest added measurement.

Regarding tree pruning, we call a node nd redundant (wrt. a DPI
dpi) iff there is some index j and a minimal conflict X wrt. dpi such
that the conflict nd.cs[j] ⊃ X and the element nd[j] ∈ nd.cs[j] \X .
Moreover, we call X a witness of redundancy for nd (wrt. dpi). Sim-
ply put, nd is redundant iff it would not exist given that the (current)
minimal conflict X had been used as a label instead of the (old, for-
merly minimal, but by now) non-minimal conflict nd.cs[j].

If a redundant node is detected among the elements of D×
(function REDUNDANT), then PRUNE (see below) is called given the
witness of redundancy of the redundant node as an argument (lines
43–45). After each node in D× has been processed, the remaining
nodes in D× (those that are non-redundant and thus have not been
pruned) are re-added to Q in prioritized order (INSERTSORTED) ac-
cording to pr (lines 46–48). Likewise, all non-pruned nodes in D⊃
(note that pruning always considers all node collections Qdup, Q,
DX, D× and D⊃) which are no longer supersets of any known mi-
nimal diagnosis, are added to Q again (lines 49–57). Finally, those
minimal diagnoses returned in the previous iteration and consistent
with the latest added measurement (the elements of DX), are put
back to the ordered queue Q (lines 58–59). This is necessary to pre-
serve the best-first property, as there might be “new” minimal diag-
noses for the current DPI that are more probable than known ones.

PRUNE: Using its given argument X , the tree pruning runs through
all (active and duplicate) nodes of the current tree (node collections
Qdup, Q, D⊃ and Dcalc for call in line 34, and Qdup, Q, D⊃, D×
and DX for call in line 45), and
• (relabeling of old conflicts) replaces by X all labels nd.cs[i]

which are proper supersets of X for all nodes nd and for all
i = 1, . . . , |nd.cs|, and

• (deletion of redundant nodes) deletes each redundant node nd for
which X is a witness of redundancy, and

• (potential replacement of deleted nodes) for each of the deleted
nodes nd, if available, uses a suitable (non-redundant) node nd′

(constructed) from the elements of Qdup to replace nd by nd′.
A node nd′ qualifies as a replacement node for nd iff nd′ is non-
redundant and nd′ is set-equal to nd (i.e., the sets, not lists, of edge
labels are equal). This node replacement is necessary from the point
of view of completeness (cf. [18]). Importantly, duplicates (Qdup)
must be pruned prior to all other nodes (Q, D⊃, D×, DX, Dcalc),
to guarantee that all surviving nodes in Qdup represent possible non-
redundant replacement nodes at the time other nodes are pruned.

Additionally, the argument X is used to update the conflicts stored
for reuse (set Ccalc), i.e., all supersets of X are removed from Ccalc

and X is added to Ccalc.

Table 1: Example DPI stated in propositional logic.

K = {ax1 : A→ ¬B ax2 : A→ B ax3 : A→ ¬C
ax4 : B → C ax5 : A→ B ∨ C }

B = ∅ P = ∅ N = {¬A}

Example 1 Consider the propositional DPI dpi0 in Tab. 1. The goal
is to locate the faulty axioms in the KBK that prevent the satisfaction
of given measurements P and N (here, only one negative measure-
ment ¬A is given, i.e., ¬A must not be entailed by the correct KB).

Table 2: Evolution of minimal diagnoses and minimal conflicts after
successive extension of the example DPI dpi0 (Tab. 1) by positive
(P ′) or negative (N ′) measurements mi shown in Figures 1 and 2.
Newly arisen conflicts (cf. Cnew in Property 1.4) are framed.

iteration j P ′ N ′ diag(dpij−1) conf(dpij−1)

1 – – [1, 3], [1, 4], 〈1, 2〉 , 〈2, 3, 4〉 ,
[2, 3], [2, 5] 〈1, 3, 5〉 , 〈3, 4, 5〉

2 – A→ C [1, 4], [2, 5]
〈1, 2〉 , 〈2, 4〉 ,
〈1, 5〉 , 〈4, 5〉

3 – A→ C, A→ ¬B [1, 4], [1, 2, 3, 5]
〈1〉 , 〈2, 4〉 ,
〈3, 4〉 , 〈4, 5〉

4 A→ ¬C A→ C, A→ ¬B [1, 4] 〈1〉 , 〈4〉

1©〈1, 2〉C

2©〈2, 3, 4〉C
1rr

3©〈1, 3, 5〉C
2 ,,

5©〈3, 4, 5〉C
2yy

6©X∗(D1)

3 ��
7©X∗(D2)

4
''

4©dup

1
zz

8©X∗(D3)

3 ��
9©X∗(D4)

5
&&

10©×(⊃D1)

3 ��
11©×(⊃D2)

4 &&
12©×(⊃D4)

5

++

Iteration 1 (dpi0) ⇒ m1 : A→ C to N ′

1©〈1, 2〉
2’©〈2, 4〉

1rr
3’©〈1, 5〉

2
,,

5©〈3, 4, 5〉

2
��

7©X(D2)

4

!!
4©dup

1

}}
9©X(D4)

5
��

13©〈4, 5〉C
3
��

11©×(⊃D2)

4 $$
12©×(⊃D4)

5
**

14©×(⊃D2)

4 ��
15©×(⊃D4)

5
''

Iteration 2 (dpi1) ⇒ m2 : A→ ¬B to N ′

1’©〈1〉
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��
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16©〈3, 4〉C

5
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14©×(⊃D2)

4 ��
18©X∗(D5)

5 ''
17©dup

3 ��
19©×(⊃D2)

4 ''

Iteration 3 (dpi2) ⇒ m3 : A→ ¬C to P ′

1’©〈1〉
2”©〈4〉

1
rr

7©X(D2)

4

!!

Iteration 4 (dpi3)

Figure 1: DynamicHS executed on example DPI given in Tab. 1.

We now illustrate the workings of DynamicHS (Fig. 1) and HS-Tree
(Fig. 2) in terms of a sequential diagnosis session for dpi0 while as-
suming that [1, 4] is the actual diagnosis. The evolution of minimal
conflicts and diagnoses during the session can be read from Tab. 2.
Inputs (Sequential Diagnosis): We set ld := 5 (if existent, compute
five diagnoses per iteration), heur to be the “split-in-half” heuristic
[44] (prefers measurements the more, the more diagnoses they eli-
minate in the worst case), and pr in a way the hitting set trees are
constructed breadth-first.
Notation in Figures: Axioms ax i are simply referred to by i (in node
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13©〈1, 2〉C

14©〈2, 4〉C
1rr

15©〈1, 5〉C
2 ,,

16©〈4, 5〉C
2yy

17©X∗(D2)

4
$$

18©×
1 ��

19©X∗(D4)

5
&&

20©×(⊃D2)

4 ��
21©×(⊃D4)

5
((

Iteration 2 (dpi1) ⇒ m2 : A→ ¬B to N ′

Figure 2: Part of the HS-Tree execution on example DPI in Tab. 1.

and edge labels). Numbers k© indicate the chronological node labe-
ling order. We tag conflicts 〈1, . . . , k〉 by C if they are freshly com-
puted (FINDMINCONFLICT call, line 36, DLABEL), and leave them
untagged if they result from a redundancy check and subsequent rela-
beling (lines 44–45, UPDATETREE). Leaf nodes we label as follows:
X(Di) for a minimal diagnosis, named Di, stored in Dcalc; × for a
duplicate in HS-Tree (see (L2) criterion); ×(⊃Di) for a non-minimal
diagnosis (stored in D⊃ by DynamicHS), where Di is one diagnosis
that proves the non-minimality; and dup for a duplicate in Dynami-
cHS (stored in Qdup). Branches representing minimal diagnoses are
additionally tagged by a ∗ if logical reasoning (FINDMINCONFLICT

call, line 36, DLABEL function) is necessary to prove it is a diagno-
sis, and untagged otherwise (i.e., branch is diagnosis from previous
iteration, stored in DX; only applicable to DynamicHS).
Iteration 1: In the first iteration, HS-Tree and DynamicHS essen-
tially build the same tree (see “Iteration 1” in Fig. 1; HS-tree not
shown). The only difference is that DynamicHS stores the duplica-
tes and non-minimal diagnoses (labels dup and ×(⊃Di)), whereas
HS-Tree discards them. The diagnoses computed by both algorithms
are {D1,D2,D3,D4} = {[1, 3], [1, 4], [2, 3], [2, 5]} (cf. Tab. 2). No-
tably, the returned diagnoses must be equal for both algorithms in
any iteration (given the same parameters ld and pr ) since both are
sound, complete and best-first minimal diagnosis searches. Thus,
when using the same measurement selection (and heuristic heur),
both methods must also give rise to the same proposed next measu-
rement point in each iteration.
First Measurement: Accordingly, both algorithms lead to the first
measurement point mp1 : A → C, which corresponds to the que-
stion about the correct KB “Does A imply C?”. Say mp1 turns out
negative, e.g., by consulting a domain expert for K, and is therefore
added to N ′. This effectuates a transition from dpi0 to a new DPI
dpi1 (with the additional element A→ C in N ′), and thus a change
of the relevant minimal diagnoses and conflicts (see Tab. 2).
Tree Update: Starting from the second iteration (dpi1), HS-Tree
and DynamicHS behave differently. Whereas the former constructs
a new tree from scratch for dpi1, DynamicHS runs UPDATETREE

to make the existing tree (built for dpi0) reusable for dpi1. In
the course of this tree update, two witnesses of redundancy (mi-
nimal conflicts 〈2, 4〉, 〈1, 5〉) are found while analyzing the (con-
flicts along the) branches of the two invalidated diagnoses [1, 3] and
[2, 3] ( 6© and 8©). E.g., nd = [1, 3] is redundant since the conflict
nd.cs[2] = 〈2, 3, 4〉 is a proper superset of the now minimal conflict
X = 〈2, 4〉 and nd’s outgoing edge of nd.cs[2] is nd[2] = 3 which is
an element of nd.cs[2]\X = {3}. Since stored duplicates (here: only
[2, 1]) do not allow the construction of a replacement node for any of
the redundant branches [1, 3] and [2, 3], both are removed from the
tree. Further, the witnesses of redundancy replace the non-minimal
conflicts at 2© and 3©, signified by the new numbers 2’© and 3’©.

Other than that, only a single further change is induced by UPDA-
TETREE. Namely, the branch [1, 2, 3], a non-minimal diagnosis for

dpi0, is returned to Q (unlabeled nodes) because there is no longer
a diagnosis in the tree witnessing its non-minimality (both such wit-
nesses [1, 3] and [2, 3] have been discarded). Note that, first, [1, 2, 3]
is in fact no longer a hitting set of all minimal conflicts for dpi1 (cf.
Tab. 2) and, second, there is still a non-minimality witness for all
other branches ( 12© and 13©) representing non-minimal diagnoses for
dpi0, which is why they remain labeled by ×(⊃Di).
Iteration 2: Observe the crucial differences between HS-Tree and
DynamicHS in the second iteration (cf. Figs. 1 and 2).

First, while HS-Tree has to compute all conflicts that label nodes
by (potentially expensive) FINDMINCONFLICT calls (C tags), Dyn-
amicHS has (cheaply) reduced existing conflicts during pruning (see
above). Note, however, not all conflicts are necessarily always kept
up-to-date after a DPI-transition (lazy updating policy). E.g., node
5© is still labeled by the non-minimal conflict 〈3, 4, 5〉 after UPDA-

TETREE terminates. Hence, the subtree comprising nodes 13©, 14©, 15©
is not present in HS-Tree. Importantly, this lazy updating does not
counteract sound- or completeness of DynamicHS, and the overhead
incurred by such additional nodes is generally minor (all these nodes
must be non-minimal diagnoses and are thus not further expanded).
Second, the verification of the minimal diagnoses (D2, D4) found in
iteration 2 requires logical reasoning in HS-Tree (∗ tags of X nodes)
whereas it comes for free in DynamicHS (storage and reuse of DX).
Remaining Execution: After the second measurement m2 is added
to N ′, causing a DPI-transition once again, DynamicHS reduces the
conflict that labels the root node. This leads to the pruning of the
complete right subtree. The left subtree is then further expanded in
iteration 3 (see generated nodes 16©, 17©, 18© and 19©) until the two
leading diagnoses D2 = [1, 4] and D5 = [1, 2, 3, 5] are located and
the queue of unlabeled nodes becomes empty (which proves that no
further minimal diagnoses exist). Eventually, the addition of the third
measurement m3 to P ′ brings sufficient information to isolate the
actual diagnosis. This is reflected by a pruning of all branches except
for the one representing the actual diagnosis [1, 4].
Comparison (expensive operations): Generally, calling FINDMIN-
CONFLICT (FC) is (clearly) more costly than REDUNDANT (RD),
which in turn is more costly than a single consistency check (CC). In
this example, HS-Tree requires 14/0/9, and DynamicHS only 6/4/5
FC/RD/CC calls. This reduction of costly reasoning is one crucial
advantage of DynamicHS over HS-Tree (cf. Sec. 5).

DynamicHS: Properties. A proof of the following correctness the-
orem for DynamicHS can be found in [33, Sec. 12.4]:

Theorem 1. DynamicHS is sound, complete and best-first, i.e., it
computes all and only minimal diagnoses in descending order by
probability as per the probability measure pr .

4 Related Work
Literature offers a wide variety of diagnosis computation algorithms,
motivated by different diagnosis problems, domains and challen-
ges. These algorithms can be compared along multiple dimensi-
ons, e.g., best-first [8, 11, 18, 32, 33, 36] vs. any-first (no parti-
cular order on output diagnoses) [26, 31, 45], complete [11, 18,
19, 26, 32, 36, 45, 49, 54] vs. incomplete [1, 9, 12, 25, 47, 51],
conflict-based (i.e., building diagnoses as hitting sets of conflicts)
[10, 11, 18, 26, 32, 33, 36, 49, 52, 54] vs. direct (i.e., building
diagnoses without reliance on conflicts, e.g., through divide-and-
conquer or compilation techniques) [5, 14, 28, 45, 50], stateful
[11, 33, 36, 45, 46] vs. stateless [10, 18, 32, 52, 54], black-box (rea-
soner used as oracle) [18, 32, 33, 36, 45, 52] vs. glass-box (reasoner
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optimized or modified for diagnosis) [4, 20, 23, 43], and on-the-fly
[18, 32, 36, 52] vs. preliminary [1, 10, 25, 26, 31, 54] (conflict com-
putation). Our study of these existing works suggests two different
things. First, the best choice of algorithm, in general, depends lar-
gely on the particular tackled problem (domain and requirements).
Consequently, there is little hope to find an algorithm that comes
anywhere near improving all of the existing ones. Second, perfor-
mance improvements for algorithms are often achieved at the cost of
losing desirable properties (e.g., completeness or the best-first gua-
rantee). Hence, it is particularly noteworthy that DynamicHS aims to
improve HS-Tree while preserving all its favorable properties.

Specifically, in terms of the above-mentioned properties, Dynami-
cHS is best-first, complete, stateful, conflict-based, black-box, and
on-the-fly. We now briefly discuss the algorithms most similar to
DynamicHS in terms of these features and point out crucial diffe-
rences:6 (i) StaticHS [36]: same features, but different (orthogonal)
focus, which is on reducing measurement conduction time, instead
of diagnosis computation time as in the case of DynamicHS (cf.
Sec. 1). Technically, StaticHS extends one and the same “static” hit-
ting set tree—the one for the original DPI—and uses measurement
outcomes (at first) only to prune this static tree, while a new such
static tree—for the new DPI including all so far collected measure-
ment outcomes—is built only if a single diagnosis is left or the static
tree exceeds a critical size. So, the intuitive idea is a lazy DPI up-
date, i.e., to withhold the DPI update and exploit one static tree for
multiple iterations. (ii) Inv-HS-Tree [45]: same features, but stateless,
direct and any-first; the latter property prevents reasonable early ter-
mination7 in sequential diagnosis, since the best diagnosis is gene-
rally unknown; but, using a linear-space search, it can handle pro-
blems with high-cardinality diagnoses that HS-Tree (and thus Dyn-
amicHS) cannot. Algorithmically, Inv-HS-Tree leverages the duality
between diagnoses and conflicts and thus builds a tree in depth-first
fashion where nodes are minimal diagnoses and branches are con-
flicts. (iii) GDE [11]: same features, but not black-box (in that it
uses bookkeeping [6] of entailment-justifications computed by the
reasoner); while highly optimized and particularly well-performing
for physical devices, GDE has not found widespread adoption in
some other diagnosis domains such as knowledge-base debugging,
most likely8 due to the typically richer and often highly non-local
justification-structure9 of knowledge-based problems that might be
challenging for bookkeeping approaches.

Table 3: Dataset used in the experiments.

j KBKj |Kj | expressivity 1) #D/min/max 2)

1 Chemical (C) 144 ALCHF(D) 6/1/3
2 Koala (K) 42 ALCON (D) 10/1/3
3 MiniTambis (M) 173 ALCN 48/3/3
4 University (U) 50 SOIN (D) 90/3/4
5 Economy (E) 1781 ALCH(D) 864/4/8
6 Transportation (T) 1300 ALCH(D) 1782/6/9

7 IT 140 SROIQ 1045/3/7
8 UNI 142 SROIQ 1296/5/6
1): Description Logic expressivity, cf. [3]; the higher the expressivity of a lo-

gic, the higher is the complexity of reasoning for this logic.
2): #D, min, max denote the number, the min. and max. size of minimal diag-

noses for the initial DPI dpi0 resulting from each input KBKj .

6We do not discuss HS-Tree again here, see Sec. 3.
7I.e., the stopping of a diagnosis session before a single diagnosis is left.
8Based on a plenary discussion at the Int’l Workshop on Principles of

Diagnosis (DX’17) in Brescia, September 2017.
9Locality refers to the property that components interact (only) with phy-

sically adjacent components [7].
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Figure 3: Experiment Results: x-axis shows KBs and parameter ld .

5 Evaluation
In comprehensive experiments on real-world diagnosis problems we
have evaluated the practical usefulness of DynamicHS.
Dataset. As discussed, different domains typically require different
approaches as regards the computation of diagnoses. Since Dynami-
cHS aims to improve HS-Tree, we chose the application domain of
knowledge-base debugging for our experiments, where HS-Tree is
state-of-the-art [20, 23, 27, 33, 44]. As a dataset (Tab. 3), we used
inconsistent Description Logic KBs (2nd column) that were also in-
vestigated in the studies [44] (K1, . . . ,K6) and [37] (K7,K8), and
which cover a spectrum of different problem sizes (3rd col.), logical
languages (4th col.), as well as diagnostic structures (last col.).
Experimental Setting. We compared DynamicHS against HS-Tree
in a multitude of diagnosis scenarios, by varying the inputs to the
sequential diagnosis algorithm (Alg. 1). More precisely, for each
dpi0 := 〈Kj , ∅, ∅, ∅〉, where Kj is a KB from Tab. 3, we (i) as-
signed uniform random failure probabilities to all components (KB
axioms), and then (ii) for each number ld ∈ {2, 4, 6, 10, 20, 30}
of leading minimal diagnoses to be computed per sequential itera-
tion (while-loop, Alg. 1), (iii) for each of three popular measure-
ment selection heuristics heur ∈ {SPL, ENT, MPS} in the field (cf.
[34, 35, 39, 44]),10 (iv) we performed 20 full sequential sessions
(until a single minimal diagnosis remained, cf. Alg. 1), (v) each with
a randomly selected actual diagnosis D∗ specified as the target so-
lution to be found, (vi) executed for both DynamicHS and HS-Tree.
The oracle for measurement conduction (or question answering; cf.
Ex. 1) was simulated so as to always answer in a way D∗ remains
valid as a diagnosis. As a reasoner, we adopted Pellet [48].
Experiment Results.11 The results for K1, . . . ,K6 are shown in
Fig. 3. We see that, in all (KB,ld ,heur)-scenarios, DynamicHS leads
to significant average time savings (of up to 70 %) compared to HS-
Tree. For the (non-depicted) KBs K7,K8, results were even more in
favor of DynamicHS (efficiency gains between 37 and 54 % for K7,
and between 56 to 70 % forK8). Closer analyses of further measured
parameters revealed that the main cause of these substantial and con-
stant improvements is that the number of (and thus the time expen-
ded for) reasoner calls can be remarkably decreased by DynamicHS.
As to the absolute runtimes, KBs ranged from easy (max. diagno-
sis computation times below 1s, KB K2) to fairly hard (max. times
of 510s for HS-Tree vs. 221s for DynamicHS; KB K5). Finally, we
stress two things: DynamicHS (1) outperformed HS-Tree in 98.75 %
of all single sequential sessions we executed (cf. blue line in Fig. 3),
and (2) has exactly the same desirable properties (cf. Theorem 1) as
HS-Tree (and exhibited similar space requirements in our tests).

10In brief, SPL (split-in-half ) / ENT (entropy-based) / MPS (most proba-
ble singleton) select a measurement with best worst-case diagnosis elimina-
tion rate / highest information gain / highest probability of eliminating all but
one (known) diagnoses.

11Please find the raw data at http://isbi.aau.at/ontodebug/evaluation.
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6 Conclusion and Future Work

We propose a sound, complete and best-first diagnosis computa-
tion method for sequential diagnosis based on Reiter’s HS-Tree. It
aims at reducing expensive reasoning by the maintenance of a search
data structure throughout a diagnostic session. Thereby, we answer a
long-standing research question posed by Ray Reiter in his seminal
1987 paper [32]. Experimental results are very promising and ma-
nifest that the new method constantly and significantly outperforms
HS-Tree in a domain where the latter is state-of-the-art.

Future work topics include the integration of DynamicHS into our
ontology debugging tool OntoDebug12 [42] for the popular ontology
editor Protégé13 [29], and the evaluation of DynamicHS in other
domains, such as software [53] and spreadsheet debugging [21].
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namicHS and the experiments. This work was partly supported by the
Austrian Science Fund (FWF), contract P-32445-N38.
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