
Learning Variable Ordering Heuristics with
Multi-Armed Bandits and Restarts

Hugues Wattez and Frédéric Koriche and Christophe Lecoutre and Anastasia Paparrizou
and Sébastien Tabary 1

Abstract. In constraint-based applications, the user is often re-
quired to be an expert as, for a given problem instance, many pa-
rameters of the used solver must be manually tuned to improve its
efficiency. Clearly, this background knowledge burdens the spread of
constraint programming technology to non-expert users. In order to
alleviate this issue, the idea of “autonomous” constraint solving is
to adjust the solver parameters and to efficiently handle any problem
instance without manual tuning. Notably, the choice of the variable
ordering heuristic can lead to drastically different performances. A
key question arises then: how can we find the best variable ordering
heuristic for a problem instance, given a set of available heuristics
provided by the solver? To answer this question, we propose an algo-
rithmic framework that combines multi-armed bandits and restarts.
Each candidate heuristic is viewed as an arm, and the framework
learns to estimate the best heuristic using a multi-armed bandit algo-
rithm. The common mechanism of restarts is used to provide feed-
back for reinforcing the bandit algorithm. Based on a thorough ex-
perimental evaluation, we demonstrate that this framework is able to
find the best heuristic for most problem instances; notably, it outper-
forms the state-of-the-art in terms of time and solved instances.

1 INTRODUCTION
Constraint Programming (CP) has long been recognized as a power-
ful paradigm for modelling and solving combinatorial search prob-
lems, with numerous applications ranging from configuration, plan-
ning and scheduling to bio-informatics, network design and soft-
ware validation. The key motto of Constraint Programming is to al-
leviate as much as possible the cognitive burden of combinatorial
search by using general-purpose constraint solvers. Ideally, the user
should only focus on modelling her task as a set of decision vari-
ables, together with a set of constraints specifying which relations
hold among the variables. Based on this description, the Constraint
Satisfaction Problem (CSP) is to find an assignment of all variables
that satisfies all the constraints. Solving this problem should be en-
tirely dedicated to the constraint solver, that interleaves search and
inference in order to efficiently explore the space of possible assign-
ments [12, 3, 34, 21].

The reality is however different. Modern constraint solvers are
equipped with various components whose careful tuning can signif-
icantly increase their efficiency. Among those components, the vari-
able ordering heuristic takes a central place in backtracking search
by ordering the variables to be visited in the search tree. Choos-
ing the right variable ordering heuristic for a given constraint net-

1 CRIL, Univ Artois & CNRS, France, email: {wattez, koriche, lecoutre, pa-
parrizou, tabary}@cril.fr

work can drastically affect the solving time by significant speed-ups,
since different heuristics can lead to entirely different search trees.
For this purpose, several heuristics have been proposed and analyzed
for variable ordering. Therefore, the question that arises is: given a
CSP instance and a set of variable ordering heuristics available in
the solver, which heuristic is the best one for solving the instance?
Since no existing heuristic has proven to be optimal on all possible
CSP instances, finding the right heuristic for the task at hand is not a
straightforward exercise, except maybe for an expert.

This research is in line with autonomous constraint solvers, which
adopt Machine Learning techniques for adjusting the solver param-
eters on a given problem instance without human intervention [18].
This work proposes to use Multi-Armed Bandit (MAB) techniques
for estimating the best variable ordering heuristic on a CSP instance.
Informally, a (basic) MAB problem is a sequential decision task in
which the bandit algorithm has at its disposal a set of arms, and ob-
serves the reward for the chosen arm after each trial. In our setting,
each arm is a variable ordering heuristic available in the constraint
solver, and trials are realized by using a restart mechanism [15].
Namely, the constraint solver operates through a sequence of “runs”,
whose termination is determined by a cutoff function. During each
run, the solver explores a search tree using the heuristic selected by
the bandit algorithm. When reaching the cutoff, the solver abandons
the current search and restarts, while the bandit algorithm receives
a reward for the selected arm. The reward reflects the performance
of the solver on the corresponding heuristic. The overall goal is to
learn which heuristic is the best for a given CSP instance. This is
done by interleaving exploration (trying out different heuristics for
acquiring new information) and exploitation (selecting the optimal
heuristic based on the available information) during runs.

This conceptually simple framework for autonomous constraint
solving can be easily adopted by any CP solver. The framework is
generic and can be instantiated using different cutoff functions, ban-
dit policies, and reward functions. For the bandit policies, we have
examined three well-studied algorithms: EXP3 [5], UCB1 [4], and
Thompson Sampling (TS) [35]. Finally, we have considered several
reward functions for capturing the performance of the heuristic on
each run. The most promising metric that emerges from our empir-
ical analysis is the pruned tree size which reflects the solver’s abil-
ity to efficiently infer “early domain wipeouts” during backtracking
search.

We conducted an extensive evaluation on various benchmark prob-
lems, involving several well-known heuristics. In a nutshell, the pro-
posed framework is able to solve more instances in less time than the
original solver equipped with any fixed heuristic. We also compare to
a state-of-the-art framework (detailed in the following) showing that

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

our framework admits better performance.

2 RELATED WORK
Autonomous constraint solving has received increasing attention in
the CP community, as evidenced by the diversity of work using Ma-
chine Learning (ML) techniques for automatically tuning some com-
ponents of the solver. These approaches can roughly be divided into
two categories, depending on the learning paradigm they rely on. The
first category is using supervised learning: given a space S of con-
figurations for some component of the solver, we start from a sample
of CSP instances, each labeled with the best configuration in S, and
then learn a hypothesis mapping CSP instances into S. In this cate-
gory, Balcan et al. [7] have recently developed a supervised learning
framework for estimating the best variable ordering heuristic (S is a
simplex over scoring rules). In [13], a new strategy (e.g., a combi-
nation of search algorithms and heuristics) is synthetized through the
use of ML. Supervised learning approaches for constraint solving are
closely related to portfolio techniques, where S is a set of candidate
solvers or algorithms. Portfolios have been proposed for SAT [42],
parallel SAT [25], QBF [32], ASP [29, 19] and CP [31, 20, 2].

The second category relies on reinforcement learning: using again
a space S of configurations for some component of the solver,
the best configuration in S is estimated during search, by observ-
ing a feedback on each selected configuration. Our framework, to-
gether with other approaches using MAB for constraint solving
[6, 14, 26, 41], belongs to this category. Gagliolo and Schmidhu-
ber [14] apply the EXP3 bandit algorithm for learning restart strate-
gies, while Balafrej et al. [6] use UCB1 for selecting different levels
of propagation during search. In [26], multi-armed bandits are ex-
ploited to select which node of a Monte Carlo Tree Search must be
extended. In SAT, the bandit algorithm ERWA (Exponential Recency
Weighted Average) is used as a heuristic to choose the next variable
to branch on [23, 24]. This principle is also applied for CSPs by the
recent variable ordering heuristic called CHS [17].

Arguably, the closest work to ours is of Xia and Yap [41], which
applies existing bandit algorithms (UCB1 and TS) for estimating the
best variable ordering heuristic, given a predefined set of candidate
heuristics (arms). In their framework, a single search tree is explored
(there are no restarts), and the bandit algorithm is called at each node
of the tree. Specifically, for each unexplored node, the algorithm se-
lects an arm and uses the corresponding heuristic to instantiate a vari-
able at that node. A mean reward for the arm bound to this node is re-
cursively computed according to the rewards observed on each child.
From a conceptual viewpoint, the key difference between this ap-
proach and ours lies in the characterization of “trials” during the se-
quential learning process. In this approach, trials are associated with
explored subtrees, while in our approach, trials are mapped to runs
using a restart mechanism. In the evaluation part, we have compared
both approaches.

3 BACKGROUND
A Constraint Network P consists of a finite set of variables vars(P),
and a finite set of constraints ctrs(P). We use n to denote the num-
ber of variables. Each variable x must takes a value from a finite
domain, denoted by dom(x). Each constraint c is specified by a rela-
tion rel(c) over a set of variables, called the scope of c, and denoted
by scp(c). The arity of a constraint c is the size of its scope. The
degree of a variable x is the number of constraints in ctrs(P) in-
volving x in its scope. A solution to P is the assignment of a value

to each variable in vars(P) such that all constraints in ctrs(P)
are satisfied. A constraint network is satisfiable if it admits at least
one solution, and the corresponding Constraint Satisfaction Problem
(CSP) is to determine whether or not a given constraint network is
satisfiable.

A classical procedure for solving this NP-complete problem is to
perform a backtrack search on the space of partial solutions, and to
enforce a property called GAC (Generalized Arc Consistency) [28]
after each decision. This procedure, called Maintaining Arc Consis-
tency (MAC) [37], builds a binary search tree T : for each internal
node ν of T , a pair (x, v) is selected where x is an unfixed variable
and v is a value in dom(x). An unfixed variable is a variable that
has not already been selected for building T . Then, two cases are
considered: the assignment x = v (positive decision) and the refu-
tation x 6= v (negative decision). The order in which variables are
chosen during the depth-first traversal of the search space is decided
by a variable ordering heuristic, denoted here H . Namely, at each
internal node ν of the search tree T , the MAC procedure selects the
next variable x using H , and assigns to x a value v according to
its value ordering heuristic, which is usually the lexicographic order
over dom(x).

Choosing the right variable ordering heuristic H for a given CSP
is a key issue in constraint solving, as one choice from another might
provoke differences of orders of magnitude in solving time. To this
end, several heuristics have been proposed in the literature including,
among others, activity [30], impact [33], dom/ddeg [38],
CHS [17] and wdegca.cd [40] (refinement of dom/wdeg [9]). For
example, dom/ddeg gives priority to the variable with the smallest
ratio “current domain size to dynamic degree”, where the dynamic
degree of a variable x is the number of constraints involving x and at
least another unfixed variable.

Finally, modern constraint solvers are equipped with a restart
function for addressing the heavy-tailed behavior on both random
and real-world instances [15]. In essence, this function is a mapping
cutoffrs : N → N, where cutoffrs(t) is the maximal number
of “steps” that can be performed by the backtracking search algo-
rithm at run t according to a restart strategy rs. A constraint solver,
equipped with the MAC procedure and a restart strategy rs, builds a
sequence of binary search trees 〈T1, T2, . . .〉, where Tt is the search
tree explored by MAC at run t. Importantly, even if the solver restarts
from the beginning, it can memorize some relevant information about
the sequence 〈T1, T2, . . . , Tt−1〉. For example, the solver may extract
the nogoods from the last branches in order to avoid exploring later
the same parts of the search tree, or can maintain in a cache the no-
goods which have appeared frequently in the search trees explored
so far [22].

The cutoff, which is the number of allowed steps in a run, may be
defined by the number of backtracks, the number of wrong decisions
[8], or any other relevant measure. In a fixed cutoff restart strategy,
the number T of runs is fixed in advance, and cutoffrs(t) is con-
stant for each run t, except for the T th run which allows an unlimited
number of steps (in order to have a complete algorithm). This strat-
egy is known to be effective in practice [16], but a good cutoff value
cutoffrs(t) has to be found by trial and error. Alternatively, in a
dynamic cutoff restart strategy, the number T of runs is unknown,
but rs increases the cutoff geometrically, which guarantees that the
whole space of partial solutions is explored after O(n) runs. A com-
monly used cutoff function is the Luby sequence [27]: the number of

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

steps per run is given by u× lt, where u is a constant and

lt =

{
2k−1, if t = 2k − 1

lt−2k−1+1, if 2k−1 ≤ t < 2k − 1.
(1)

4 THE MULTI-ARMED BANDIT
FRAMEWORK

Based on the above technical background, we are now in the posi-
tion to formulate our task: given a constraint network P and a set of
variable ordering heuristics H1, · · · , HK , which is the best one for
solving P ? This task is cast as a K-armed bandit problem, where
each arm is a candidate heuristic. To this point, recall that a MAB
problem is a sequential decision-making process in which the bandit
algorithm interacts with its environment. During each trial t, the al-
gorithm selects an arm it in {1, · · · ,K} and receives a reward rt(it)
for this arm. The goal is to minimize the expected regret over T trials,
which is defined as the expectation of the difference between the to-
tal reward obtained by the best arm and the total reward obtained by
the bandit algorithm. Importantly, the algorithm observes the reward
for the chosen arm after each trial, but not for the other arms that
could have been selected. Therefore, the minimization of regret is
achieved by balancing exploration (acquiring new information) and
exploitation (using acquired information).

In order to further advance in the specification of our MAB frame-
work, we need to clarify the notions of “trials” and “rewards”, and of
course, we need to choose appropriate bandit policies for the task of
selecting the best heuristic during constraint solving. The key idea of
this paper is to consider trials as runs, by exploiting a restart mecha-
nism that uses the Luby sequence as cutoff function. So, during each
run t, the bandit algorithm selects an arm it, and the MAC algo-
rithm is run using the corresponding heuristic Hit . When the cut-
off cutoffrs(t) is reached, the bandit algorithm receives a reward
rt(it) that captures the performance of the solver. Notably, this feed-
back can exploit some information about the binary search tree Tt
explored by the MAC algorithm at run t.

Algorithm 1: MAB Framework
Input: constraint network P , heuristics H1, · · · , HK , bandit

policy B

Initialize the bandit policy
1 INITARMSB(K)

Trials
2 for each run t = 1, · · · , T do

Select an arm according to the bandit policy
3 it ← SELECTARMB(K)

Run the solver and observe a reward
4 rt(it)← MAC

(
Hit
)

Update the bandit policy
5 UPDATEARMSB

(
rt
)

With these notions in hand, our algorithmic framework is given
by Algorithm 1. The framework takes as input a constraint network
P , a set of variable ordering heuristics {H1, · · · , HK}, and a bandit
policy B. The three main procedures of this policy are INITARMSB
for initializing the parameters of the bandit policy, SELECTARMB

for choosing the arm (heuristic) that will be used to guide the search
all along the run, and UPDATEARMSB for updating the parameters
of the bandit policy according to the observed reward at the end of

the run. The rest of this section is devoted to the specification of the
reward function and the bandit policies.

4.1 Reward function
The tricky part of our framework is to define an appropriate reward
function that maps, at each run, the performance of the MAC algo-
rithm to a numeric feedback. For example, the reward function can
be defined as the CPU time required to complete a run, the average
size of nogoods inferred by the MAC algorithm, the number of val-
ues removed through propagation, the number of “domain wipeouts”
which are empty domains inferred during search, or the number of
“wrong decisions” which are variable assignments leading to a full
exploration of the subtree without finding a solution.

We performed an empirical study on such possible metrics, and
the reward function that emerges from our analysis is the pruned tree
sizes (pts). Namely, pts solved 3 to 10 more instances in a slightly
better time, compared to the aforementioned measures.

Intuitively, this measure is given by the sum of the sizes of the
subtrees rooted at a node that has yielded a domain wipeout. Since
any such node is a dead-end, pts captures the ability of the solver
to quickly prune large portions of its search space. In formal terms,
given a binary search tree T generated by the MAC algorithm, let
dwo(T) be the set of nodes for which at least one variable has an
empty domain, and let fut(ν) be the set of variables that are left
unfixed at node ν. Then,

pts(Tt) =
∑

ν∈dwo
(
Tt
) ∏
x∈fut(ν)

|dom(x)| (2)

Based on this metric, the reward for the arm it selected by the
bandit policy at run t is given by:

rt(it) =
log(pts(Tt))

log
(∏

x∈vars(P) |dom(x)|
) (3)

A logarithmic scaling is needed to obtain a more balanced reward
between 0 et 1. Bigger is the cumulative size of pruned trees, better
is the reward given to the bandit.

4.2 Bandit policies
As indicated in Algorithm 1, our algorithmic framework is conceptu-
ally simple: based on a restart mechanism, the bandit algorithm per-
forms each run by first selecting an arm (heuristic), next observing a
reward for that arm, and then updating its policy according to the ob-
served reward. This simplicity allows us to use easily implementable
and computationally efficient bandit policies. From this perspective,
we have opted for three well-studied policies for the K-arm bandit
problem, which are summarized below.

EXP3 policy. When very little is known about the reward functions
r1, · · · , rt, the exponentially weighted forecaster for exploration and
exploitation [5] is arguably the prime candidate for theK-armed ban-
dit problem. Namely, EXP3 can operate in non-stochastic environ-
ments, for which no statistical assumption is made about the reward
functions. Using only the fact that the range of each rt is bounded,
EXP3 is guaranteed to converge towards the best arm (heuristic) by
achieving an expected regret in O(

√
T). Several variants of EXP3

have been proposed in the literature, but we use here the simplest
version defined in [11].

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

EXP3 maintains a probability distribution πt over {1, · · · ,K}.
Specifically, the procedure INITARMSEXP3 sets the initial vector π1

to the uniform distribution (1/K, · · · , 1/K). During each trial t, the
procedure SELECTARMEXP3 simply draws an arm it according to the
distribution πt. Based on the observed reward rt(it), the procedure
UPDATEARMSEXP3 updates the distribution πt according to the mul-
tiplicative weight-update rule:

πt+1(i) =
exp(ηtRt(i))∑K
j=1 exp(ηtRt(j))

(4)

where

Rt(i) =

t∑
s=1

rs(i)

πs(i)
1i∼πs (5)

and 1i∼πs indicates whether a was the arm picked at trial s, or not.
Using the fact that, in our framework, the range of all rewards func-
tions is in [0, 1], the step-size parameter ηt can be set to

√
lnK/tK in

order to obtain an O(
√
TK lnK) regret bound.

UCB policy. Upper Confidence Bound policies are commonly used
in stochastic environments [5]. Here it is assumed that the reward
value rt(i) of each arm i is drawn according to a fixed, but unknown,
probability distribution. In the setting of our framework, rt(i) is de-
termined by pts(Tt) according to (3), which in turn is determined
by the binary search tree Tt generated by the MAC algorithm at run
t, according to (2). For a fixed heuristic Hi and a fixed cutoff value
cutoffrs(t), MAC is expected to build the same tree Tt. Thus, it is
not unreasonable to assume that rt(i) is drawn according to a fixed
(yet hidden) distribution over [0, 1].

Based on these considerations, we use UCB1 which is the simplest
algorithm in the Upper Confidence Bound family. This algorithm
maintains two K-dimensional vectors, namely, nt(i) is the number
of times the policy has selected arm i on the first t runs, and r̂t(i)
is the empirical mean of rt(i) during the nt(i) steps. INITARMSUCB1
sets both vectors to zero and, at each run t, SELECTARMUCB1 selects
the arm that maximizes:

r̂t(it) +

√
8 ln(t)

nt(it)
(6)

Finally, UPDATEARMSUCB1 updates the vectors nt and r̂t according
to it and rt(it), respectively. Under the assumption that, for each
arm i, rt(i) is drawn (independently at random) according to a fixed
distribution over [0, 1], UCB1 also achieves an expected regret in
O(
√
TK lnK).

TS policy. The Thompson Sampling algorithm is another well-
known policy used in stochastic environments [1, 39, 36]. In essence,
the TS algorithm maintains a beta distribution for the rewards of each
arm. INITARMSTS sets α1(i) and β1(i) to 1 for i ∈ {1, · · · ,K}.
On each run t, SELECTARMTS selects the arm it that maximizes
Beta(αt(i), βt(i)), and UPDATEARMSTS uses rt(it) to update the
beta distribution as follows:

αt+1(i) = αt(i) + 1i=itrt(it) (7)

βt+1(i) = βt(i) + 1i=it(1− rt(it)) (8)

As for UCB1, the convergence of TS relies on the assumption that
rewards are drawn (independently at random) according to a fixed
distribution. Under this assumption, the TS algorithm achieves an
expected regret which is again in O(

√
TK lnK) [1].

5 EXPERIMENTAL EVALUATION
We have conducted some experiments on two benchmarks in XCSP3
format [10], so as to demonstrate the practical interest of the pro-
posed framework. The first benchmark, called [XCSP17], includes
all CSP instances (612 in total) from the 2017 XCSP3 competi-
tion2 coming from 60 different problems. The second one, called
[XCSP-ALL], is a larger set containing all CSP instances (more than
16, 000) available on the XCSP3 website3 in order to give us an over-
all performance view. Experiments have been launched on a cluster
of 2.66 GHz Intel Xeon with 32 GB RAM nodes. We have used the
solver AbsCon4 where we integrated our bandit model as well as
the one proposed in [41]. The restart policy is the Luby progression
(where the cutoff is based on the number of visited nodes) and the
timeout has been set to 1 hour. Concerning restarts, we also tried
CPU time, number of failures and value deletions as cutoff metrics,
but results were either non deterministic or less effective. We have
tested both bandit models under the same variable ordering heuris-
tics: activity [30], impact [33], dom/ddeg [38], CHS [17]
and wdegca.cd [40]. These heuristics are efficient ones, competitive
to each other, which makes the task of learning even tougher for
discriminating the best arm. We have also run them separately for
a baseline comparison. In the following, we will refer to our ban-
dit model as RestartsMAB and to the bandit model of [41] as
NodesMAB. From now on, any execution of AbsCon with a par-
ticular way of selecting variables (either with a bandit policy or a
classical ordering heuristic) will be referred to as a (solving) method.

As the model NodesMAB is not based on restarts, a straightfor-
ward comparison with the original NodesMAB would not be fair.
Therefore, we run NodesMAB with a restart policy (and learning ac-
tivated at each run), as in our approach. This results in much better
performance, as displayed in Table 1. The comparison is given by the
number (#inst) of instances solved within 3, 600 seconds, and the cu-
mulative CPU time (c.time) computed from the 332 instances solved
by the two alternatives (restarts and no-restart). Numbers
highlighted in bold correspond to the best obtained results.

Table 1: Comparison of NodesMAB when restarts are activated
(restarts) or not activated (no-restart) on the [XCSP17]

benchmark.

restarts no-restart

#inst 371 338
c.time (332) 18,824 19, 720

Table 2: Comparison of classical heuristics and bandit variants on
the [XCSP17] benchmark.

#inst c.time (296) By1 By2 By10

dom/ddeg 324 17, 727 662, 521 1, 296, 120 6, 364, 920
NodesMABEXP3 352 10, 882 553, 867 1, 086, 670 5, 349, 070

Activity 357 8, 541 540, 879 1, 055, 680 5, 174, 080
NodesMABTS 361 8, 652 522, 838 1, 023, 240 5, 026, 440

Impact 365 21, 348 529, 180 1, 015, 180 4, 903, 180
NodesMABUCB 371 10, 075 498, 394 962, 794 4, 677, 990

RestartsMABEXP3 375 5,103 470, 749 920, 749 4, 520, 750
CHS 380 6, 668 458, 638 890, 638 4, 346, 640

RestartsMABTS 380 5, 965 462, 243 894, 243 4, 350, 240
wdegca.cd 381 8, 282 460, 039 888, 439 4, 315, 640

RestartsMABUCB 386 5, 189 440,956 851,356 4,134,560

2 See http://www.cril.univ-artois.fr/XCSP17
3 See http://www.xcsp.org
4 See http://www.cril.fr/˜lecoutre/#/softwares

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

In Table 2, the models RestartsMAB and NodesMAB are com-
pared under all bandit policies (UCB, TS, EXP3); as indicated ear-
lier, classical heuristics are used as arms. Results of classical heuris-
tics are also given in the table. For the comparison, we use some
additional time metrics, denoted by By1, By2, By10, which are cu-
mulative CPU times, computed from all instances by considering
for each unsolved instance a solving time equal to x × 3, 600 sec-
onds for x = 1, x = 2 and x = 10, respectively. We observe
that all variants (i.e., specific uses of a bandit policy) of NodesMAB
are outperformed by all the variants of RestartsMAB. The vari-
ant RestartsMABUCB has respectively solved 15 and 34 more in-
stances than the worst and best variant of NodesMAB. In addition,
on the 296 common instances (i.e., solved by all methods), it was
twice as fast. Note that the variants of RestartsMAB outperform
most of the classical heuristics, and that the efficient heuristics CHS
and wdegca.cd are both dominated by RestartsMABUCB. In terms
of solving (cumulated) times, all variants of RestartsMAB display
close performances.

Figure 1 shows similar results by means of a cactus plot, in which
the virtually best solver (VBS) is also displayed; VBS is an oracle
solver that knows the optimal heuristic for a given instance. The more
a solver is close to the VBS the better the solver is. The cactus plot
provides a global view of performance, where we can see the number
of instances solved per method (x-axis) while time increases (y-axis).
RestartsMABUCB is, as shown previously, the most efficient solving
method; its curve is closer to VBS than any other curve.

310 320 330 340 350 360 370 380 390
0

500

1000

1500

2000

2500

3000

3500

4000

dom/ddeg

NodesMABexp3

activity

NodesMABts

impact

NodesMABucb

RestartsMABexp3

CHS

RestartsMABts

wdegca.cd

RestartsMABucb

VBS

Figure 1: Comparison of classical heuristics, bandit variants and VBS
on the [XCSP17] benchmark.

Figure 2 provides a pairwise comparison of the best variant of
our model, RestartsMABUCB, against the best classical heuris-
tic, wdegca.cd and the best variant of the first introduced bandit
model NodesMABUCB. Each dot represents an instance and each
coordinate of this dot on an axis (displayed in logarithmic scale)
is the time taken to solve it by the method labelling the axis.
Dots over the diagonal correspond to instances solved faster by
RestartsMABUCB. In Figure 2a, the instances that are concen-
trated around the diagonal are solved with similar efficiency by both
wdegca.cd and RestartsMAB, while a few instances are solved
faster by RestartsMABUCB. Interestingly, there are some instances
in the top left corner, meaning that these instances are quickly solved
by RestartsMABUCB whereas wdegca.cd reaches the timeout. Fig-
ure 2b clearly shows that RestartsMABUCB significantly outper-
forms NodesMABUCB.

101 102 103

RestartsMABucb

101

102

103

w
d
e
g
c
a
.c
d

(a) RestartsMABUCB vs wdegca.cd

101 102 103

RestartsMABucb

101

102

103

N
o
d
e
s
M
A
B
u
c
b

(b) RestartsMABUCB vs NodesMABUCB

Figure 2: Pairwise comparisons of solving methods on the [XCSP17]
benchmark.

Regarding the second benchmark, [XCSP-ALL], Table 3 shows
the results obtained with the two best variable ordering heuristics,
namely CHS and wdegca.cd, as well as with the best variants of
NodesMAB and RestartsMAB (i.e., with UCB as bandit policy).
Here, NodesMABUCB is the worst solving method, as it respectively
solves 189 and 216 less instances than CHS and wdegca.cd, whereas
RestartsMABUCB is the best solving method as it respectively
solves 95 and 68 more instances than CHS and wdegca.cd. One might
think that 68 is a small number compared to the whole set of thou-
sand instances, but these instances actually correspond to hard in-

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

stances that are not solved by any other method within 3, 600 sec-
onds. In fact, #inst is saturated by easy instances. By employing the
By1 measure, we find that RestartsMAB will finish the task in at
least 65 less hours than any other method.

Table 3: Comparison of best classical heuristics and bandit variants
(with UCB) on the [XCSP-ALL] benchmark.

CHS wdegca.cd RestartsMABUCB NodesMABUCB

#inst 14, 157 14, 184 14,252 13, 968
c. time (13, 368) 271, 387 234, 687 224,534 559, 794

By1 9, 464, 830 9, 239, 700 9,003,260 10, 134, 300
By2 18, 234, 400 17, 912, 100 17,430,900 19, 584, 300

By10 88, 391, 200 87, 291, 300 84,851,700 95, 184, 300

To establish the aforementioned statement that RestartsMAB
is even better on hard instances, we present Table 4, where the set of
instances of the initial benchmark is split by considering less and less
easy instances in the following way: at each row > αs, we select the
instances that have been solved by the best method in more than α
seconds. As mentioned above, the majority of the instances were easy
(for all or some heuristics); this is why the numbers in the table never
exceeds 600. In each cell of Table 4, next to the number of solved
instances, we have put between brackets the percentage of additional
instances that have been solved compared to the worst method in the
same row. As we can see, RestartsMABUCB is the most efficient
method on these difficult instances: for example, RestartsMABUCB

solves between 60% and 105% more instances than NodesMABUCB.
Note that RestartsMABUCB tends to break away as the instances
become harder and harder. The harder the instance is, the more the
multi-armed bandit has time to learn and improve.

Table 4: Number of hard instances being solved by four different
solving methods, on subsets of instances of increasing difficulty

from the [XCSP-ALL] benchmark.

CHS wdegca.cd RestartsMABUCB NodesMABUCB

> 100s 582 (+55%) 563 (+50%) 600 (+60%) 375 (+0%)
> 250s 363 (+73%) 341 (+62%) 384 (+83%) 210 (+0%)
> 500s 239 (+87%) 212 (+66%) 262 (+105%) 128 (+0%)

> 1000s 132 (+57%) 117 (+39%) 162 (+93%) 84 (+0%)

Finally, Figure 3 shows for three different structured problems the
behaviour of all methods (classical heuristics and bandit variants);
the distribution of arm calls is also given for all bandit variants.
Inside each bar-diagram, each color represents a different heuris-
tic, and thus, the MAB variants are colorful, displaying the propor-
tion of use of each heuristic; the height of the bar corresponds to
the time needed to solve the full series of the problem. Figure 3a
shows that, for Problem SocialGolfers, the heuristics CHS and
wdegca.cd are very efficient. Hence, they ideally should be chosen
in priority by the learning algorithms. This is the case for variants
of RestartsMAB, and especially RestartsMABUCB, contrary to
variants of NodesMAB. For Problem LatinSquare, one can see
in Figure 3b that the best monolithic heuristic is wdegca.cd. Interest-
ingly, all variants of RestartsMAB outperform all other methods,
and even the best arm wdegca.cd, despite that less efficient arms are
also used during exploration. What is hidden in the diagrams is the
moment each arm is called. Actually, the best arm is mainly called
at the last run, where the bandit has learned it. Remember that last
runs are longer, which justifies the good obtained time performance.
For this problem, the variants NodesMABTS and NodesMABEXP3 are
totally misled. In Figure 3c, for Problem KnightTour, we observe

an unusual behavior of all bandit variants. Although CHS is clearly
the best heuristic, this is not reflected in the bar of any variant. Nei-
ther the reward function of RestartsMAB nor the reward function
of NodesMAB was able to discriminate the best choice and pass it to
the learning algorithm.

6 DISCUSSION

As already mentioned, the model proposed in [41] also addresses
the issue of learning the right variable ordering heuristic to be used
for solving a given instance. The method NodesMAB calls a multi-
armed bandit algorithm at each node ν, and the reward for the arm
used at ν is based on the number of visited nodes in the sub-tree
rooted at ν. Two bandit policies, UCB and TS, are tested, and it is
shown experimentally that they contribute to make the search more
robust than stand-alone classical heuristics. In this section, we high-
light some differences with respect to our approach.

Model. In our opinion, with NodesMAB, a first question arises
from the fact that the bandit selects a new heuristic at each search
node. So, the meaning of variable ordering is unclear as a single
heuristic is not used to determine an order over several consecutive
variables, but instead, at each level a variable is possibly chosen by
a different heuristic. As, in the beginning, MAB mainly performs
exploration, NodesMAB will not allow a single heuristic, even if
it is the best, to be run on a substantial sequence of nodes. Hence,
NodesMAB can only discover this best heuristic after many calls to
the MAB. On the contrary, RestartsMAB lets the heuristic act dur-
ing a whole run. A related issue, with NodesMAB, is the way the
rewards are computed. Each time an arm is rewarded for its perfor-
mance at a given node ν, this reward depends on the choices made
by all heuristics used in the sub-tree rooted at ν and not only on the
pure performance of the selected arm.

Another drawback it that the UCB variant of NodesMAB normal-
izes the number of visited nodes by the maximum number of visited
nodes for any node (considered as a root) since the beginning: the
smaller the value, the better the reward. The problem with such a
normalization is that the nodes close to the top of the search tree will
generally have worse rewards than the nodes close to the bottom of
the search tree. Hence, the reward function will not be sufficiently in-
formative so as to discriminate the good arms. If we consider the case
where some good heuristics make some good choices during the first
decisions and a bad heuristic makes the next decisions, then the bad
heuristic will receive an undeserved reward. In general, any heuristic
used at a deep level will receive an improved reward. If depth was
taken into account, maybe this problem could be eliminated (e.g.,
the model of [6] uses a MAB per level instead of a single one to
overcome this drawback).

Some difficulty of convergence to the best heuristics by model
NodesMAB is demonstrated in Table 5 that shows the distri-
bution (in percentages) of arm calls for RestartsMABUCB and
NodesMABUCB for subsets of instances of increasing difficulty.
Again, RestartsMABUCB identifies the best arms, CHS and
wdegca.cd, in a rather satisfactory way. Selection of these arms tends
to increase when the instances become harder. We must bear in mind
that we have selected only competitive heuristics, not a mixture of
good and bad ones that would make the discrimination easier. On
the other hand, NodesMABUCB is totally disarranged and even for the
hardest instances, where learning should be more effective, it does
not converge to the best arms.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

ac
ti
vi
ty CH

S

do
m/
dd
eg

im
pa
ct

Re
st
ar
ts
MA
B
ex
p3

Re
st
ar
ts
MA
B
ts

Re
st
ar
ts
MA
B
uc
b

wd
eg
ca
.cd

No
de
sM
AB
ex
p3

No
de
sM
AB
ts

No
de
sM
AB
uc
b

0

5000

10000

15000

20000

25000 activity

CHS

dom/ddeg

impact

wdegca.cd

(a) Solving times for 12 SocialGolfers
instances

ac
ti
vi
ty CH

S

do
m/
dd
eg

im
pa
ct

Re
st
ar
ts
MA
B
ex
p3

Re
st
ar
ts
MA
B
ts

Re
st
ar
ts
MA
B
uc
b

wd
eg
ca
.cd

No
de
sM
AB
ex
p3

No
de
sM
AB
ts

No
de
sM
AB
uc
b

0

2000

4000

6000

8000

10000

12000

14000

16000 activity

CHS

dom/ddeg

impact

wdegca.cd

(b) Solving times for 12 LatinSquare in-
stances

ac
ti
vi
ty CH

S

do
m/
dd
eg

im
pa
ct

Re
st
ar
ts
MA
B
ex
p3

Re
st
ar
ts
MA
B
ts

Re
st
ar
ts
MA
B
uc
b

wd
eg
ca
.cd

No
de
sM
AB
ex
p3

No
de
sM
AB
ts

No
de
sM
AB
uc
b

0

5000

10000

15000

20000

activity

CHS

dom/ddeg

impact

wdegca.cd

(c) Solving times for 6 KnightTour in-
stances

Figure 3: Solving efficiency (and distribution of arm calls) of classical heuristics and bandit variants on three structured problems.

Table 5: Distribution (percentage) of arm calls for bandit variants
RestartsMABUCB and NodesMABUCB on (subsets of instances of

increasing difficulty on) the [XCSP-ALL] benchmark.

activity impact dom/ddeg CHS wdegca.cd

> 0s RestartsMABUCB 20.00% 18.95% 16.07% 21.58% 23.40%
NodesMABUCB 20.08% 33.16% 18.44% 13.90% 14.41%

> 100s RestartsMABUCB 19.63% 19.03% 15.53% 21.58% 24.22%
NodesMABUCB 21.10% 31.79% 18.18% 13.91% 15.02%

> 250s RestartsMABUCB 19.56% 19.12% 15.16% 21.74% 24.41%
NodesMABUCB 21.77% 30.21% 18.39% 14.32% 15.31%

> 500s RestartsMABUCB 19.98% 19.59% 15.02% 21.04% 24.37%
NodesMABUCB 22.91% 27.81% 20.02% 13.41% 15.85%

> 1000s RestartsMABUCB 19.99% 19.66% 14.50% 21.13% 24.72%
NodesMABUCB 23.26% 26.52% 20.20% 13.81% 16.21%

Benchmarks. The benchmark used in [41] comes from an old
competition that looks to be slightly outdated (XCSP’09). If we ob-
serve the experimental results, we can see that each heuristic, used
as an arm, solves more or less the same number of instances. So, one
can mainly focus on solving times and not on the number of solved
instances.

Arms. Another difference between the two bandit models comes
from the pool of heuristics. It is known that there is large gap between
some heuristics of the literature, which contributes to a vast disparity
in solver efficiency [17, 40]. In our work, we have chosen the most
efficient adaptive heuristics while discarding old static and dynamic
ones (e.g., dom/ddeg). In Figure 4, we can visualize the solving
timeline per heuristic. Most of the instances are solved during the
first few seconds. When time increases, there are few instances left.
We can see the efficiency of the methods (here, classical heuristics)
as a logarithmic distribution over time. This means that even a multi-
armed bandit associated with a uniform choice of heuristics (i.e., no
learning) will easily solve most of the instances. In addition, if the
easy instances are not the same for each heuristic, the uniform ban-
dit will perform better than monolithic heuristics. The reason is that
when an instance is easy for heuristic A and hard for heuristic B, the
uniform bandit will solve it when calling A. If another instance is
easy for B and not for A, it will solve it when calling B. This is why
for certain problems, a MAB algorithm can be more efficient than
any heuristic alone (e.g., RestartsMABUCB for LatinSquare in
Figure 3b).

101 102 103

activity

CHS

dom/ddeg

impact

wdegca.cd

Figure 4: Distribution of solved instances over time (x-axis) for clas-
sical heuristics on the [XCSP17] benchmark.

7 CONCLUSION

In this work. we have proposed a new framework for automatically
setting the variable ordering heuristic option of a CSP solver. Our
framework uses a multi-armed bandit algorithm in order to learn the
best heuristic to be used for any given instance to be solved. We
propose an original and easy to embed MAB model, which exploits
the restart mechanism of the solver in order to provide some feed-
back to the learning algorithm. We have conducted an experimental
study showing that the proposed framework is more efficient than the
state-of-the-art bandit model, but also more efficient than any single
heuristic tried alone. In the future, we aim at extending our frame-
work in order to make it, apart from autonomous, adaptive during
each run.

ACKNOWLEDGEMENTS

This work has been supported by the project CPER Data from the
region “Hauts-de-France”.

REFERENCES
[1] S. Agrawal and N. Goyal, ‘Near-optimal regret bounds for Thompson

Sampling’, J. ACM, 64(5), 30:1–30:24, (2017).
[2] R. Amadini, M. Gabbrielli, and J. Mauro, ‘Portfolio approaches for

constraint optimization problems’, Ann. Math. Artif. Intell., 76(1-2),
229–246, (2016).

[3] K.R. Apt, Principles of Constraint Programming, Cambridge Univer-
sity Press, 2003.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer, ‘Finite-time analysis of the
multiarmed bandit problem’, Machine Learning, 47(2), 235–256, (May
2002).

[5] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, ‘The nonstochas-
tic multiarmed bandit problem’, SIAM Journal on Computing, 32(1),
48–77, (2002).

[6] A. Balafrej, C. Bessiere, and A. Paparrizou, ‘Multi-armed bandits for
adaptive constraint propagation’, in Proceedings of IJCAI’15, pp. 290–
296, (2015).

[7] M-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik, ‘Learning to
branch’, in Proceedings of ICML’18, pp. 353–362, (2018).

[8] C. Bessiere, B. Zanuttini, and C. Fernandez, ‘Measuring search trees’,
in Proceedings of ECAI’04 workshop on Modelling and Solving Prob-
lems with Constraints, pp. 31–40, (2004).

[9] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, ‘Boosting system-
atic search by weighting constraints’, in Proceedings of ECAI’04, pp.
146–150, (2004).

[10] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette, ‘XCSP3: an
integrated format for benchmarking combinatorial constrained prob-
lems’, CoRR, abs/1611.03398, (2016).

[11] S. Bubeck and N. Cesa-Bianchi, Regret analysis of stochastic and non-
stochastic multi-armed bandit problems, Foundations and Trends in
Machine Learning, Now Publishers, 2012.

[12] R. Dechter, Constraint processing, Morgan Kaufmann, 2003.
[13] S. Epstein and S. Petrovic, ‘Learning to solve constraint problems’, in

ICAPS-07 Workshop on Planning and Learning, (2007).
[14] M. Gagliolo and J. Schmidhuber, ‘Learning restart strategies’, in Pro-

ceedings of IJCAI’07, pp. 792–797, (2007).
[15] C. Gomes, B. Selman, N. Crato, and H. Kautz, ‘Heavy-tailed phenom-

ena in satisfiability and constraint satisfaction problems’, Journal of
Automated Reasoning, 24(1), 67–100, (2000).

[16] C. Gomes, B. Selman, and H.A. Kautz, ‘Boosting combinatorial search
through randomization.’, in Proceedings of AAAI’98, pp. 431–437,
(1998).

[17] D. Habet and C. Terrioux, ‘Conflict history based branching heuristic
for CSP solving’, in Proceedings of CIMA@ICTAI, pp. 70–80, (2018).

[18] Y. Hamadi, E. Monfroy, and F. Saubion, Autonomous Search, Springer,
2014.

[19] H. H. Hoos, R. Kaminski, M. T. Lindauer, and T. Schaub, ‘aspeed:
Solver scheduling via answer set programming’, TPLP, 15, 117–142,
(2015).

[20] H. Hurley, L. Kotthoff, Y. Malitsky, and B. O’Sullivan, ‘Proteus: A hi-
erarchical portfolio of solvers and transformations’, in Proceedings of
CPAIOR’2014, pp. 301–317, (2014).

[21] C. Lecoutre, Constraint networks: techniques and algorithms,
ISTE/Wiley, 2009.

[22] C. Lecoutre, L. Sais, S. Tabary, and V. Vidal, ‘Recording and minimiz-
ing nogoods from restarts’, Journal on Satisfiability, Boolean Modeling
and Computation (JSAT), 1, 147–167, (2007).

[23] J. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, ‘Learning rate based
branching heuristic for SAT solvers’, in Proceedings of SAT, pp. 13–
140, (2016).

[24] J. Liang, H. Govind, P. Poupart, K. Czarnecki, and V. Ganesh, ‘An em-
pirical study of branching heuristics through the lens of global learning
rate’, in Proceedings of SAT, pp. 119–135, (2017).

[25] M. Lindauer, H. H. Hoos, K. Leyton-Brown, and T. Schaub, ‘Automatic
construction of parallel portfolios via algorithm configuration’, Artif.
Intell., 244, 272–290, (2017).

[26] M. Loth, M. Sebag, Y. Hamadi, and M. Schoenauer, ‘Bandit-based
search for constraint programming’, in Proceedings of CP’13, pp. 464–
480, (2013).

[27] M. Luby, A. Sinclair, and D. Zuckerman, ‘Optimal speedup of Las
Vegas algorithms’, Information Processing Letters, 47(4), 173–180,
(1993).

[28] A. K. Mackworth, ‘Consistency in networks of relations’, Artif. Intell.,
8(1), 99–118, (February 1977).

[29] M. Maratea, L. Pulina, and F. Ricca, ‘Multi-engine ASP solving with
policy adaptation’, J. Log. Comput., 25, 1285–1306, (2015).

[30] L. Michel and P. Van Hentenryck, ‘Activity-based search for black-box
constraint programming solvers’, in Proceedings of CPAIOR’12, pp.
228–243, (2012).

[31] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan,
‘Using case-based reasoning in an algorithm portfolio for constraint
solving’, in Proceedings of AICS’10, (2008).

[32] L. Pulina and A. Tacchella, ‘A multi-engine solver for quantified
boolean formulas’, in Proceedings of CP’07, pp. 574–589, (2007).

[33] P. Refalo, ‘Impact-based search strategies for constraint programming’,
in Proceedings of CP’04, pp. 557–571, (2004).

[34] Handbook of Constraint Programming, eds., F. Rossi, P. van Beek, and
T. Walsh, Elsevier, 2006.

[35] D. Russo and B. Van Roy, ‘An information-theoretic analysis of
Thompson Sampling’, J. Mach. Learn. Res., 17, 68:1–68:30, (2016).

[36] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen, ‘A
tutorial on thompson sampling’, Found. Trends Mach. Learn., 11(1),
1–96, (July 2018).

[37] D. Sabin and E.C. Freuder, ‘Contradicting conventional wisdom in con-
straint satisfaction’, in Proceedings of CP’94, pp. 10–20, (1994).

[38] B. Smith and S. Grant, ‘Trying harder to fail first’, in Proceedings of
ECAI’98, pp. 249–253, Brighton, UK, (1998).

[39] W. R. Thompson, ‘ On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples’, Biometrika,
25(3-4), 285–294, (12 1933).

[40] H. Wattez, F. Koriche, C. Lecoutre, A. Paparrizou, and S. Tabary, ‘Re-
fining constraint weighting’, in Proceedings of ICTAI’19, pp. 71–77,
(2019).

[41] W. Xia and R. H. C. Yap, ‘Learning robust search strategies using a
bandit-based approach’, in Proceedings of AAAI’18, pp. 6657–6665,
(2018).

[42] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Satzilla: Portfolio-
based algorithm selection for SAT’, J. Artif. Intell. Res. (JAIR), 32, 565–
606, (2008).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

