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Abstract. Knowledge graph representation learning, also called
knowledge graph embedding, is the task of mapping entities and
relations into a low-dimensional, continuous vector space, and, as
a result, can support various machine learning models to perform
knowledge completion tasks with good performance and robustness.
However, most of existing embedding models focus on improving
the link prediction accuracy while ignoring the time-efficiency in
search-intensive applications over large-scale knowledge graphs. To
tackle this problem, in this paper, we encode knowledge graph into
Hamming space and introduce a novel HAsh Learning Framework
(HALF) for search-oriented knowledge graph embedding. The pro-
posed method can be applied to recent various knowledge graph em-
bedding models for accelerating the computation of searching em-
beddings by utilizing the bitwise operations (XNOR and Bitcount).
Experimental results on benchmark datasets demonstrate the effec-
tiveness of our proposed method, which gets a bonus of speed-up in
the searching embeddings while the accuracy and scalability of the
original model are basically maintained.

1 Introduction

Knowledge graph (KG) representation learning, also known as
knowledge graph embedding (KGE), is the task of learning the latent
representations of entities and relations for knowledge completion,
reasoning, and inferencing over a graph-structured knowledge base
(e.g., , Freebase [3], Wikidata [26] and DBpedia [2]). This research
area has gained massive attention due to the broad range of KG re-
lated applications, such as knowledge acquisition, recommender sys-
tems and natural language processing.

Existing KGE approaches [30] without extra information fusion
can be roughly categorized into three categories: translation-based
models, matrix factorization models and neural network models.
Translation-based model TransE [4] and its variants (e.g., TransR
[20]) represent both entities and relations as vectors in the same
space, and consider a relation as the distance vector from a head en-
tity to a tail entity. Matrix factorization models (e.g, RESCAL [24],
HolE [23], Analogy [21]) take a KG as a sparse three-dimensional
tensor and reduce KGE to a matrix factorization task, and the eigen-
vectors gained from a factorization are named as the representation
of entities and relations respectively. Neural network models (e.g.,
ConvE [8]) conduct semantic matching using neural network archi-
tectures to maximize the probability of true facts.
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Generally, existing KGE models are designed for linking predic-
tion. In other words, if we wonder what is the tail of < h, r, ? >,
each entity in the set of candidates which generally are total enti-
ties in the KG will be substituted into the scoring function with h, r,
ranking to find out which triple gained the highest score. In search-
intensive scenarios (e.g., question answering and semantic search
over large-scale knowledge graphs), the existing embedding models
are enduring high time complexity to search the target entity. In this
paper, we propose a HAsh Learning Framework (HALF) for KGE
to tackle this problem. As shown in Figure 1, the basic idea of this
framework is three-fold: 1) The representation of each entity is a bi-
nary vector, which is the so-called hash code or binarized embedding,
rather than a real-value embedding in typical models. 2) In predict-
ing period, a model following HALF should generate a binary vector
t′ with h and r to index the target entity. 3) HALF utilizes the Ham-
ming distance between the index t′ and each candidate c for ranking,
rather than test every candidate by the scoring function.

Our proposed method HALF can reduce the computational com-
plexity of testing each candidate entity, and accelerate the computa-
tion by utilizing the bitwise operations (XNOR and Bitcount) on the
learned binary vectors. Specifically, when design HALF, we mainly
address the follow two difficulties: 1) Since the scoring functions
of different models are various, we propose a universal method-
ology to modify the calculation of the scoring function and trans-
form most models into HALF way. 2) Since obtaining optimal hash
codes for entities is NP-hard due to the binary constraints, we uti-
lize a weighted SoftSign layer to relax the constraints and apply
a multi-objective optimization mechanism to the framework train-
ing. We conduct experiments on several benchmark datasets and the
results show that the proposed HALF can be well applied to the im-
provement of various models in embedding search scenarios.

The main contributions of this paper can be summarized as fol-
lows:

• We study the inefficiency of KGE in search-intensive scenarios
and propose a novel hash learning framework, i.e., HALF, to ad-
dress this problem.

• We analyze the scoring functions of various KGE methods and
propose a universal methodology to modify different functions to
our HALF way.

• We introduce the idea of Hash learning into KGE and solve the
problem of discrete vector learning by a multi-objective optimiza-
tion mechanism.

• We extensively evaluate HALF by modifying five baseline models
and test them in terms of accuracy, scalability and time-efficiency.
The results show that HALF get a bonus of speed-up in search-
ing embeddings while the accuracy and scalability of the original
model are basically maintained.
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Figure 1. The framework of HALF, where h, r, t are the embedding of a triple (h, r, t) respectively, and ĥ, t̂ represents the binary hash code of entity h and
t. In search-oriented KGE model, a query embedding q is generated by φ(ĥ, r). Furthermore, we combine the distance between binarized q̂ and t̂, and the
score generated by the original KGE model ψ(h, r, t) as the overall scoring function. Note that, in order to prevent the zero-gradient problem, we utilize a
hash layer with the softsign activation function to approximate during off-line training (as shown in the left part) and utilize sign function during on-line

predicting (as shown in the right part). With gained the hashed representation of each entity, thus the link predicting problem is reduced into k-nearest neighbor
searching in Hamming space.

2 Preliminary

Let E denote the set of all entities of size n = |E| andR the set of all
relations of size m = |R| present in a KG G. A triple is represented
as (h, r, t), with h, t ∈ E denoting head and tail entities respectively
and r ∈ R is the relation between them.

A typical KGE approach generally formalizes the link prediction
problem as a point-wise learning to rank problem, where the objec-
tive is to learn a scoring function ψ : E × R× E 7→ R. Namely, the
score of a triple (h, r, t) is defined as ψ(h, r, t) ∈ R, which is pro-
portional to the likelihood that the fact encoded by (h, r, t) is true.
In Table 1 we summarize the scoring function of several recent KGE
models. With this notations, we then define the search-oriented KGE
problem.

Definition 1 (Search-Oriented KGE). Search-oriented KGE is a
KGE paradigm based on the concept of “search” which typically
consists of queries and candidates. The scoring function of search-
oriented KGE is formalized as ψ(c, q) = −dist(c − φ(q)), where
q ∈ Q is the query, c ∈ Rd is the embedding of a candidate c ∈ C,
φ : Q 7→ Rd is a mapping function to embed q in same space with c,
dist : Rd × Rd 7→ R is a distance function.

According to the definition, TransE [4] is a well-defined model
satisfying the setting of Search-Oriented KGE, in which the scor-
ing function can be rewrote as ψ(h, r, t) = ||φ(h, r) − t||2 =
Euclid(φ(h, r), t), where Euclid(.) means the Euclidean distance
function and φ(h, r) = h + r.

Note that, in this paper we focus on the meta query which is de-
fined as a corrupted triple (h, r, ?), concerning the following three
reasons: 1) Simple questions which involve only one triple (e.g., who
is e’s tutor?) is the most frequent queries in search engines or knowl-
edge question answering systems. 2) The methodology for training
(h, r, ?) can be applied to train (?, r, t) as well. 3) Multiple meta

queries can be combined to obtain complex queries, which can be
formalized as ψ(c, q1, q2, ..., qk) = dist(c− φ1(φ2(...φk(q)))).

Furthermore, in order to accelerate the computation by utilizing
the bitwise operations, we introduce the concept of KG hashing.

Definition 2 (Knowledge Graph Hashing). Given a KG G = E ×
R × E , the problem of KG hashing aims to represent each entity
e ∈ E into a low-dimensional Hamming space {±1}d, i.e., learning
a hash function hG : E 7→ {±1}d, where d � n and n = |E| is
the size of E . In the space {±1}d, the bit uncorrelation and balance
conditions should be satisfied as much as possible.

Bit balance means that the binary value on each dimension has
equal chance to be 1 or −1, maximizing the entropy of each di-
mension. Bit uncorrelation means that different dimensions of a vec-
tor are uncorrelated, being usually implemented by orthogonal con-
straints.

Next, we will introduce our proposed method HALF in detail. In
HALF, we mainly design a practical methodology to modify various
types of KGE models to a search-friendly way, by which the evalu-
ation time of each candidate entity will be reduced. The architecture
is summarized in Figure 1.

2.1 Search-Oriented Knowledge Graph
Embedding

In this section, we study how to rewrite the scoring function of KGE
models into the search-oriented form:

ψ(c, q) = −dist(c− φ(q)) (1)

By deconstructing the final operation of the KGE scoring func-
tions, we take the following three basic operators into consideration,
which are dot product, Frobenius norm and linear transformation.
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Table 1. A summary of KGE scoring functions and the respective search-oriented version. ? and ∗ represent correlation operator and convolution operator
respectively [23], and fc represents a convolution neural network.

Method Embedding Scoring function ψ(h, r, t) Hash code Scoring function dist(ψ(h, r), t)
TransE [4] h, r, t ∈ Rd1 −||h + r− t||2 h, t ∈ ±1d2 −Hamm(h + r, t)

TransR [20] h, r, t ∈ Rd1 ; Mr ∈ Rd1×d1 −||Mrh + r−Mrt||2 h, t ∈ ±1d2 −Hamm(M−1
r (Mrh + r), t)

RESCAL [24] h, t ∈ Rd1 ; Mr ∈ Rd1×d1 hTMrt h, t ∈ ±1d2 −Hamm(hTMr, t)

HolE [23] h, r, t ∈ Rd1 rT(h ? t) h, t ∈ ±1d2 −Hamm(h ∗ r, t)

ANALOGY [21] h, t ∈ Rd1 ; Mr ∈ Rd1×d1 hTMrt h, t ∈ ±1d2 −Hamm(hTMr, t)

ConvE [8] h, r, t ∈ Rd1 fc(h, r)t h, t ∈ ±1d2 −Hamm(fc(h, r), t)

2.1.1 Dot Product

Dot product is a binary operation which is wildly utilized in matrix
factorization-based and neural network KGE models. Dot-product is
formalized as dot : Rd × Rd 7→ R and defined as:

dot(a,b) =

d∑
i=1

aibi (2)

With supposing a,b ∈ {±1}d, then

dot(a,b) =

d∑
i∈{ai=bi}

aibi +

d∑
i∈{ai 6=bi}

aibi

= d− 2Hamm(a,b),

(3)

whereHamm(.) means the Hamming distance between two vectors.
Hence, the following objective function

max
a,b

dot(a,b) s.t. a,b ∈ {±1}d (4)

is equivalent to

min
a,b

Hamm(a,b) s.t. a,b ∈ {±1}d, (5)

which can be applied to modify the scoring function of RESCAL
[24], HolE [23] and ConvE [8], etc.

2.1.2 Frobenius Norm

Frobenius norm, or the so-called l2-norm, is widely used in the scor-
ing functions of translation-based KGE models, which is defined as:

||a||2 =

√√√√ d∑
i=1

a2i , (6)

With supposing a,b ∈ {±1}d, then:

||a− b||2 =

√√√√ d∑
i=1

(ai − bi)2

=

√√√√ d∑
i∈{ai=bi}

(ai − bi)2 +

d∑
i∈{ai 6=bi}

(ai − bi)2

= 2
√
Hamm(a,b)

(7)

2.1.3 Linear Transformation

Linear transformation is a mapping function M : Rd1 7→ Rd2 ,
which is equivalent with a matrix M ∈ Rd1×d2 . Linear transfor-
mation is commonly seen in variants of TransE [4] (e.g., TransR
[20]) to evaluate triples by utilizing the entity projection in a relation-
associated space. Hence, the problem of separate the t from such lin-
ear transformation-based scoring functions could be formalized to
learn an inverse function A : Rd2 7→ Rd1 . With the constraint of M
is a non-singular matrix, the optimal matrix A is supposed to satisfy

AM = MA = I; A = M−1. (8)

According to the above strategies and the setting of Search-
Oriented KGE, we rewrite the scoring functions of several classical
models, which are summarized in Table 1.

2.2 Hash Learning

In this section, we introduce the approximation method to obtain the
optimal binary vectors of entities, with maintaining the bit balance
and uncorrelation.

2.2.1 Hash Layer

HALF aims to learn a db-dimensional binary vector eb by converting
the d-dimensional embedding e, which is a real-value embedding
and continuous in nature. The binarization process can be simplified
as a dense layer with a sign activation function, or the so-called hash
layer g = sign(WTe + b), where W ∈ Rd×db and b ∈ Rdb are
parameters.

However, the gradient of sign function is zero for all nonzero in-
puts and ill-defined at zero, which is not qualified in the standard
back-propagation for training neural networks. Inspired by HashNet
[6], we introduce the weighted softsign as the approximation activa-
tion function:

softsign(β, z) =
βz

1 + β|z| , (9)

where z is the input and β > 0 is a scaling weight and |.| is the
absolute value of the input. With increasing β, the weighted softsign
will converge to the original sign function,

lim
β→∞

softsign(β, x) = sign(x) (10)

The softsign is similar to the hyperbolic tangent tanh utilized in
HashNet [6], but its tails are quadratic polynomials rather than expo-
nentials, i.e., it approaches its asymptotes much slower.
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Algorithm 1: Multi-Objective Optimization

Input: The initial representation r ∈ Rd1 of relations r ∈ R. The initial representation e ∈ Rd1 of entities e ∈ E , which is wrote as h
and t to differentiate the head and tail entity in a triple t ∈ T . A sequence 1 = β0 < β1 < ... < βS = ∞ and current stage s.
The rate p for self-balanced dropout. The initial parameter Θ0.

Output: The binarized hash code ê ∈ {±1}d2 of each entity e ∈ E , which is wrote as ĥ and t̂ to differentiate the head and tail entity.
The trained parameter Θ.

1 Initialize the structure of the original KGE model and the search-oriented model by Eq. (3), (7), and (8);
2 Initialize the structure of hash layer g by Eq. (9), with setting softsign(βsz) as current activation function;
3 Initialize λ1 = 0, λ2 = 1− β1, and λ3 = 0.001;
4 Initialize optimizer O;
5 for epoch← 0 to |Epoch| do
6 for batch← 0 to |Batch| do
7 Calculate L by Eq. (11), (14), and (15); // sample mini-batch from train set
8 Update Θ and the embedding h, r, t by O according to L;

9 Update λ1 ← λ1 +
1

|Epoch| ; // update the objective according to the training process
10 Update λ2 ← 1− λ1;
11 if epoch% 10 is 0 then
12 // update the weight of softsign to approximate sign
13 Update softsign(βsz)← softsign(βs+1z) as the activation function of g;

14 return ê← g(e) where the activation is sign;

2.2.2 Bit Balance and Uncorrelation

The representation E ∈ {±1}db×n of the entity set E is a binary
matrix, in which each column is the db-dimensional hash code of an
entity e and n is the total number of entities. In order to maximize
the entropy of E and maintain the semantic similarity between the
representation of similar entities, we introduce bit balance E1n = 0
and uncorrelation EET = Id as constraints, where 1n is a vector
of length n with all ones. In other words, bit balance requires each
bit to fair 50% of the time, and bit uncorrelation requires each row
in E is uncorrelated with any other rows and the uncorrelation of
columns is ignored, which indicates alias may share the same hash
code. Here, we approximate the above two constraints by utilizing
batch normalization and self-balanced dropout during the training of
HALF.

Batch Normalization (BN) is generally utilized to accelerates the
training and reduces the overall impact of the weights scale [15].
With normalized by BN, the output ẑ of each neuron of the hash
layer has the expected value of 0 and the variance of 1, as long as the
elements of each mini-batch are sampled from the same distribution
neglecting noise. The normalization process is formulated as follows:

ẑ =
z − µ
δ + ε

, (11)

where µ and δ are statistics of mean and standard deviation respec-
tively, and ε is the added minor noise. With maintaining the bit bal-
ance of the ith dimension of jth hash code ejb, the mean of the ith
dimension is

µi =
1

n

n∑
j=1

Eij = 0, (12)

and the standard deviation is

δi =
1

n

n∑
j=1

√
(Eij − µi)2 = 1. (13)

Namely, the optimal balanced hash code obey a special case of dis-
tributionN (0, 1), and BN is the approximated balance constraint for
mini-batch training.

Self-Balanced Dropout (SBD) is a novel variant of dropout al-
gorithm to prevent over-fitting by randomly perturbing the features
of the inputs [18]. For every modified input êi ∈ Rd for the hash
layer, the SBD maintains each eij with the keep probability p, or set
to a trainable variable emask, not 0 in original dropout. Formally, eij
modified by SBD is expressed as:

êij =

{
eij , with probability p

emask, with probability q = 1− p
(14)

Compared with the original dropout, SBD prevents the similar op-
timization direction of parameters when some features in e are highly
related. Refer to [18] for detailed proof. Here, the random perturba-
tion of SBD is employed in HALF, which aims to guarantee the bit
uncorrelation between each dimension of hash code eb.

2.3 Multi-Objective Optimization
The loss function of HALF is as follows:

L = LHALF + LKGE + LREG

= λ1(
∑

(h,r,t)∈G

||φ(ĥ, r)− t̂||2 −
∑

(h′,r,t′)/∈G

||φ(ĥ′, r)− t̂′||2)

+ λ2(
∑

(h,r,t)∈G

ψ(h, r, t)−
∑

(h′,r,t′)/∈G

ψ(h′, r, t′))

+ λ3||Θ||2
(15)

In Eq. (15), the first term LHALF measures loss in the modified
search-oriented KGE method, where ĥ or t̂ mean the hash codes of
entities which are generated from the embedding h or t by a trained
hash layer. The second term LKGE measures loss in the original
KGE method, which directs the model to learn the real-value embed-
ding of entities and relations. The last is the regularization term for
preventing over-fitting, with λ1 λ2, and λ3 are the weight parame-
ters.

In predicting period, with given the query (h, r, ?), we utilize the
trained function φ(h, r) to generate a index hash code of the target
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entity t, or the so-called tail entity, and search the nearest entity from
the candidate set with the hamming distance to the index. The train-
ing procedure is demonstrated in Algorithm 1.

3 Experiment
3.1 Datasets and Evaluation Protocol
For evaluating the performance of the proposed framework for link
prediction on knowledge graphs, we conduct experiments on four
commonly used benchmark datasets (i.e., WN18, FB15K, WN18RR,
and FB15K237). Table 2 shows the data statics.

Table 2. Benchmark datasets.

WN18 FB15K WN18RR FB15K237
|E| 40,943 14,951 40,559 14,505
|R| 18 1,345 11 237
|Ttrain| 141,442 483,142 86,835 272,115
|Tvalid| 5,000 5,000 3,034 17,535
|Ttest| 5,000 59,071 3,134 20,466

We followed the standard evaluation protocol, link prediction,
which aims to predict an entity that has a specific relation r with
another entity, i.e., predicting t with given (h, r, ?) or predicting h
with given (?, r, t). Note that, in this paper we focus on consuming
the total computation time in the former setting (h, r, ?), while pre-
dicting (?, r, t) we can take dist(φ(?, r), t) as a scoring function and
test each candidate h as well.

3.2 Baselines
We compare the performance of HALF against a variety types of
KGE models developed in recent years. They are:

• Translation based models, i.e., TransE [4] and TransR [20], which
model relations as translation operators between entities in the em-
bedding space.

• Semantic matching based models, i.e., RESCAL [24], HolE [23],
and Analogy [21], which deconstruct knowledge graph via collec-
tive matrix factorization.

• Semantic matching based model, i.e., ConvE [8], which classifies
a triple into a fact or wrong via neural networks.

We apply the proposed HALF to modify the above five models
and we try to clarify: 1) whether our proposed strategies for rewriting
scoring function is effective and 2) whether the hash learning method
is work. To evaluate the performance of trained hash codes of KG,
we list the following methods as baselines as well:

• Truncating the entity embedding trained by KGE models with a
sign function.

• Binarized CANDECOMP/PARAFAC (B-CP) [16], which is a ten-
sor decomposition based model to learn the binarized KG embed-
dings.

3.3 Experiment Setup
In order to validate the performance of variant KGE models, we
mainly conduct experiments based on OpenKE [13], containing the

reimplementation of several typical models (e.g., TransE, ANAL-
OGY, HolE, etc.)3 and further incorporate the implementation of
ConvE4 and B-CP5 into OpenKE. We selected the hyper-parameters
of the HALF framework via grid search according to the mean recip-
rocal rank (MRR) on the validation set. The search range of hyper-
parameter are as follows - self-balanced dropout in hash layer {0.0,
0.1, 0.2, 0.3}, embedding dropout {0.0, 0.1, 0.2, 0.3}, batch size {16,
32, 64, 128, 256}, learning rate {0.0001, 0.001, 0.003, 0.01}. In or-
der to fairly evaluate the performance of each model, we will set the
embedding size and the hash code length to 200.

3.4 Results
We applied HALF to variant KGE methods and then compared the
HALF-versions with original models and other hashing approaches
(i.e, B-CP) on WN18 and FB15K. Moreover, since HALF-ConvE
and HALF-HolE showed a competitive performance, we addition-
ally tested them on WN18RR and FB15K237. The main results are
shown in Table 3.

3.4.1 Signed KGE V.S. Original KGE:

According to the performance of most KGE models and their signed
variants, quantizing the trained entity embedding causes serious loss
of information. For example, the original ConvE achieved the best
performance with the trained real-value embedding while the signed
version even worse than Sgn-TransE. It seems that the more trained
parameters kept inside models, the worse information loss caused by
the quantization of embeddings.

Moreover, the performance of Sgn-HolE is totally different from
other variants, as it achieves a high accuracy on most benchmarks,
However, the rate of Hit@10 is equal to Hit@1, which indicates that
no less than 10 binarized hash codes cannot be distinguished as the
target due to the equal Hamming distance. In a other words, the good
news is that the target entity do generally appears in the nearest area
(i.e., the first-order set) to a query, e.g., (h, r, ?), but the specific ca-
pacity of the first-order entities still needs to be explored.

3.4.2 HALF-Models V.S. Signed-KGE:

With the proposed hash learning framework, the accuracy of each
model has been improved in varying degrees. There are three inter-
esting information hidden in the comparison:

1) HALF combined with neural network-based models generalize a
higher performance improvement compared to its signed-version
than matrix factorization-based or translation-based models. For
example, although the performance of original-ANALOGY is
similar to original-ConvE, after hashing, the performance of the
later is 10 percentages higher than that of the former.

2) HolE shows competitive performance in both signed-version
and HALF-version. Moreover, HALF-HolE even achieves much
higher performance than Original-HolE on most benchmarks.

3) Hit@10 may not work in the context of hash-based searching, nor
does MRR. Actually, in addition to HolE, other signed models
can still distinguish Hit@1 from Hit@10 by quantizing directly,
because the intermediate results are not strictly discretized, for
example, when h ∈ {±1}d and r ∈ Rd, then sum (h + r) /∈
{±1}d.

3 https://github.com/thunlp/OpenKE.git
4 https://github.com/TimDettmers/ConvE.git
5 https://github.com/KokiKishimoto/cp decomposition.git
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Table 3. Link prediction results on four benchmarks. We

WN18 FB15K WN18RR FB15K237
Hit@ Hit@ Hit@ Hit@

Models MRR 10 3 1 MRR 10 3 1 MRR 10 3 1 MRR 10 3 1
TransE .388 .741 .609 .139 .380 .641 .472 .231 - - - - - - - -
TransR .897 .920 .906 .886 .477 .731 .563 .336 - - - - - - - -

Original- RESCAL .548 .726 .597 .456 .280 .470 .314 .184 - - - - - - - -
ANALOGY .942 .947 .944 .939 .725 .854 .785 .646 - - - - - - - -

KGE HolE .938 .947 .945 .930 .524 .739 .613 .402 .365 .379 .369 .356 .162 .297 .180 .095
ConvE .942 .955 .947 .935 .745 .873 .801 .670 .460 .480 .430 .390 .316 .491 .350 .239
Sgn-TransE .024 .067 .026 .000 .099 .278 .134 .004 - - - - - - - -
Sgn-TransR .001 .001 .001 .000 .001 .001 .000 .000 - - - - - - - -

Signed- Sgn-RESCAL .092 .158 .096 .058 .118 .197 .124 .077 - - - - - - - -
Sgn-ANALOGY .442 .581 .503 .382 .121 .185 .148 .097 - - - - - - - -

KGE Sgn-ConvE .304 .349 .316 .241 .214 .284 .224 .157 0.153 .209 .136 .124 .091 .118 .084 .029
Sgn-HolE .731 .731 .731 .731 .689 .689 .689 .689 .283 .283 .283 .283 .147 .147 .147 .147

d=200 B-CP .901 .933 .918 .881 .695 .835 .760 .611 .450 .500 .460 .420 .278 .446 .304 .194
Half-TransE .354 .755 .477 .154 .262 .468 .288 .164 - - - - - - - -
Half-TransR .114 .196 .123 .006 .115 .222 .119 .006 - - - - - - - -

HALF- Half-RESCAL .124 .212 .132 .007 .125 .243 .131 .006 - - - - - - - -
(d=200) Half-ANALOGY .578 .782 .649 .467 .173 .328 .188 .009 - - - - - - - -
Models Half-ConvE .903 .923 .911 .897 .732 .759 .727 .703 .422 .471 .439 .401 .359 .393 .350 .306

Half-HolE .875 .875 .875 .875 .826 .838 .830 .817 .413 .413 .412 .412 .584 .599 .586 .572

3.4.3 HALF-Models V.S. B-CP:

As shown in Table 3, B-CP is a binarized KGE model which gener-
alizes good performance in link prediction tasks. However, B-CP is
essential a KGE model than a KG hash learning model, where the
representation of each entity is quantized into {± 1

3
}d in practice.

Moreover, B-CP has not utilized the advances of Hamming distance
to accelerate the target searching, but is designed as a discriminant
model to determine the probability of each triple. Compared with the
B-CP, the proposed Half-HolE/ConvE achieved the state of the art
performance with competitive efficiency and accuracy.

3.5 Analysis

3.5.1 Bit-Balance and Uncorrelation

In this section, we compare the performance of the HALF without
the bit-balance and uncorrelation constraints and the unconstrained
HALF. We conduct experiments on four benchmarks and list the
MRR score in Table 4.

Table 4. The effectiveness of bit-balance and uncorrelation constraints.

MRR
FB15K WN18 FB15K237 WN18RR

Sign-ConvE .304 .214 .153 .091
HALF-ConvE
(unconstrained) .857 .691 .375 .260

HALF-ConvE .903 .732 .422 .359

Since hash codes of the same dimension contain less information
than real-value embeddings, considering to maximize the entropy of
a hash code, we formalize the objective function as follows:

argmaxH =−
d′∑
i=1

[pi log
1

pi
+ (1− pi) log

1

1− pi
]

s.t. 1 ≤ d′ ≤ d, 0 ≤ pi ≤ 1,

(16)

where H measures the quantity of information in a d-dimensional
binary vector. d′ ≤ d is the number of uncorrelation dimensions and
pi is the probability of ith dimension to be 1, otherwise it will be
-1. Obviously, the bit-balance constraint keeps each pi = 0.5 and
the bit-uncorrelation constraint keeps d′ = d, which is the optimal
solution for Eq. 16.

Figure 2. The comparison of computation time (seconds) between
Euclidean distance and Hamming distance, varying with the batch size or the

dimension size.
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Figure 3. Binarized KG embedding visualization.

3.5.2 Time Efficiency

As described in the above section, HALF can accelerate the com-
putation of predicting period by using the bitwise operations (XNOR
and Bitcount). To compare the computation speed between Euclidean
distance and Hamming distance, we conduct two experiments as fol-
lows: (a) fix the embedding dimension d = 200 and calculate the ex-
ecution time varying the batch size n from 5 to 500,000, and (b) fix
the batch size n = 100, 000 and calculate the execution time varying
the embedding dimension d from 10 to 1,000. Figure 2 clearly shows
that bitwise operations can provide speed-up compared to standard
float operation in Euclidean distance computation.

3.5.3 Embedding Visualization

In Figure 3, we visualize the binarized KG embedding distribu-
tion using t-SNE [9, 22]. The binarized embeddings are trained on
FB15K, but only 10 classes of entity embedding are displayed for
easier comparison. Model (a) the signed ConvE achieves 21.4%
MRR and our proposed version, Model (b) HALF-ConvE achieves
73.2% MRR.

We sampled 1000 entities from FB15K randomly , which are
evenly distributed in 10 categories. Obviously, HALF modified
model has more compact and separable clusters, which indicates that
binarized embeddings keep more semantic similarity via the training
process. This descends from the design of the multi-objective train-
ing framework. Without HALF, the signed embeddings overlap with
each other, which may make the original model difficult to compare.

4 Related Work

4.1 Knowledge Graph Embedding

Several KGE models have been introduced in the literature, such
as translation-based models (e.g., TransE [4] and TransR[20]), ma-
trix factorization-based models (e.g., RESCAL [24], HoloE [23], and
Analogy [21]), and neural network-based models (e.g., ConvE [8]).
We refer to [30] for a recent survey. Generally, the proposed models
embed entities and relations into a Euclidean space or Complex space
and evaluate the performance of model according to the accuracy of
link prediction or triple classification. However, when leveraging the
learning KG embeddings in search-intensive applications such as se-
mantic search [28, 12, 11] and question answering [14, 31], the KGE
methods still need to be modified to specific real-world problems,
e.g., approximate search [28, 14], relation reasoning [11].

Basically, the search-oriented KGE is a type of generative repre-
sentation learning approach, such as TransG [32], GAKE [10], KG-
gan [5]. Contrasted with the proposed methods, we utilize the idea
of multi-task learning [7] and propose a uniform framework to trans-
form discriminative models (i.e, TransE, RESCAL, HoloE, ConvE
etc) into generative models.

4.2 Information Network Hashing

Information network hashing, or binary network embedding has
gradually [19, 25, 33, 29] been gaining attention for fast queries in
large-scale homogeneous networks [1]. Apart from decreasing stor-
age by representing each node with a few bits, information network
hashing can also accelerate algorithm training by replacing inner
products and distances in the Euclidean space with efficient bit-wise
operations and Hamming distances. The later can be further applied
to accelerate k-nearest neighbor query using recent advances in hash-
code indexing [19].

4.3 Knowledge Graph Hashing

In contrast to information networks, a KG is generally formalized
as a heterogeneous network, where the type of edges between each
pair of nodes may be different. Binarized CANDECOMP/PARAFAC
(B-CP) [17] proposed a CP-decomposition based knowledge graph
hashing method, while only utilizing bit-wise operations to acceler-
ate algorithm training ignoring the potential of hash codes in efficient
searching. Wang et al. [27] also introduce a framework for encod-
ing several specific incomplete KGs and graph queries in Hamming
space. However, they cannot be applied to general KGE models for
learning the binary embeddings.

5 Conclusion

In this paper, we proposed a novel hash learning framework HALF
for KG representation learning. In HALF, each entity is represented
by a binary vector, in turn, it will generate a candidate t′ with h and r
to index the target entity for Hamming distance-based quick search.
We conducted comparative experiments on benchmark datasets to
evaluate the performance of our framework. Results show that the
framework significantly speeds up the searching process and pro-
vides good results. In the future, we will explore the real-world ap-
plications (e.g., large-scale knowledge graph link prediction) based
on the learning binarized KG embeddings.
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