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Abstract. Multi-Task Learning (MTL) has shown its effectiveness
in real applications where many related tasks could be handled to-
gether. Existing MTL methods make predictions for multiple tasks
based on the data examples of the corresponding tasks. However,
the data examples of some tasks are expensive or time-consuming to
collect in practice, which reduces the applicability of MTL. For ex-
ample, a patient may be asked to provide her microtome test reports
and MRI images for illness diagnosis in MTL-based system [37,40].
It would be valuable if MTL can predict the abnormalities for such
medical tests by feeding with some easy-to-collect data examples
from other related tests instead of directly collecting data examples
from them. We term such a new paradigm as multi-task learning from
partial examples.

The challenges of partial multi-task learning are twofold. First, the
data examples from different tasks may be represented in different
feature spaces. Second, the data examples could be incomplete for
predicting the labels of all tasks. To overcome these challenges, we
in this paper propose a novel algorithm, named Generative Learning
with Partial Multi-Tasks (GPMT). The key idea of GPMT is to dis-
cover a shared latent feature space that harmonizes disparate feature
information of multiple tasks. Given a partial example, the informa-
tion contained in its missing feature representations is recovered by
projecting it onto the latent space. A learner trained on the latent
space then enjoys complete information included in the original fea-
tures and the recovered missing features, and thus can predict the la-
bels for the partial examples. Our theoretical analysis shows that the
GPMT guarantees a performance gain comparing with training an
individual learner for each task. Extensive experiments demonstrate
the superiority of GPMT on both synthetic and real datasets.

1 Introduction

To improve learning performance, Multi-Task Learning (MTL)
solves multiple related tasks jointly, such that the knowledge learned
from one task could be leveraged by others [5]. MTL has shown
success in many real applications. For example, in medical service,
physicians usually ask a patient to take several tests before making
the final diagnosis. To aid this process, MTL is introduced to learn
from various related physical testing results to predict the abnormal-
ity from each test. Then, based on the predicted abnormalities, an
expert system [9, 22] could be used to diagnose the patient.
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Figure 1: A typical MTL-based diagnosis system, in which the learn-
ers that predict the abnormalities from the physical test results are
trained with MTL techniques.

Existing MTL approaches require data examples from all related
tasks to make an accurate prediction [2]. As an example shown in
Figure 1, to help diagnose if a patient has lung cancer or not, MTL is
fed with different kinds of laboratory results (e.g. the images or re-
ports of CT scan, MRI, and microtome test) as input. However, some
physical tests, such as MRI and microtome, could be expensive and
time-consuming, reducing the applicability of MTL in such scenar-
ios. The question then is: instead of obtaining the complete data ex-
amples, can we make predications based on partial information (i.e.
the data for some tasks are not presented) in MTL?

To address this issue, we in this paper propose the Generative
Learning with Partial Multi-Tasks (GPMT) algorithm, which can
handle and leverage the partial information effectively. The proposed
algorithm is motivated on a key observation: since the tasks in MTL
are related and share commonalities, there exists relatedness among
the features across tasks. Following this spirit, GPMT learns a uni-
versal feature space so as to uniformly project data examples, came
from different tasks and represented in different feature spaces, onto
it. Specifically, GPMT employs a generative graph to capture the fea-
ture relatedness. The vertices of the graph denote the features in the
universal feature space, and the out-edge weights of a vertex repre-
sent the relatedness between the corresponding feature and the oth-
ers. As a result, such a graph can be used to map the original feature
space of any data example to the universal feature space.

Notably, if we simply regenerate the missing features based on
the learned generative graph, the constructed universal space may
be very sparse in practice. Revisit the medical example: hundreds of
physical tests can be provided, while only a few of them are neces-
sary when diagnosing a patient. In this case, the features from the un-
necessary tests are apparently less useful comparing with those from
the necessary tests. Hence, the values of the useless features regen-
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erated in the universal feature space are small or even zeroes, result-
ing in a sparse representation. Such a sparse representation induces
high dimensionality and, therefore, deteriorates the informativeness
and representativeness of the feature representations in the univer-
sal feature space. A learner trained directly on the universal feature
space suffers from performance degradation, a phenomena known
as “curse of dimensionality”. We address this problem by embed-
ding the reconstructed universal feature space into a low-dimensional
shared latent space. The embedded latent space should preserve use-
ful feature information in the universal feature space. To this end, we
leverage the supervised information to guide the embedding process,
such that the less the suffered training loss, the more informative the
embedded latent space.

Specific contributions in this paper:

1. We explore a new problem, named Partial Multi-Task Learning
(PMTL), which aims to predict data examples with partial fea-
ture information, rather than the conventional MTL methods that
require a full feature information from all data examples.

2. A novel GPMT algorithm is proposed to solve the PMTL problem,
with its performance bound being analyzed.

3. Extensive experiments on 9 benchmark datasets and 1 real-world
dataset have been carried out to demonstrate the superiority of our
proposal.

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 covers the preliminaries. Section 4 scrutinizes
the building blocks of the proposed approach. Section 5 and Section 6
report the theoretical and experimental results, respectively. We con-
clude the work in Section 7. Due to the page limitation, we put the
detailed derivations and proofs in supplementary material4.

2 Related Work
Our work is related with multi-task learning, multi-view learning,
and multi-label learning methods. This section discusses the rela-
tionships and differences with the existing literatures.

Multi-Task Learning (MTL). The pioneer works by [2, 15] shows
that solving multiple tasks jointly can reduce the hypothesis space
of training learners and improve generalization performances, com-
pared with solving each task solely. From the data perspective,
[24, 34, 42] propose to learn an augmented feature representation
space which conveys a higher level of discriminant power than the
original features. From the learner perspective, [1, 14] suggest that
the feature relatedness among multiple tasks leads to redundancy in
model parameters. To get rid of the redundant information, the learn-
ers trained on different tasks are merged and approximated in a low-
rank latent space. These works train an individual learner on each
task with respect to the fact that both the feature space and label se-
mantics of different tasks can be disparate. Thus, they cannot predict
a specific label for the data examples that are not represented in the
corresponding task.

Multi-View Learning (MVL). The literatures in this class aim to
improve the model performance in a task (view) of interest by lever-
aging information from multiple auxiliary tasks (views). Compar-
ing with MTL, on the one hand, MVL pays more attention on the
task of interest, rather than MTL which treats all tasks equally. On
the other hand, MVL strictly requires the feature spaces of different
tasks are non-identical. As such, from a technical viewpoint, MVL

4 shorturl.at/hxLM6

can be deemed as a special case of MTL, where the tasks are hetero-
geneous yet share the same semantic label as the prediction target.
Prior works [20, 26, 28, 32, 36] envision a consensus pattern matrix
that is extracted from the multiple data matrices of different views.
Thus, the models trained on auxiliary views can be leveraged via the
bridge of the extracted pattern matrix. Moreover, [8, 16, 21] propose
to directly learn asymmetric mappings between the view of inter-
est and each of the auxiliary views, such that the model trained on
auxiliary views can be applied to the view of interest by simply pro-
jecting the data samples represented in the view of interest onto the
auxiliary views. Unfortunately, all these methods require a full in-
formation of all views, which cannot be satisfied in our setting. A
recent work by [23] lifted such requirement and allows missing data
representations in some views, however, it focuses on clustering in-
stead of supervised learning, where both the technical challenges and
solutions are different from our work.

Multi-Label Learning (MLL). As we consider the labels of differ-
ent tasks convey disparate semantic meanings, our PMTL problem is
also related with the MLL problem. The literatures in this class fall
into three categories: First-order approaches [3,7,41] that decompose
the MLL problem into a number of independent binary classifica-
tion subproblems (one subproblem per label), and solve the subprob-
lems independently; Second-order approaches [11, 13] that aim to
capture the pairwise ranking relationship among pairs of labels; and
High-order approaches [30,31,38] that are computationally more de-
manding and less scalable than the former ones yet possess stronger
correlation-modeling capabilities via addressing connections among
random subsets of labels. These methods assume that the data ex-
amples are generated from a single feature space, while in our set-
ting, there exists multiple feature spaces. Indeed, it is difficult for
a single feature space to capture the information required to label
a large number of semantic meanings. Thus, addressing multi-label
challenge in the PMTL problem is meaningful.

3 Preliminaries
We first summarize some notations used in this paper. Bold upper-
case and lowercase characters are used for matrices (e.g.A) and vec-
tors (e.g.a), respectively. For any matrix A ∈ Rm×n, Ai,j denotes
its (i, j)th entry, and for any vector a = [a1, a2, . . . , an]> ∈ Rn, ai
denotes its ith element. ‖ · ‖2 denotes the `2-norm of a vector. For a
non-square matrix A, its Moore-Penrose pseudo-inverse is denoted
by A†.

3.1 The PMTL Problem
Given m tasks {Ti}mi=1. Let Xi = Rdi and Y = {y(1), . . . , y(m)}
denote the feature space of Ti and the label space of all tasks, respec-
tively. Without loss of generality, we consider that the data examples
from different tasks are represented in different feature spaces, and
hence Xi 6= Xj for any i 6= j.

Suppose each task Ti has ni data examples and there are
n data examples in total. Each data example is allowed to ap-
pear in an arbitrary number of tasks, and its labels in different
tasks convey disparate semantic meanings. Denoted by (xj ,yj) =

([x
(1)
j , . . . ,x

(k)
j ], [y

(1)
j , . . . , y

(m)
j ]) ∈ X1 × . . . × Xk × Y the j th

training example appearing in k tasks T1, . . . , Tk, where 1 ≤ k < m

and k varies for different data examples. Let x(i)
j ∈ Rdi be a di-

dimensional feature vector and y
(i)
j be its groundtruth label, i.e.

y
(i)
j ∈ {−1,+1} for classification and y(i)j ∈ R for regression. In
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other words, for each data example xj , we know its groundtruth la-
bels in all m tasks yet can only observe its feature representations in
partial k tasks. Our goal is to find an optimal hypothesis ψ, such that
the empirical risk L = 1

n

∑n
j=1 `

(
yj , ψ(xj)

)
is minimized, with `

being a predefined loss function, e.g. logistic loss, square loss, etc.

3.2 Multi-Task Generative Graphical Model
Let U := X1 ∪ . . . ∪ Xm ∈ Rd1+...+dk+...+dm denote a univer-
sal feature space that unions the feature spaces of all m tasks. For
each given partial example, a generative graph is to embed a map-
ping φ : Rd1+...+dk 7→ U , completing its feature representations
in all m tasks from the partially observed k tasks. Denoted by G
the graph whose vertices represent the features in U and weights on
edges represent the relatedness between pairs of features. Specifi-
cally, for a vertex v, a vector containing the weights of its all out-
edges is denoted as θv . The graph G thus can be represented by a
matrix Θ = [θ1, . . . , θ|U|]

> ∈ R|U|×|U|.
We define uj := [xj , x̃j ]

> ∈ U as a desired completion of
of the j th partial example’s feature representation, where x̃j ∈
Rdk+1+...+dm denotes its missing feature representation in the (m−
k) tasks Tk+1, . . . , Tm. Learning G is to maximize the following log-
likelihood:

Q =

n∑
j=1

log P(uj |xj ,Θ), (1)

where the features in U are approximated independently by given
each task’s representation x

(i)
j . As such, we have:

P(uj |xj ,Θ) =

k∏
i=1

P(uj |x(i)
j ,Φ(i)), (2)

where we define Φ(i) := [θ1, . . . , θdi ]
> ∈ Rdi×|U| for simplicity.

In this work, we estimate the data generating process in U with a
mixture of exponential Gaussian distributions [12]. Specifically, we
let each Gaussian be contributed from a task where xj appears. This
makes an intuitive sense, since (i) the tasks in which xj is missing
contribute zero information for approximating uj ; and (ii) the infor-
mativenesses of different tasks are non-identical, and the more in-
formative tasks should play more significant roles in the generative
modelling. The distribution density function in Eq. (2) is defined as:

P(uj |x(i)
j ,Φ(i)) ∝ exp

(
− δi

2
(uj − E(uj))

>Σ−1(uj − E(uj))
)
,

(3)
where E(uj) is approximated based on φ given Φ(i) and x

(i)
j , and Σ

is a constant semi-positive definite matrix. Denoted by δi the impact
of ith Gaussian contributed by the ith task Ti and δi ∈ [0, 1]. To
train the graphical model, the iterative sampling techniques such as
MCMC [19] can be readily applied, which yet may yield expensive
training cost. We in Section 4.3 discuss our training strategy which
differs from the sampling techniques and is more efficient.

4 Our Approach
In this section, we scrutinize the building blocks of our GPMT ap-
proach, and discuss the intuitions behind its design. Section 4.1 de-
tails the discovery of the latent feature space, and Section 4.2 elab-
orates the method to train a unified learner. We combine the la-
tent space discovery, the learner training process, and the generative
graph learning process into one optimization problem, and propose
an efficient strategy to solve it in Section 4.3.

Figure 2: Learning protocol of our GPMT approach. Each partial ex-
ample that appears in several tasks is represented with corresponding
feature vectors. For the tasks they do not appear, the missing fea-
ture representations are generated from the observed feature vectors.
Then, the observed and generated feature vectors are together em-
bedded into a latent feature space. The learner is trained on the em-
bedded latent space based on the discrepancy between the predictions
and the groundtruth labels.

4.1 Latent Space Discovery under Supervision
Since the reconstructed space may be sparse in practice, we discover
a shared latent feature space with low dimension to preserve useful
feature information in the universal feature space. As shown in Fig-
ure 2, the wellness of the discovered latent space directly depends on
the reconstructed universal feature space. However, if the data exam-
ples only appear in few tasks or if the tasks that they appear lie in
less-informative feature spaces, the missing feature representations
are likely to be generated with noises. These noises will persist and
escalate in the later latent space discovery, and negatively affect the
accurateness of the trained learner.

To address this issue, we exploit the plentiful supervised informa-
tion conveyed by the the groundtruth labels to guide the discovery
of the latent space. Specifically, the learner is trained on the latent
feature representations – the less noises the latent space contains, the
better the learning performance it can achieve. This idea leads to the
development of the optimization problem as follows.

arg min
{wi}mi=1,K

m∑
i=1

n∑
j=1

`
(
y
(i)
j ,w>i Kemb(uj)

)
+
λ1

2
‖uj −Krec

(
Kemb(uj)

)
‖22, (4)

where {wi}mi=1 denotes the learner consisting of a set of linear clas-
sifiers w.r.t. all m tasks, in which all wi ∈ Rz with z being the di-
mension of the latent space. The function setK = {Kemb,Krec} com-
prises (i) the embedding functionKemb : U 7→ Rz which extracts the
latent space from the universal feature space; and (ii) the recovering
function Krec : Rz 7→ U which recovers the universal feature space
from the latent space. Such a design draws insights from autoen-
coders [18], where the discovered latent space is enforced to contain
sufficient information that can accurately recover the universal fea-
ture space. In this work, for the convenience of theoretical analysis
and without loss of generality, we restrict our interest in searching
K in the family of linear models. In practice, one may implement
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K with deep generative networks [29] so as to model data with very
complicated underlying distributions.

Eq. (4) couples the discovery of latent space with the training of
learner. The intuition behind Eq. (4) is that the learner, trained on the
latent space if well-constructed, should make minimum prediction
errors over all tasks. The loss function ` is convex and Lipschitz in
its first argument. For different types of tasks, ` can be defined dif-
ferently – for example, logistic loss for classification and square loss
for regression.

4.2 Learning Unified Learner via Respecting Task
Correlations

The learner in Eq. (4) is defined as a set of independent classifiers, in
which the ith classifier learns from one specific label in Ti. This strat-
egy may yield high accuracy, yet does not scale to sizeable databases.
In practice, a sizeable database (e.g. webpage categorization) can
easily contain millions of data examples each of which is annotated
with thousands of different labels. Training one classifier for each
label needs to scan the whole database many times, incurring high
computational and storage cost.

To improve the learning efficiency, we wish to train a unified
learner that can handle multiple tasks simultaneously. However, the
increased number of target labels tends to augment the searching
space of the optimal learner in a combinatorial fashion, leading to
poor convergence rate. Therefore, it is necessary to constrain the
growth of the searching space before the start of training a unified
learner.

In this work, we consider posing the constraint by respecting the
correlation information among tasks from two channels – label se-
mantics and feature spaces. Revisit the medical diagnosis example in
Figure 1. First, the abnormalities (labels) predicted from the physi-
cal test results are highly correlated such as lung lesions (from CT
scan) and pulmonary nodules (from MRI). Enforcing the learner to
compromise such correlated label semantics can intuitively reduce
its searching space.

Second, two patients who have been detected as having similar
abnormalities usually suffer from similar symptoms (e.g. pulmonary
pain or bleed) and hence their representations in the latent space
should be close to each other, and be faraway to those who have dis-
parate abnormalities. Based on these two observations, the feature-
induced dictionary encoding (FIDE) [39] is employed to respect the
correlation information, which not only captures the label correla-
tions but also uses the label correlations to regularize the discovered
latent space. Details follow.

Denoted by M ∈ Rn×n the dictionary that encodes the sparse
reconstruction relationships among data examples in the label space.
Each entry Mi,j denotes the influence of yi in reconstructing the
predicted labels of the j th data example, and Mi,j 6= Mj,i in most
cases. The reconstruction error is defined as:

Elabel =
n∑
j=1

1

2
‖ŷj −

m∑
i=1
j 6=i

yiMi,j‖22, (5)

where ŷj = W>Kemb(uj) is the predicted labels of the j th data
example for all m tasks with W ∈ Rz×m being the unified learner
that predicts all m labels simultaneously.

The intuition behind why minimizing Eq. (5) can reduce the
searching space of learner is that, if two labels are correlated, the
number of data examples that support such correlation (i.e. the pa-
tients who have both lung lesions and pulmonary nodules) should be

larger than those that do not. Given a new data example, if its repre-
sentation in the latent space is closer to those supporting data exam-
ples, the learner, if it gives disparate predictions on the correlated la-
bels, will incur large reconstruction error in Eq. (5). For the simplic-
ity of notations, we define Ẏj := {y1, . . . ,yn} \ yj ∈ Rm×(n−1)

and mj := {M1,j , . . . ,Mn,j} \ Mj,j ∈ Rn−1. Eq. (5) can be
rewritten as:

Elabel =

n∑
j=1

1

2
‖ŷj − Ẏjmj‖22. (6)

The dictionary M is then used to regularize the discovered latent
space. Similar to Eq. (6), we define the reconstruction error in the
latent space as:

Elatent =

n∑
j=1

1

2
‖Kemb(uj)− K̇jmj‖22, (7)

where K̇j := {Kemb(u1), . . . ,Kemb(un)} \ Kemb(uj) ∈ Rz×(n−1).
Eq. (7) enforces that, in the latent space, the data examples that have
similar labels are represented closely to each other while those have
disparate labels are separated.

4.3 An Efficient Optimization Strategy
Our solution to the PMTL problem, by incorporating Eq. (4), Eq. (6),
and Eq. (7), boils down to the following tri-objective optimization
problem:

arg min
W,K,M

n∑
j=1

`
(
yj ,W

>Kemb(uj)
)

+
λ1

2
‖uj −Krec

(
Kemb(uj)

)
‖22

+ λ2(Elabel + Elatent), (8)

where the optimal solution does not have a closed form. Hence, one
may consider to use iterative methods to seek the parameters of W,
K, and M that deliver a saddle point of Eq. (8). However, this strat-
egy suffers from the expensiveness of obtaining uj at each iteration
in which the graphical model is re-trained with expensive sampling
techniques such as MCMC [19]. On the other hand, the decoupling
of the graph learning and the other learning procedures ignores the
plentiful supervised information, and thus may degrade the accurate-
ness of the obtained uj .

To overcome the above two issues, we propose to embed the graph
learning process into the optimization of Eq. (8), such that the learn-
ing efficiency can be improved, and in turn the supervised informa-
tion can be leveraged to help learn a better generative graph. The
optimization problem defined in Eq. (8) can be equivalently refor-
mulated as follows (for details refer to Section 1 of supplementary
material):

arg min
W,Z,M

n∑
j=1

`
(
yj ,W

>Z>F xj
)

+
λ1

2
‖xj −Z>B Z>F xj‖22

+
λ2

2

(
‖W>Z>F xj − Ẏjmj‖22 + ‖Z>F (xj − Ẋjmj)‖22

)
, (9)

where Ẋj := {x1, . . . ,xn} \ xj ∈ R(d1+...+dk)×(n−1), and
Z = {ZF,ZB} comprising two mapping functions, namely,
ZF (forward) : Rd1+...+dk 7→ Rz and ZB (backward) : Rz 7→
Rd1+...+dk . We have

Z>F xj = Kemb
(

diag(δ)Θ>xj
)

=

k∑
i=1

Kemb
(
δiΦ

(i)>x
(i)
j

)
∈ Rz,

Z>B Z>F xj = diag(δ)†Krec(Z>F xj) ∈ Rd1+...+dk .

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Notably, given trained W and Z , the predicted labels for a par-
tial example xj can be directly calculated as ŷj = W>Z>F xj , with
Z>F xj being the feature representation of xj in the discovered latent
space. This means that the universal feature space does not need to be
truly visited in making predictions, which greatly reduces the number
of operations involved in matrix multiplications. Further, we define
W>Z(i)>

F x
(i)
j := W>Kemb(Φ

(i)>x
(i)
j ) as the predictions made

based on x
(i)
j , the feature representation of xj in Ti only. We have

ŷj =
∑k
i=1 δiW

>Z(i)>
F x

(i)
j , where δi determines the impact of the

task Ti in making predictions. This makes an intuitive sense since
the feature spaces that different tasks lie in have different levels of
informativeness. Let L(i)

T = 1
ni

∑T
t=1

∑ni
j=1 `

(
yj ,W

>Z(i)>
F x

(i)
j

)
denote the average cumulative loss suffered by making predictions
based on Ti solely over T iterations, we update δi at the T + 1th

iteration as:

δi = exp
(
− τL(i)

T

)
/

k∑
i=1

exp
(
− τL(i)

T

)
(10)

where τ is a tuned parameter and its value assignment is discussed in
Section 5. If the task which lies in a less informative feature space
that incurs larger L(i)

T , then its corresponding δi is negatively re-
warded by Eq. (10) in an exponential fashion.

In this work, we adapt the Blockwise Gradient Descent (BGD)
solvers [25, 27] to optimize Eq. (9). Following the common steps of
BGD, we (i) decompose Eq. (9) into two optimization subproblems
in which one subproblem is w.r.t. W and Z and the other is w.r.t.
M; and (ii) solve Eq. (9) by alternating between the two subprob-
lems, minimizing over one while keeping the other one fixed. For
simplicity, let F denote the main function in Eq. (9), and ` is imple-
mented as the square loss, namely, `(yj , ŷj) = (1/2)‖yj − ŷj‖22.
The partial derivatives of F w.r.t. W, Z , and M are as follows:

∇WF = −Z>F xj
(
yj − (1− λ2)ŷj − λ2Ẏjmj

)>
, (11)

∇ZFF = −xj
(
yj − (1− λ2)ŷj − λ2Ẏjmj

)>
W>

− λ1xj
(
xj −Z>B Z>F xj

)>Z>B
+ λ2(xj − Ẋjmj)(xj − Ẋjmj)

>ZF, (12)

∇ZBF = −λ1Z>F xj(xj −Z>B Z>F xj)
>, (13)

∇MF = −λ2

(
Ẏ>j (ŷj − Ẏjmj) + Ẋ>j ZFZ>F (xj − Ẋjmj)

)
.

(14)

We summarize the main steps of our approach in Algorithm 1. As
a common setting in the gradient-based optimization methods [6], the
step size η is set as a varied rate which yields aggressive updates at
the initial iterations and then judicious updates at the later iterations.
In this way, our algorithm enjoys a faster convergence rate than that
uses a fixed step size. Moreover, in step 8, we only update mj , a
partial column vector of M that corresponds to the given input xj ,
rather than updating the entire dictionary M.

5 Theoretical Analysis
In this section, we derive the performance bound of GPMT algo-
rithm, aiming to answer the following question:

Q1 Given partial examples, can performance gain be expected via
learning from multi-tasks jointly than from each task individually?

For the sake of soundness, the proofs of this section are provided
in Section 2 of supplementary material.

Algorithm 1: The GPMT algorithm
Input :
1: Partial examples for training: {(xj ,yj)|j = 1, 2, . . . , n};
2: Nonnegative parameters λ1 and λ2;
3: Maximal number of iterations T ;

1 Initialize W ∈ Rz×m, M ∈ Rn×n, Z = {ZF,ZB}, and
t← 0;

2 repeat
3 t← t+ 1 ;
4 for j = 1, . . . , n do
5 Receive data example (xj ,yj);
6 Initialize a varied step η ←

√
1/(t ∗ n+ j);

7 Optimize W and Z by fixing M via Eq. (11),
Eq. (12), and Eq. (13):

W←W − η∇WF
ZF ←ZF − η∇ZFF
ZB ←ZB − η∇ZBF

8 Optimize M by fixing W and Z using Eq. (14) as:

M←M− η∇MF

9 Update δi for each Ti using Eq. (10) with τ =
√

8 lnm/T ;

10 until convergence or t exceeds T ;
11 return W and ZF;

Theorem 1. Denoted by LGPMT
T = 1

n

∑T
t=1

∑n
j=1 `(yj , ŷj) the av-

erage cumulative loss of GPMT suffered by learning from n par-
tial examples across m tasks over T iterations. Assume the loss
function ` is convex in its first argument. LGPMT

T with parameter
τ =

√
8 lnm/T satisfies

LGPMT
T ≤ min{L(i)

T }
m
i=1 +

√
(lnm/2)T . (15)

Let ∆ =
√

(lnm/2)T , which is log-bounded by the number
of tasks and sub-linearly bounded by the number of training itera-
tions. Theorem 1 suggests that LGPMT

T is comparable to the minimum
of L(1)

T , . . . , L
(m)
T which is the average cumulative loss suffered by

making predictions on the task that lies in the most informative fea-
ture space among all m tasks. Furthermore, we have the following
theorem.

Theorem 2. Suppose the feature space of Tb is more informative
than those of the other tasks, satisfying L(b)

T < L
(i)
T , for any b 6= i.

Over T iterations, LGPMT
T is bounded as:

LGPMT
T < L

(b)
T + C, (16)

where C is a constant, and C � ∆.

Theorem 1 and 2 validate that our learning algorithm possesses a
nice property as follows.

Corollary 1. The learning performance is improved by making use
of multiple tasks.

Proof. On the one hand, for the tasks lie in more informative fea-
ture spaces (e.g. the most informative task Tb), Theorem 2 tells that
LGPMT
T is comparable to L(b)

T and is tightly bounded to a small con-
stant. On the other hand, for those tasks lie in less informative feature
spaces, it is obvious that other tasks that have more informative fea-
ture spaces are helpful. Furthermore, if the feature space of a task
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Ta is less informative than that of Tb to a certain degree, satisfy-
ing L(a)

T − L
(b)
T > ∆, it is easy to verify that LGPMT

T < L
(a)
T . To

conclude, given partial examples, the learner trained on multi-tasks
achieves better performance than that trained on an individual task,
i.e. Q1 is answered.

6 Experiments
In this section, we first introduce the experimental setups in Sec-
tion 6.1, and then present and extrapolate the experimental results in
Section 6.2.

6.1 General Setup
6.1.1 Dataset

We perform the experiments on 10 datasets consisting of 9 synthetic
datasets and 1 real dataset. Table 1 summarizes the statistics of the
studied datasets, and the details follow.

Synthetic Datasets are prepared by following the same idea in [17].
We select 9 UCI datasets [10] that spanned a broad range of domains,
including audio, image, etc., whose scales vary from 502 to 16,105
and dimensions vary from 68 to 1449. These datasets only have one
feature space at first. We map the original datasets via two random
Gaussian matrices, so that we have data represented in three tasks.
Since the data are complete in all tasks, we randomly remove 50%
data examples for each task while making sure that each data exam-
ple appears in at least one task.

Real Dataset is collected by ourselves during the research project
called the Communities that Care Youth Survey (CCYS), which is
administered and funded by the Louisiana government. The data are
collected from 79,988 students from 6th to 12th grades via question-
naires provided by 8 independent agencies (therefore, 8 tasks). The
questionnaires assess the students’ exposure to different sets of social
factors (e.g. family, neighborhood, school, etc.), and collect in total
355 features. Our goal is to predict the students’s involvements in 8
different behaviors, including academic performance, mental health,
substance abuse, etc. The students are not obligated to finish all ques-
tionnaires, and therefore, the partial examples refer to the students
who only answer a few questions, i.e. those students who arbitrar-
ily appear or absent in the tasks. By calculation, the average missing
ratio is about 60% (in other datasets the ratio is 50% as fixed).

6.1.2 Compared Methods

We compare the proposed GPMT with three state-of-the-art multi-
task learning algorithms:

MTMR trains an individual learner on each task, and regularizes
the trained learners by projecting them onto a low-dimensional
manifold [1].

MTDA allows the tasks lie in different feature spaces and learns
multiple mappings, each of which independently maps a task
space to a shared latent space [42].

HEGS selects a subset of data examples from multiple tasks which
have similar distributions, and then trains a unified learner on the
selected data subset [33].

Moreover, to conduct the ablation study, we propose two variants
of GPMT, named GPMT-U(niversal) and GPMT-I(ndependent), re-
spectively. Their differences from GPMT are: (i) GPMT-U does not
further embed the universal feature space into a lower-dimensioned

Table 1: Characteristics of the studied datasets.

Dataset #examples #dim. 1* #dim. 2* #dim. 3* Domain

CAL500 502 68 49 70 audio
emotions 593 72 66 81 audio
genbase 662 1, 186 1, 023 1, 352 biology
medical 978 1, 449 1, 161 1, 620 text
Enron 1, 702 1, 001 974 1, 111 text
yeast 2, 417 103 85 113 biology
Slashdot 3, 782 1, 079 981 1, 220 text
Corel5k 5, 000 499 352 507 image
delicious 16, 105 500 400 600 text

CCYS 79, 988 355 (overall in 8 tasks) education

* The dimensions of the original, the first mapped, and the second
mapped feature spaces, respectively.

space; instead, a unified learner is directly trained on the universal
space. (ii) GPMT-I does not exploit the label correlations and simply
learns independent classifiers to handle multiple labels.

6.1.3 Evaluation Metrics and Parameters

We evaluate the experimental performances using example-based ac-
curacy and one-error, both of which are widely used in literature.
Specifically, the example-based accuracy calibrates the proportion of
the correctly predicted labels to the overall labels for each instance:

Exam-Acc =
1

n

n∑
j=1

|yj ∩ ŷj |
|yj |

, (17)

and the one-error measures the frequency of the instances whose
most confidently predicted label is not in the groundtruth label set:

One-Error =
1

n

n∑
j=1

Jarg max
ŷ∈ŷj

rank(ŷ) /∈ yjK, (18)

where rank(·) denote the function that ranks the predicted labels by
their confidence. In this work, we use max-margin principle to quan-
tify the prediction confidences.

For our approach, we use grid search to find the optimal pa-
rameter set based on the one-error for each dataset. In partic-
ular, λ1 and λ2 are selected from {.01, .03, .05, .1, .3, .5} and
{.001, .005, .01, .05, .1, .5}, respectively. We set z = 500 for gen-
base, medical, Enron, and Slashdot; and z = 100 for the other
datasets. For the compared methods, parameters are set as suggested
in the corresponding literatures.

6.2 Results

Table 2 reports the detailed results of performance comparison, from
which we investigate the following two questions.

Q2 Does the proposed GPMT approach outperform the state-of-the-
art methods?

GPMT shows a significant superiority over the compared meth-
ods on most datasets. It is worth noting that GPMT simply adopts
a linear model as the implementation of the unified learner, which
means that the performance gain can be expected by implementing a
more powerful classifier such as SVM or multi-layer perceptron. The
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Table 2: Comparison of GPMT with the state-of-the-arts under two evaluation metrices (Mean ± Standard Deviation). For each evaluation
metric, ↑ indicates “the larger the better” while ↓ indicates “the smaller the better”. The best performances are bold. • indicates GPMT has a
statistically significant better performance than the compared methods (hypothesis supported by paired t-tests at 95% significance level).

Dataset Metric HEGS MTMR MTDA GPMT-U GPMT-I GPMT

CAL500
Exam-Acc ↑ .839± .001 .734± .003 • .775± .001 .815± .003 .867± .001 .823± .002
One-Error ↓ .074± .001 .195± .004 • .113± .002 • .086± .001 .041± .007 .057± .001

emotions
Exam-Acc ↑ .619± .001 • .715± .005 • .762± .001 • .795± .006 • .817± .001 .848± .001
One-Error ↓ .247± .003 • .155± .007 • .181± .001 • .139± .009 • .112± .002 .098± .003

genbase
Exam-Acc ↑ .536± .010 • .642± .005 • .668± .004 • .639± .003 • .687± .008 • .755± .003
One-Error ↓ .290± .001 • .224± .004 • .202± .003 • .196± .002 • .201± .006 • .107± .005

medical
Exam-Acc ↑ .516± .009 • .722± .006 .697± .001 • .716± .002 • .683± .007 • .763± .005
One-Error ↓ .279± .002 • .227± .009 .245± .002 • .214± .003 .263± .002 • .197± .001

Enron
Exam-Acc ↑ .503± .003 • .693± .005 • .761± .007 .712± .004 • .722± .003 • .801± .004
One-Error ↓ .292± .017 • .201± .006 • .147± .001 .154± .006 • .129± .002 .114± .002

yeast
Exam-Acc ↑ .727± .002 • .738± .002 • .784± .002 • .793± .003 .762± .001 • .827± .002
One-Error ↓ .188± .001 • .156± .003 • .119± .002 • .053± .012 .082± .003 .046± .000

Slashdot
Exam-Acc ↑ .486± .014 • .557± .001 • .620± .006 • .637± .017 • .682± .002 .714± .001
One-Error ↓ .414± .007 • .329± .004 • .224± .003 .206± .001 .216± .009 .191± .002

Corel5k
Exam-Acc ↑ .616± .003 • .695± .009 • .733± .001 • .793± .002 .820± .009 .803± .001
One-Error ↓ .303± .001 • .257± .006 • .172± .005 • .156± .003 .091± .004 .137± .007

delicious
Exam-Acc ↑ .543± .008 • .638± .005 • .611± .007 • .606± .003 • .612± .001 • .718± .002
One-Error ↓ .289± .003 • .185± .012 .198± .003 • .202± .002 • .214± .002 • .136± .001

CCYS
Exam-Acc ↑ .573± .001 • .645± .004 • .708± .001 • .691± .008 • .613± .003 • .782± .001
One-Error ↓ .333± .005 • .301± .002 • .132± .005 .264± .005 • .215± .002 • .112± .006

GPMT:
Exam-Acc ↑ 9 / 0 / 1 9 / 1 / 0 8 / 2 / 0 7 / 3 / 0 6 / 2 / 2 —
One-Error ↓ 9 / 1 / 0 8 / 2 / 0 7 / 3 / 0 5 / 5 / 0 4 / 4 / 2 —

win/tie/loss counts of our approach versus the compared methods are
summarized in the last row of Table 2.

Overall, we observe that GPMT significantly outperforms HEGS,
MTMR, and MTDA by wining on most datasets. In particular, HEGS
yields the worst prediction performances on most datasets, and is
more sensitive to the dimension change of datasets than other algo-
rithms. For instance, HEGS achieves a 51.0% example-based accu-
racy on four datasets with higher dimensions (i.e. genbase, medi-
cal, Enron, and Slashdot) on average while the number on the other
six datasets with lower dimensions is 65.3% – a 28% performance
degradation is suffered. The reason is that HEGS pads zeros to handle
the missing data, in which the zeros may carry noisy information and
skew the original data distributions. Such negative effect is escalated
in datasets with high dimensions since, the higher the dimensional-
ity, the larger the number of padded zeros. In this regard, GPMT per-
forms more robustly on both high- and low-dimensional datasets by
achieving 75.8% and 80% example-based accuracies, respectively –
only 5.5% performance degradation is suffered.

The average performances of MTMR and MTDA are similar (e.g.
example-based accuracies are 68% and 71%, respectively), which
are better than HEGS yet worse than GPMT (78.3%). Both MTMR
and MTDA have the corresponding mechanisms to build a latent
space so as to capture the commonalities among different feature
spaces. However, no matter mapping the classifiers onto manifold
(MTMR) or individually embedding each feature space (MTDA), the
correlations between pairs of tasks are not respected. On the con-
trary, GPMT constructs the latent feature space that harmonizes in-

formation from all tasks and exploits the label correlations, and thus
achieves better learning performances.

Q3 Does the unified learner trained on the latent space improve the
learning performance?

Comparing with its two variants, GPMT wins on less criteria (22 out
of 40) and ties on more criteria (14 out of 40). GPMT-U performs
better on the six low-dimensional datasets (ties 6 criteria comparing
with GPMT) than on the four high-dimensional datasets (ties only
2 criterion comparing with GPMT). The reason is that GPMT-U di-
rectly learns from the universal feature space and the classifier suf-
fers from high dimensionality, e.g. a 1186 + 1023 + 1352 = 3561
dimensional classifier is trained on genbase. GPMT-I achieves the
closest performance with GPMT among all compared methods – ty-
ing on 6 criteria and winning on 2 criteria in CAL500 and 2 criteria
in Corel5k. The overall better performance of GPMT validates the
effectiveness of building a unified learner with respect to the task
correlations.

7 Conclusion
In this paper, we have explored a new problem in the context of multi-
task learning – how to predict the semantic labels of multiple tasks
when only partial data examples are presented. By utilizing the re-
latedness among features across tasks, we discover a shared latent
feature space that harmonizes the information contained in various
tasks. To ensure the correctness of the discovered latent space, we
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leverage the supervised information so that the data examples with
the same labels are represented closely in the latent space while those
with disparate labels are separated. The processes of space discov-
ering and learner training are unified in a tri-objective optimization
problem, and an efficient optimization strategy is then developed to
solve it. Theoretical results showed that our approach leads to bet-
ter learning performance with guarantees. We carried out extensive
experiments and the results evidenced the effectiveness of our ap-
proach.

It is worth pointing out that the data examples of some tasks may
contain noise in practice, however, our current method does not con-
sider such noise. In the future, we plan to extend GPMT to handle
noisy representations since they will negatively affect the accurate-
ness of the recovery of missing information. One possible solution
is to utilize the recent advances in compressed sensing [4, 35] to dis-
cover the manifold structure underlying the data examples in multiple
tasks. The discovered manifold can then be used to filter the data ex-
amples that disobey it, such that the negative effects caused by noise
could be mitigated.
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