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Abstract. Vanilla CNNs, as uncalibrated classifiers, suffer
from classifying out-of-distribution (OOD) samples nearly as
confidently as in-distribution samples. To tackle this challenge,
some recent works have demonstrated the gains of leveraging
available OOD sets for training end-to-end calibrated CNNs.
However, a critical question remains unanswered in these
works: how to differentiate OOD sets for selecting the most
effective one(s) that induce training such CNNs with high
detection rates on unseen OOD sets? To address this pivotal
question, we provide a criterion based on generalization errors
of Augmented-CNN, a vanilla CNN with an added extra class
employed for rejection, on in-distribution and unseen OOD
sets. However, selecting the most effective OOD set by directly
optimizing this criterion incurs a huge computational cost. In-
stead, we propose three novel computationally-efficient metrics
for differentiating between OOD sets according to their “pro-
tection” level of in-distribution sub-manifolds. We empirically
verify that the most protective OOD sets – selected accord-
ing to our metrics – lead to A-CNNs with significantly lower
generalization errors than the A-CNNs trained on the least
protective ones. We also empirically show the effectiveness of
a protective OOD set for training well-generalized confidence-
calibrated vanilla CNNs. These results confirm that 1) all
OOD sets are not equally effective for training well-performing
end-to-end models (i.e., A-CNNs and calibrated CNNs) for
OOD detection tasks and 2) the protection level of OOD sets
is a viable factor for recognizing the most effective one. Finally,
across the image classification tasks, we exhibit A-CNN trained
on the most protective OOD set can also detect black-box
FGS adversarial examples as their distance (measured by our
metrics) is becoming larger from the protected sub-manifolds.

1 Introduction
In supervised learning, it is generally assumed that a training
set and a held-out test set are drawn independently from the
same data distribution, called in-distribution set. While this
assumption can be true for controlled laboratory environments,
it rarely holds for many real-world applications, where the
samples can be drawn from both in-distribution and from
other distributions, called out-of-distribution (OOD) data,
which contains samples that are semantically and statistically
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different from those in-distribution. In the presence of OOD
samples, it is important to have a model able to distinguish
them in order to make reliable decisions. However, it has been
shown that state-of-the-art (vanilla) deep neural networks (e.g.,
CNN) are uncalibrated such that they are making predictions
for OOD samples with a confidence that is as high as those of
in-distribution samples, making them indistinguishable from
each other [12, 13]. For safety-critical real-world applications
such as self-driving cars, using vanilla CNNs that tend to
confidently make wrong decisions for such unknown OOD
samples can lead to serious safety and security consequences.
To tackle this challenge, post-processing approaches [7, 14,

20, 21] attempt to transform the confidence of predictions made
by pre-trained vanilla CNNs in order to create a gap between
the confidence for OOD samples and that of in-distribution
ones. Despite their simplicity and efficiency, their performances
depend on several additional hyper-parameters such as tem-
perature, magnitude of additive noise, or the parameters of an
auxiliary regression function, which should be carefully tuned
for each OOD set.
More recently, some researchers [24, 4, 15, 19, 23] have

proposed end-to-end calibrated CNNs-based models for OOD
detection. For instance, calibrated vanilla CNNs [15, 13, 20]
are trained to make uncertain predictions for OOD samples
while still confidently and correctly classifying in-distribution
ones. To train these models, some authors [24, 4, 15, 23]
have leveraged a naturalistic OOD set6, which seemingly is
selected manually from among many available ones, without
providing a systematical justification for their selection. Thus,
the following question remains unaddressed in these works: how
to differentiate among OOD sets w.r.t. a given in-distribution
task with the goal of selecting the most proper one, which
in turn induces a well-generalized calibrated model with high
detection rate of unseen OOD sets?.

Besides the confidence-calibrated vanilla CNN [24, 15, 19]
as end-to-end model for OOD detection task, the classical
idea of adding an explicit rejection class [1, 2, 6, 11] is also
an interesting end-to-end approach. Indeed, such augmented
classifiers can directly reject OOD samples by classifying them
to the extra class, while correctly classifying in-distribution
samples. In addition to the calibrated vanilla CNN, we exploit
A-CNN as an end-to-end model for OOD detection task.

However, without having a principle for selecting the right
OOD sets among those available, training well-generalized
A-CNN and calibrated vanilla CNN is challenging. Since using

6 We simply drop naturalistic and instead call it OOD set throughout
the paper.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



a randomly selected OOD set does not necessarily lead to a
model with a high detection rate of unseen OOD sets (i.e.,
generalization ability) as we later show in our experiments.
It has also been shown in [19], where using SVHN as OOD
set for CIFAR-10 is leading to an A-CNN with inferior gen-
eralization properties. Moreover, simply using a union of an
enormous number of OOD sets not only creates an extremely
unbalanced dataset, but also makes training of these models
computationally infeasible.

Although Hendrycks et al. [15] have conjectured diversity for
characterizing a proper OOD set, in this paper, our main focus
is to answer concretely the aforementioned question, i.e., how
to differentiate between OOD sets in order to select a proper
one. At first, we provide a formal criterion in the form of gen-
eralization errors of A-CNN for differentiating OOD sets and
selecting the most effective one. Using this, an OOD set is rec-
ognized as a proper (effective) if it leads to training of A-CNN
with low generalization errors for both in-distribution and
unseen OOD sets. However, directly optimizing this selection
criteria is computationally very expensive. To overcome this,
we propose some metrics that can be efficiently computed us-
ing a pre-trained vanilla CNN. We drive our metrics according
to the following intuition: a proper (effective) OOD set should
cover sub-manifolds of an in-distribution task, which can be
achieved by the penultimate layer of a vanilla CNN trained
on it. Thus, we design our metrics to measure the degree of
protectiveness of sub-manifolds by OOD sets for selecting the
most protective one. Indeed, protecting in-distribution sub-
manifolds by OOD samples allows for rejecting automatically
the unseen OOD sets which are located relatively far away
from the protected in-distribution sub-manifolds, as shown in
Figure 1. Therefore, the protection level of OOD sets can be a
viable factor for differentiating and selecting of OOD sets with
the aim of obtaining a well-generalized A-CNN and calibrated
vanilla CNN.

Our contributions in this paper can be outlined as follows:

• We provide a formal definition (with the use of A-CNN)
for precisely differentiating OOD sets according to their
induced generalization errors on unseen OOD sets and in-
distribution set.

• We are first to propose novel quantitative metrics for dif-
ferentiating OOD sets with the aim of selecting the most
protective OOD set w.r.t. a given in-distribution set. These
metrics, namely Softmax-based Entropy (SE), Cover-
age Ratio (CR) and Coverage Distance (CD), can be
efficiently computed using a vanilla CNN trained on the
given in-distribution task.

• In an extensive series of experiments on image and audio
classification tasks, we empirically show that A-CNNs and
calibrated vanilla CNNs trained on the most protective
OOD set have higher detection rates (lower generalization
error) on unseen OOD sets in comparison with those trained
on the least protective OOD set.

• We exhibit that A-CNN trained on the most protective OOD
set (i.e., A-CNN?) can also detect black-box FGS adversarial
examples generated by a relatively large magnitude of noise,
while vanilla CNN and the A-CNN trained on the least
protective OOD set are still incorrectly classifying them. We
show this occurs as the distance (measured by CD) of FGS
adversaries is increased from the protected sub-manifolds.

2 Characterizing a Proper OOD Set
Let us assume a hypothesis class H′ (e.g. A-CNN) for a K + 1
classification problem with K classes associated for a given
in-distribution task and the extra class (i.e., (K + 1)-th class)
reserved for identifying OOD samples. We also denote SI =
{(xi

I ,y
i
I)}Ni=1 as an in-distribution training set consisting of N

i.i.d. labeled samples drawn from data distribution DI , with
true labels {yi

I}Ni=1 ∈ {1, . . . ,K}. As the OOD training set,
take SO = {(xj

O)}
M
j=1 involving M i.i.d. samples drawn from

a data distribution DO, which we label as (K + 1)-th class.
The loss of a hypothesis h′ ∈ H′ for a given in-distribution

sample can be defined as `(h′(xi
I),y

i
I) = I(h′(xi

I) 6= yi
I) and

its loss for an OOD sample is `(h′(xj
O),K + 1) = I(h′(xj

O) 6=
K + 1)7. The true loss of an augmented classifier h′ ∈ H′ can
be evaluated on the underlying data distributions DI and DO

as:

LDI (h
′) = E(xI ,yI )∼DI

`(h′(xI),yI), (1)
LDO (h′) = ExO∼DO `(h

′(xO),K + 1). (2)

The corresponding empirical loss is computed on training set
SI and SO:

LSI (h
′) =

1

N

N∑
i=1

`(h′(xi
I),y

i
I), (3)

LSO (h′) =
1

M

M∑
j=1

`(h′(xj
O),K + 1). (4)

Before presenting our definition, we remark that there is a
set of B “out” data distributions Db

O, b = {1, . . . , B} with their
respective OOD training set Sb

O ∼ Db
O. Theoretically speaking,

B can be infinitely large. Moreover, we assume generalization
error of vanilla classifier (denoted by h ∈ H), for the original
K classification task, trained on SI is less than a small ε value:
|LSI (h)− LDI (h)| ≤ ε.

Definition 1 : For a given OOD training set Sb
O ∼ Db

O and
in-distribution training set SI w.r.t. hypothesis class H′, DI

and B “out” data distributions, we define two kinds of gaps
for the augmented classifier h′b ∈ H′ trained on SI ∪ Sb

O, i.e.
minh′

b
LSI + LSb

O
:

LSI = |LSI (h
′
b)− LDI (h

′
b)|, (5)

LSb
O
= sup
DO∈{D1

O
,...DB

O
}
|LSb

O
(h′b)− LDO (h′b)|. (6)

The first term LSI represents the gap between empirical
loss of classifier h′b ∈ H′ on in-distribution training set SI
and its true loss on DI while the second term LSb

O
concerns

the largest (worst) gap between empirical loss of h′b on OOD
training set Sb

O and its true loss on “out” data distributions.
By restricting B to a manageable (finite) large number, we
re-define LSb

O
by upper-bounding Eq. 6, i.e. sum of gaps on

B finite “out” data distributions:

LSb
O
=

∑
DO∈{D1

O
,...DB

O
}

|LSb
O
(h′b)− LDO (h′b)|. (7)

7 Indicator function I(p) returns 1 if condition p is true, and 0
otherwise.
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Figure 1: Illustration of properties of a partially-protective OOD set (middle) and a protective one (right) and their effect on
training A-MLP for a two-moon classification dataset, compared to a (left) vanilla MLP trained on the same dataset. The
black-cross samples are some test OOD samples and their predicted class and confidence scores by each (A)-MLP are also
indicated. All MLPs are composed of three layers with ReLU activation function.

As true data distributions are unknown, the aforementioned
equations can be empirically computed using validation sets.
Then, a proper OOD set is the OOD set that training a A-CNN
on it should produce the lowest accumulation of generalization
errors of both in-distribution task and (un)seen OOD sets:

Sb∗
O = argmin

Sb
O
∈{S1

O
,...SB

O
}
LSI + λLSb

O
, (8)

where λ > 0 is a balancing hyper-parameter. Directly using
Eq. 8 to find a proper OOD set is computationally inefficient as
it involves training B individual augmented classifiers, i.e. train
each h′b on a pair of SI ∪ Sb

O, b ∈ {1, . . . , B}. Particularly for
the case of CNNs, this incurs a huge computational overhead.
To overcome this computational burden, we conjecture that a
protective OOD set can also provide a well-generalized A-CNN
on both in- and unseen OOD sets (an intuitive illustration is
given in Sec. 2.1). Thus, instead of directly optimizing Eq 8, we
develop some cost-effective metrics to assess the protectiveness
level of OOD sets for identifying the most protective one.

2.1 Protective OOD set: An Illustrative
Example

To give a high-level intuitive explanation of our proposed
metrics for recognizing a protective OOD set, we use an exam-
ple based on the two-moon dataset (as in-distribution task),
where each moon is considered as a sub-manifold. Fig. 1(a)
exhibits the challenge of OOD samples for a vanilla MLP,
which is trained on only in-distribution samples. As can be
seen, this vanilla MLP confidently classifies OOD samples (in-
dicated with black-crosses) as either “class 1” or “class 2” albeit
they clearly belong to none of the in-distribution manifolds. In
Fig. 1(b) we demonstrate a partially-protective OOD set whose
samples are almost collapsed and only partially cover one of
the sub-manifolds (i.e., the manifold with blue squares). An
augmented MLP (A-MLP) trained on the two-moon dataset
along with this OOD set leads to a classifier with a limited
OOD detection performance (lower generalization ability of
detecting unseen OOD samples). More precisely, OOD sam-
ples, e.g., the unseen black-cross samples, which are laying
around uncovered parts of the manifolds, are still confidently
misclassified by the underlying A-MLP. Whereas, in Fig 1(c)
a proper protective OOD set, whose samples better cover the
in-distribution’s sub-manifolds (two-moon), is shown. As can
be seen, training an A-MLP on such a protective OOD set
(along with in-distribution samples) leads to classifying unseen

black cross OOD samples as class 3 (i.e., the extra class) as
well as classifying automatically the regions out of the mani-
folds as class 3. This results in an A-MLP with high detection
performance on unseen OOD sets (i.e., making the gap in
Eq. 6 small). Therefore, the design of our metrics is driven
according to this intuition that a proper OOD set should be
more protective of (i.e., closely covers) all in-distribution sub-
manifolds in the feature space. A similar intuition has been
previously exploited by some researchers, e.g. [19, 33], with
the aim of generating synthetic OOD samples.

2.2 Proposed Metrics

As previously done [8, 16], we consider the penultimate layer of
a vanilla CNN as a function that transfers samples from high-
dimensional input space into a low-dimensional feature space,
placing them on data (sub-)manifold(s) [3, 5]. Furthermore,
we assume that for a standard multi-classification problem
(with K classes), each class has its own sub-manifold in the
feature space where its associated in-distribution samples lie.
In the following, we propose our metrics to assess which of
the available OOD sets has a better and closer coverage of the
sub-manifolds.

2.2.1 Softmax-based Entropy

Our first metric aims at determining whether the samples of
a given OOD set are distributed evenly to all sub-manifolds
(of a given in-distribution task) such that they have the equal
chance of being covered by these OOD samples. For example,
an OOD set, whose samples are misclassified by a given vanilla
CNN into only a few of in-distribution classes (manifolds)
instead of all of them, is deemed as a non-protective OOD set.
This is because the sub-manifolds with no or only a few OOD
samples being misclassified to them, are still uncovered (cf.
Fig. 1(b)). Thus training A-CNN on such non-protective (or
partially-protective) OOD set may lead to limited detection
performance of unseen OOD sets. In contrast, the samples of
a protective set are expected to be misclassified evenly to all
the sub-manifolds, giving all of them an equal chance of being
covered.
To quantitatively measure this incidence for a given OOD

set w.r.t. an in-distribution set and a vanilla CNN trained on
it, we introduce Softmax-based Entropy (SE). First we define
p(c = k|SO) as the conditional probability of k-th class given
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SO as follows:

p(c = k|SO) =
1

M

M∑
j=1

Ik
(
argmax(h(xj

O)) = k
)
, (9)

where h is softmax output of the vanilla CNN trained on SI
and Ik(.) is an indicator function for k-th class. It returns 1 if
a given OOD sample xj

O ∈ SO is (mis)classified as class k by
h, otherwise it returns 0. Finally, SE is defined for an OOD
set SO as follows:

H(SO) = −
K∑

k=1

p(c = k|SO) log p(c = k|SO). (10)

H(SO) shall reflect how uniformly the samples of SO are dis-
tributed to in-distribution sub-manifolds (i.e., corresponding
to each in-distribution class). Note that the maximum value
of SE is logK (K is the number of classes) when all of the
samples are uniformly distributed. Thus, the highest H(SO)
indicates that all the sub-manifolds have an equal number
of OOD samples, whereas the smallest value of H(SO) indi-
cates some sub-manifolds (except a few of them) have a small
number of (or no) OOD samples to cover them. Therefore,
a protective OOD set should have a higher SE than that of
non-protective ones.

2.2.2 Coverage Ratio

Although an OOD set with the high(est) SE confirms OOD
samples are evenly distributed to all the sub-manifolds, using
solely SE is not sufficient to assure the coverage of these sub-
manifolds. Putting differently, an OOD set with the highest
SE might still be collapsed and only partially cover some parts
of the sub-manifolds.
Inspired by covering number notion [29], we introduce our

second metric, named coverage ratio (CR), in order to measure
coverage of the sub-manifolds. Recall the sub-manifolds are
approximated using a training in-distribution set in the feature
space that is achieved by the penultimate layer of h. We denote
ziI and zjO as the representations of xi

I ∈ SI and xj
O ∈ SO in

the feature space, respectively.
To formally describe Coverage Ratio (CR), we form a rectan-

gular weighted adjacency matrix W ∈ RN×M for a given pair
(SI ,SO) with N in-distribution and M OOD samples, respec-
tively. Wi,j = ‖ziI − zjO‖2 is the distance (l2-norm) between
in-distribution sample ziI and OOD sample zjO in the feature
space. The distance between a pair of (ziI , z

j
O) is computed

only if ziI is among k-nearest in-distribution neighbors of zjO,
otherwise Wi,j = 0:

Wi,j =

{
‖ziI − zjO‖2 if ziI ∈ k-NN(zjO, SI)

0 otherwise
. (11)

In other words, for each sample zjO, we find its k-nearest
neighbors from the in-distribution set SI in the feature space.
Then, if the given ziI belongs to k-nearest in-distribution neigh-
bors of zjO, we setWi,j to their distance. From matrixW , we de-
rive a binary adjacency matrix A as follows; Aij = I(Wij > 0).
Now using matrix A, we define CR metric as follows:

R(SI ,SO) =
1

N

N∑
i=1

I

(
M∑
j=1

(Ai,j) > 0

)
, (12)

where I(
∑M

j=1(Ai,j) > 0) assesses whether the i-th in-
distribution sample ziI covered at least one time by the OOD
samples SO in the feature space. Basically, this metric measures
how many in-distribution samples (percentage) are covered by
at least one OOD samples from SO in the feature space. Finally,
we estimate an OOD set w.r.t. a given in-distribution
set is protective if it has both high SE and high CR.

It is important to note that SE and CR are complementary.
As mentioned earlier, high SE of an OOD set without consid-
ering its CR is not sufficient for estimating the protective level
of an OOD set. Similarly, from high CR alone without having
high SE, an OOD set cannot be considered as a protective
one. This is because, an OOD set with high CR but low SE
is not distributed enough among all sub-manifolds and might
cover a large portion of only a few sub-manifolds.

2.2.3 Coverage Distance

Furthermore, to measure the distance between OOD set SO
and the in-distribution data sub-manifolds, the following dis-
tance metric, named Coverage Distance (CD), can be driven:

D(SI , SO) =

∑
i,j Wij∑
i,j Aij

=
1

kM

∑
i,j

Wij . (13)

D(SI ,SO) shows average distance between OOD samples of
SO and their k nearest neighbors from in-distribution set.
Selection of Protective OOD set: We remark that for final
selection OOD set SE and CR play more important roles than
CD since they indicate the degree of spread and protectiveness
of OOD sets for the sub-manifolds while CD reveals the average
distance of OOD set to the sub-manifolds. Since our primary
concern is about coverage of the sub-manifolds, we first assess
SE and CR. In other words, the most protective OOD set
should have the highest SE (preferably near to logK) and the
highest CR compared to those of the remaining OOD sets. If
one encounters some OOD sets that have (relatively) equal
highest SE and CR, then their CDs can be considered for final
selection –the OOD set with smaller CD can be selected.

3 Experimentation
We conduct a series of experiments on several classification
tasks including two image benchmarks, namely CIFAR-10 and
SVHN, and one audio benchmark, namely Urban-Sound [28].
In our experiments, we utilize VGG-16 and a CNN described
in [27] for image and audio benchmarks, respectively.
Like in [21], for each of these in-distribution task, various

naturalistic OOD sets are considered; for image classification
tasks, we consider LSUN, ISUN, CIFAR-100 and TinyIma-
geNet as OOD sets and Gaussian noise as a synthetic OOD set.
For audio classification task with 10 classes, i.e., Urban-Sound,
OOD sets considered are TuT [25], Google Command [32]
and ECS (Environmental Sound Classification) [26], as well
as white-noise sound as a synthetic OOD set. Note the classes
of an OOD set, which are semantically or exactly overlapping
with those of the given in-distribution set, are discarded.

In our experiments, we consider two types of end-to-end
approaches, i.e., an A-CNN and a confidence-calibrated vanilla
CNN, for detecting OOD set. The latter type (i.e., calibrated
vanilla CNN), a CNN is said to be calibrated after being trained
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Figure 2: Differentiating OOD sets for SVHN, CIFAR-10, and Urban-Sound for the purpose of selecting the most protective one
using our proposed metrics. Each sub-figure shows a bubble chart with SE and CR as y-axis and x-axis, respectively. The size of
bubbles is determined by CD, also shown in the legend of the sub-figures. The least/most protective OOD sets are indicated in
caption of the sub-figures.

to predict OOD training samples with great uncertainty (i.e.
uniform prediction) while confidently classifying correctly in-
distribution training samples. To achieve this, instead of cross
entropy loss, we apply the modified loss function used in [15,
19]. As the calibrated CNNs are threshold-based models for
performing OOD detection, likewise [15, 21, 20] to assess its
performance, we report AUROC, FPR at 95% TPR on test
for in- and out-of-distribution sets.
As A-CNN has an explicit rejection option (i.e. threshold-

free approach), we consider three criteria to assess its per-
formance on the in-distribution test set: 1) Accuracy rate
(Acc.) ↑, that is the rate of samples classified correctly as their
true associated label (↑ indicates the higher the better), 2)
Rejection rate (Rej.) ↓, the rate of samples misclassified as
dustbin (↓ indicates the lower the better), 3) Error rate (Err.)
↓, therate of samples that are neither correctly classified nor
rejected (Err. rate = 1- (Acc. rate + Rej. rate)). A-CNN per-
formance on OOD sets is evaluated by I) Rejection rate (Rej.)
↑: percentage (rate) of OOD samples classified as dustbin, and
II) Error rate (Err.) ↓: rate of OOD samples not classified as
dustbin (Err. = 1 - Rej.) Note since A-CNNs is a threshold-free
OOD detector there are no AUROC and AUPR values. Plus,
A-CNN’s OOD rejection rate and its in-distribution rejection
rate are the same concepts as TNR (True Negative Rate) and
FNR (False Negative Rate), respectively.

3.1 Empirical Assessment of Metrics

First, to obtain in-distribution sub-manifolds, if in-distribution
training set has more than 10, 000 samples, we randomly se-
lect 10, 000 samples from it, otherwise, we use the whole
in-distribution training set. Secondly, we pass the samples
through the penultimate layer of a pre-trained vanilla CNN
to map them into the feature space. The same procedure is
done for the samples of an OOD set to transfer them to the
feature space. To fairly compare OOD sets according to the
metrics, we also randomly select equal number of OOD sam-
ples (10, 000 samples ) from each OOD set. For OOD sets
with various sizes, we take the minimum size for making equal
size OOD sets by randomly selecting from them. To compute
CR and CD metrics, we set our only hyper-parameter, i.e. the
number of nearest neighbors, k = 4 for all our experiments.
Note that among our metrics, CR and CD are dependent on
k (the impact of k on our metrics are presented later).

3.1.1 Differentiating OOD Sets by the Metrics

Using the proposed metrics, we differentiate OOD sets for
each in-distribution set to select the most protective OOD sets
w.r.t. the given in-distribution. In Fig. 2, we demonstrate the
difference between OOD sets according to their SE, CR, and
CD, in order to identify the most and least protective OOD set.
The most and least protective naturalistic OOD sets identified
by our metrics (particularly by SE and CR) are indicated in
caption of sub-figures in Fig. 2. For SVHN task, for example,
ISUN, among naturalist OOD sets, and Gaussian noise, as
synthetic OOD set, are identified as the least protective sets.
Note that despite the high CR of Gaussian noise, its SE is
far small, indicating it as a collapsed OOD set, which thus
causes it to be identified as the least protective. The most
protective OOD set for SVHN is CIFAR-100 (i.e., C100) with
the highest SE and CR. For Urban-sound, ECS is the most
protective, while Command and TuT datasets can be regarded
as non-protective OOD sets due to their significantly low SE
with respect to the upper bound of SE (log 10).

To assess the sensitivity of our metrics to the choice of k,
we show the CR of OOD sets for varying k’s values in Fig 3.
In our experiments, we observe that the relative ranking of
OOD sets according to their CR and CD is consistent with
various values of k. Thus, CR and CD are not sensitive to the
choice of k.
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Figure 3: The effect of k (number of nearest neighbors) on
CR of OOD sets for SVHN (left) and CIFAR-10 (right).

A-CNN: As Eq. 8 states, training an A-CNN on a proper
OOD set should lead to a low average of 8 error rates on
(un)seen OOD sets (or equivalently high average of OOD
sample rejection rates). Therefore, for a given in-distribution
task (e.g. SVHN), we train a separate A-CNN on each OOD
set. Then, the error rates of these A-CNNs on all of the OOD
sets are evaluated. Note a small error rate on a OOD set is
equivalent to high detection rate.

8 Instead of summation in Eq. 8, we take the average.
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Figure 4: Rejection rates of A-CNNs on different OOD sets (x-axis), where each A-CNN is trained on a single OOD set, e.g. for
SVHN in Figure (a) A-VGG(C100) means an Augmented VGG trained on SVHN as in distribution and CIFAR-100 as OOD set.

In Fig 4, A-CNNs trained on the most protective set (iden-
tified by our metrics) across various in-distribution tasks con-
sistently outperform the A-CNNs trained on other OOD sets,
particularly the A-CNN trained on the least protective one.
For instance, A-CNN trained for CIFAR-10 with CIFAR-100*
(the non-overlapped version of CIFAR-100) as the most protec-
tive OOD set has 85% rejection rate on average while the least
protective one, i.e. SVHN, delivers A-CNN with the lowest
average of rejection rates (21%) of OOD sets.
It is also interesting to note that even though one may

expect Gaussian noise (i.e. white noise) to have well distributed
samples, SE metric shows that its samples are actually not
evenly distributed over all of the in-distributed sub-manifolds
(having lowest SE) and sometimes (for CIFAR-10 and Urban-
Sound in-distribution sets) they even have a small coverage
rate. As a result, an A-CNN trained on Gaussian noise as an
OOD set has the lowest average OOD rejection rate.
Consequently, the results show that all of the OOD sets

are not equal for training well-generalized A-CNNs as they do
not equally protect in-distribution sub-manifolds. Thus, we
highlight that protectiveness can be an important factor for
differentiating OOD sets to ultimately select the most proper
one. Moreover, to select an such OOD set, we remark that
our metrics are computationally inexpensive than explicitly
optimizing Eq. 8, which is equivalent to searching exhaustively
all A-CNNs, where each is trained on an OOD set.

In Table 1, in-distribution generalization performance of two
A-CNNs, one trained on the most protective OOD set (named
A-CNN?) and another trained on the least protective one
(named A-CNN‡), are compared with their standard (Vanilla)
CNN. Although the accuracy rates of the A-CNNs? drop
slightly, their error rates (i.e., risks) are considerably smaller
than their counterparts, i.e., vanilla CNNs. This is because
the A-CNNs are able to reject some “hard" in-distribution
samples, instead of incorrectly classifying them (similar to
[9]). Rejecting a sample rather than incorrectly classifying it
is an important aspect, particularly for security and safety
concerns.

In-distribution OOD sets
In-dist. task Network Acc (↑) / Rej (↓) / Err (↓) Avg OOD Rej. (↑)

SVHN
Vanilla VGG 95.53 / – / 4.47 –

A-VGG‡ (ISUN) 95.11 / 0 / 4.89 47.23
A-VGG? (C100) 95.38 / 0.34 / 4.28 99.88

CIFAR-10
Vanilla VGG 88.04 / – / 11.95 –

A-VGG‡ (SVHN) 87.75 / 0.03 / 12.22 21.41
A-VGG? (C100*) 85.37 / 5.65 / 8.97 85.10

Vanilla CNN 67.27 / – / 32.73 –
Urban-Sound A-CNN‡ (Command) 65.05 / 2.02 / 32.93 26.07

A-CNN? (ECS) 63.13 / 12.02 / 24.85 55.40

Table 1: The influence of selected most and least protective
OOD sets on inducing well-generalized A-CNNs with high
OOD detection rates.

Confidence-Calibrated vanilla CNN: Instead of A-CNN,
now we use calibrated CNN as the end-to-end model in order
to show the different impacts of OOD sets on training well-
performing calibrated CNNs. As it can be seen in Table 2, the
most protective OOD set recognized by our metrics is leading
to a calibrated CNN with a considerable lower average of FPR
at 95% TPR and highest AUROC. While the calibrated CNN
training on the least protective one has the higher FPR and
the lower AUROC9. As a result, we highlight that efficiently
recognizing proper (i.e. protective) OOD sets among the enor-
mous available ones is a key for training a well-performed
end-to-end model (either the underlying model is A-CNN or
calibrated vanilla CNN).

In-distribution Seen OOD set Unseen OOD sets
Avg AUROC/ Avg FPR

SVHN

‡ISUN 94.73/31.97
LSUN 99.25/ 4.39
C10 99.75/0.41

T-ImgNt 99.75/1.10
?C100 99.86/0.07

CIFAR-10

‡SVHN 86.38 /75.04
ISUN 86.20/77.03
LSUN 93.31/ 38.59

T-ImgNt 93.89/34.44
?C100* 93.03/26.13

Urban-Sound
‡Command 59.15/63.06

‡TuT 45.40/85.08
?ECS 71.41/60.67

Table 2: The effect of OOD set selection on the performance
of calibrated CNNs, where each trained on an OOD set, then
evaluated on unseen OOD sets. We report the average of
AUROC and FPR of calibrated CNNs on unseen OOD sets
and test in-distribution set.

3.2 Black-box Fast Gradient Sign (FGS)
Adversaries as OOD samples

FGS adversaries with high noise level can be regarded as
synthetic OOD samples, where they most likely lie out of
in-distribution sub-manifolds [10, 22]. Even though such FGS
adversaries contain perceptible noise, they can still fool vanilla
CNNs easily [10, 30]. To explore the capability of A-CNN? in
detecting such non-optimal adversaries, A-CNN?, A-CNN‡,
and their vanilla counterparts are compared w.r.t. their error
rates on FGS adversaries with a varying amount of noise. We
generated 5, 000 black-box FGS adversaries (from training
in-distribution set) using another pre-trained vanilla CNN

9 For brevity, we report the average of AUROCs and FPRs of unseen
OOD sets.
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Figure 5: FGS adversaries with various noise magnitude (shown in the two last rows). Sub-figures (a,c) show error rates of vanilla
CNN, A-CNN?, A-CNN‡ on FGS adversaries with varying noise for SVHN and CIFAR-10, respectively. Note Err rate = 1-(Acc
rate +Rej rate). (b,d) Coverage Distance (CD) of FGS adversaries (their average distance to in-distribution sub-manifolds) for
SVHN and CIFAR-10 respectively. The dotted red line is the Coverage Distance of the most protective OOD set, which is used
to train A-CNN?.

(different from the one evaluated here). Some adversarial ex-
amples with various amounts of noise (i.e. α) are displayed in
Fig 5.

As evident from Fig 5, the error rates (i.e., 1-Acc) of vanilla
CNNs increase as α becomes larger, showing the transferabil-
ity of these black-box FGS adversaries. In contrast, the error
rates (i.e., 1-(Acc+Rej)) of the A-CNNs? approach zero as
α increases since many of these FGS samples are rejected
by A-CNNs?. On the contrary, the error rates of A-CNN‡
are almost as high as those of vanilla CNNs for FGS adver-
saries with different magnitudes of noise. Fig 5 (b) and (d)
can explain this phenomenon; larger α causes generated FGS
adversaries to be further away from the sub-manifolds (i.e.,
larger CD). When FGS adversaries enter the protected regions
by A-CNN? (starting at the distance denoted by CD of the
most protective OOD set, i.e., dotted red horizontal line), they
are automatically rejected as OOD samples.

4 Related Work

In [14], the authors have demonstrated that OOD samples
can be discriminated from in-distribution ones by their pre-
dictive confidence scores provided by vanilla CNNs. As this
baseline does not create a significant detection rate, many
researchers [21, 20, 17, 2, 7, 18] have attempted to process
the confidence score for creating a larger gap between in-
distribution and OOD samples.
Other researchers have proposed to train end-to-end cali-

brated networks for making low confidence prediction on OOD
sets while keeping in-distribution performance high. For ex-
ample, [23] have incorporated an OOD set to in-distribution
set to train a modified Siamese network in order to keep in-
distribution samples nearby while pushing OOD training sam-
ples away from in-distribution ones. Others [15, 19, 31] have

proposed to train a vanilla CNN on OOD set along with in-
distribution set to force explicitly prediction of OOD samples
with uncertainty while confidently and correctly classifying
in-distribution samples. To train such end-to-end CNN-based
models, one can leverage a natural OOD set likewise [4, 15, 23]
or a set of synthetically-generated OOD samples [19, 33, 13].
Apart from computational cost of generating such a set of syn-
thetic samples, Hendrycks et al.[15] have shown a calibrated
CNN trained on a proper naturalistic OOD set can outperform
that of trained on GAN-generated synthetic samples.

5 Conclusion
Our main goal in this paper is to characterizing properties of
OOD sets for recognizing a proper one for training an end-to-
end A-CNN and calibrated vanilla CNN with high detection
rate on unseen OOD sets while maintaining in-distribution gen-
eralization performance. To this end, we feature an OOD set as
proper if it can cover all of the in-distribution’s sub-manifolds
in the feature space (i.e. protective OOD set). Then, we propose
computationally efficient metrics as a tool for differentiating
OOD sets for the purpose of selecting the most protective one.
Finally, we empirically exhibit training end-to-end models on
the most protective OOD set leads to remarkably higher de-
tection rates of unseen OOD sets, in comparison with those
models trained on the least protective OOD set. A Growing
number of available OOD sets is a possible rich source for
training well-performing end-to-end models to tackling OOD
detection challenge, if the most proper OOD set (equivalently
the most protective one) can be efficiently recognized.
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