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Abstract. Link prediction (LP) in social networks is to infer if a
link is likely to be formed in the future. Social networks (SN) are
ubiquitous and have different types such as human interaction and
protein-protein networks. LP uses heuristic methods including com-
mon neighbors and resource allocation to find the formation of future
links. These heuristics are sensitive to different types of social net-
works. Certain types of heuristics work better for some SN types,
but not for others. Selecting the appropriate heuristic method for the
SN type is often a trial and error process. Recent ground-breaking
methods, WLMN and SEAL, demonstrated that this selection pro-
cess can be automated for the different types of SN. While these
methods are promising, in some types of SN they still suffer from low
accuracy. The objective of this paper is to address this weakness by
introducing a novel framework called PLACN that incorporates the
analysis of common neighbors of nodes on target link and a combi-
nation of heuristic features through a deep learning method. PLACN
is driven by a new method to efficiently extract the subgraphs for
a target link based on the common neighbors. Another novelty is
the method for labeling subgraphs based on the average hop and av-
erage weight. Furthermore, we introduce a method to evaluate the
approximate number of nodes in the subgraph. Our model converts
link prediction to an image classification problem and uses a con-
volutional neural network. We tested our model on seven real-world
networks and compared against traditional LP methods as well as two
recent state-of-the-art methods based on subgraphs. Our results out-
performed those LP methods reaching above 96% of AUC in bench-
mark SNs.

1 INTRODUCTION
Link prediction (LP) is of great interest due to its practical value
in real-world applications such as e-commerce and friends recom-
mendations, as well as networks for discovering future collaborators.
The LP problem aims to predict the links that are expected to oc-
cur or not occur in the future. While LP has been discussed over
the last two decades, the work of Jon Kleinberg and David Liben-
Nowell has had a significant impact on this topic [23], drawing a
great deal of attention in recent years. The traditional approaches
include heuristic methods such as Common neighbors (CN) [28],
Adamic Adar (AA)[2], and Resource Allocation (RA)[41]. Other ap-
proaches include supervised learning methods, such as SVM, bag-
ging, and Naive Bayes [5].

Although many sophisticated methods for LP have been proposed,
we have identified that for certain types of networks there exists sim-
ple heuristic methods, or combination of such heuristics, that can
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produce more accurate results. For any given heuristic it will not per-
form with the same accuracy in every different type of network. The
reason is that these methods work based on the extracted pattern from
the network topology, which may vary from one SN to another. This
is a significant drawback with heuristic methods. Selecting the ap-
propriate heuristic method for the SN type is often a trial and error
process. Weisfeiler-Lehman Neural Machine (WLNM) method [39]
proposed a solution to find the appropriate methods automatically,
based on the extracted subgraph in its neighborhood. WLNM is con-
sidered to be a state-of-the-art link prediction method based on its
high accuracy.

The WLNM used high-order heuristics, such as Katz index [17]
and Pagerank [23], to achieve significant accuracy. However, this
requires a large number of hops that span the enclosing subgraph
to the entire network and requires additional computation time and
memory. To overcome this issue, SEAL (learning from Subgraphs,
Embeddings, and Attributes for Link prediction) proposed a method
to learn general graph structure features from local enclosing sub-
graphs using Graph Neural Network (GNN)[40]. SEAL derived γ-
decaying theory to prove that a small number of hops is enough to
extract the high-order heuristics and to achieve better accuracy than
WLNM. However, we discover that SEAL also has many shortcom-
ings.

Our both theoretical and empirical results motivate us to model a
new link prediction framework that fixes the various shortcomings
of SEAL. First, SEAL considered the h-hop enclosing subgraph for
a pair of nodes (i, j) from the network G = (V,E) by the set of
nodes from i and j’s neighbors up to h-hop, which may or may not
include essential nodes for predicting the target link between nodes i
and j. In our proposed model, PLACN described below, we construct
subgraphs based on common neighbors of nodes i and j in different
orders, which belong to the target link. The subgraphs include a high
number of essential nodes, as common neighbors are shared by both
nodes i and j. SEAL then evaluated a vector X for i and j with
various heuristic features and an adjacency matrix of the enclosing
subgraph A to feed to GNN. SEAL considered various features for
only the nodes i and j, which belong to the target link. They ignore
the heuristic features of all other nodes from the subgraph. Consider-
ing the heuristic features of the entire subgraph has a large impact on
introducing a new link between any two nodes. As our contribution,
we consider the heuristic features of the entire subgraph to incorpo-
rate the impact of every node from the subgraph.

Moreover, labeling each subgraph is a necessary task to handle the
ordering of graph nodes which keeps consistency of all subgraphs.
SEAL did not handle subgraph labeling well when common neigh-
bors were in the subgraph. We discuss this further in subgraph label-
ing section. In PLACN, we introduce a new labeling method based
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Figure 1. The representation of subgraph extraction from the given graph
G(the left figure), then the resultant extracted subgraph

on both the number of hops and weight of links to overcome the la-
beling inconsistency problem.

As our framework gives special importance to the heuristic fea-
tures of common neighbors of target nodes to predict the links, we
named our model PLACN (Predicting Links by Analyzing Common
Neighbors).

We summarize our contributions as follows:

1. We propose a new method for constructing subgraphs;

2. We introduce a new theory to find the number of nodes K to
include in a subgraph;

3. We propose a new labeling algorithm to maintain the consis-
tent sequence of the adjacency matrix;

4. We extract heuristic features of nodes for the entire subgraph
and model a new link prediction framework based on Con-
volutional Neural Network (ConvNet);

5. We demonstrate that PLACN outperforms all the heuristic
methods as well as the state-of-the-art methods WLNM and
SEAL.

2 Related Work
Link Prediction (LP) is a generic task for analyzing network
data which appears in many applications including Recommending
friends [7, 38], Co-author recommendation [6, 10, 15] and web-site
link [16, 26, 27]. In SNs, it has got a significant attention after the in-
novative work by LibenNowell and Kleinberg (2007). Many of these
applications considered the similarity measures. Generally, most of
the approaches to LP problem can be categorized into supervised[5]
and unsupervised learning framework[23]. The unsupervised learn-
ing includes topological feature-based methods such as CN[28],
JCD[23], Katz index[2] and Pagerank[23]. The supervise learning
methods includes SVM [5], decision tree [35] and random walk [7],
focus more on individual nodes than network topologies.

There are a few approaches in the literature in terms of subgraph
feature methods. The authors in [12] built several feature subsets ac-
cording to their characteristics and evaluated classifier performance,
and used several machine-learning algorithms for each one of these
subsets for LP problem. The authors in [24] proposed a method based
on a restrictive representation of the local topological embedding
of two nodes, describing the relationship of them in terms of their
common membership in all possible subgraphs. However, recently,

WLNM [39] was proposed, initiated an idea to use deep learning
method, and learned patterns through subgraphs to predict links. It
outperformed than heuristic methods and other famous approaches,
and considered as a state-of-the-art method. However, later, Zhang et
al. [40] proposed a model SEAL closest to WLMN, and stated that
WLMN has several drawbacks and need to resolve. SEAL proposed a
new approach for subgraph extraction based on the hop numbers and
subgraph labeling. They claimed that their method solved the draw-
backs in WLNM model, and achieved better accuracy than WLNM.
However, SEAL also has several drawbacks in terms of subgraph
extraction and labeling. Both SEAL and WLMN didn’t analyze the
importance of common neighbors properly, which highly influence
for the link occurrence. Therefore, we proposed PLACN model to
overcome those drawbacks, and propose a new approach to analyze
common neighbors.

3 PRELIMINARIES
3.1 Problem Definition
We are given an undirected, weighted graph G(V,E) at a partic-
ular time t, representing the topological structure of a social net-
work in which V is the set of vertices, E is the set of links, and
the weight is based on interaction between any two nodes u and v.
A = (ai,j)N×N represents an adjacency matrix of the graph G,
where ai,j > 0 if i and j interact each others and ai,j = 0 oth-
erwise. We aim to build a model using ConvNet based on various
heuristic features to predict whether the connection between u and
v has a high probability of existing or not in the near future at time
t′(> t).

3.2 Heuristic Methods for Link Prediction
Generally, heuristic link prediction methods are based on topologi-
cal structures which can be neighbor-based, path-based or random-
walk based [36]. The neighbor-based include Common Neighbors
(CN) [28], Jaccard Coefficient (JC), Adamic-Adar Coefficient (AA)
[2], Preferential Attachment (PA) [8], and Resource Allocation (RA)
[41] while other topological heuristic methods, sometimes called as
higher-order heuristic, include Katz index [17], PageRank [23] and
PropFlow [25].

In our model, we consider only the following neighbor-based
(low-order) heuristic methods:

• Common Neighbors |Γ(i) ∩ Γ(j)|

• Jaccard Coefficient |Γ(i)∩Γ(j)|
|Γ(i)∪Γ(j)|

• Adamic-Adar
∑

k∈|Γ(i)∪Γ(j)|
1

log|Γ(k)|

• Preferential Attachment |Γ(i).Γ(j)|
• Resource Allocation

∑
k∈|Γ(i)∪Γ(j)|

1
|Γ(k)|

where Γ(i) and Γ(j) represent the neighbor set of vertices for i and
j respectively.

3.3 Convolutional Neural Network
Convolutional neural network (ConvNet) is comprised of one or
more convolutional layers, and then followed by one or more fully
connected layers. ConvNet is famous for image recognition [20, 14,
22] and image classifications [18, 21, 30]. We use ConvNet in our
framework to predict the links in the future. Because the architecture
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Figure 2. The representation of labeling: subgraph extraction (the leftmost figure) for the target link AB, step by step process when labeling, and final labeled
subgraph (the rightmost figure).

Algorithm 1 Subgraph Extraction
Input: Target link Eij , Graph G(E, V ), and Expected number of
nodes in subgraph K.
Output: Subgraph 〈S〉 for the link Eij .

1: NK = {i, j}
2: Ntemp = {}
3: h = 1← number of order
4: while |NK | < K do
5: Ntemp = Γh(i) ∩ Γh(j)
6: NK = NK ∪Ntemp

7: h← h+ 1
8: end while
9: 〈S〉 = subgraphG(NK)

10: return 〈S〉

of the ConvNet is designed to take benefit of 2D structure of input
images, the heuristic features of the subgraph’s adjacency matrices
can be treated as the 2D structure in our model. The input of our
model would be K × K × r, where K is the number of nodes of
the subgraph and r represents the number of heuristic features con-
sidered in our model.

4 PLACN MODEL

In this section, we describe our novel PLACN framework. Since
ConvNet performed well in the image classification we utilize this
characteristic in our framework. So, we convert the link prediction
as an image classification problem, where positive and negative links
are two different classes. PLACN includes the following main steps:

1. Evaluating the Sub-graphing Factor K in the subgraph.

2. Extracting the subgraph 〈S〉 for a target link.

3. Labeling the extracted subgraph.

4. Constructing feature matrices.

5. Training convolutional neural networks.

4.1 Number of Nodes in a Subgraph

Generally, SN has various topological structures. In some networks
vertices are densely connected while, in other networks, they are
sparsely connected. Based on this, the average node degree of an
undirected graph 2|E|

|V | changes over different networks. PLACN fo-
cuses strongly on subgraphs of common neighbors of the target link.
There is a need for deciding an optimal number of nodes K in the
subgraphs rather than defining it by the user. There are two primary
purpose of defining optimal number of nodes. First, it reduces the
computational cost because subgraphs will be extracted with the op-
timal number of nodes. Second, the number of nodes can be related
to the network properties. In a given SN G, the number of neighbors
is proportional to the average node degree. The node degree is only
based on first-hop neighbors. We need the information of high order
common neighbors (CN). Because we can’t consider the full set of
high-order CN, we examine a fraction of it using K value. There-
fore, we defined K with both concepts, average node degree and its
fraction, as below.

K ≈ AvgNodeDegree + AvgNodeDegree× NetworkDensity

≈ AvgNodeDegree (1 + NetworkDensity)

The above relationship can be mathematically formulated as;

K ≈
⌈

2|E|
|V |

(
1 +

2|E|
|V |(|V | − 1)

)⌉
(1)

where 2|E|
|V | is the average node degree, and 2|E|

|V |(|V |−1)
is the density

of the given network. Since the calculated value might be a floating
number, we take the ceiling of the value.

We test our formula on various datasets and empirically verify that
the calculated K is an optimal value for achieving better AUC (Area
Under Curve) in most cases with the minimum computational cost.
We test our model by varying different K values, and then plot a
graph for AUC. Figure 6 shows the empirical results when testing
various K values on different networks. We will discuss further de-
tails in the experimental results section.
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Algorithm 2 Subgraph Labeling
Input: Nodes List NK , Target link Eij , Subgraph 〈S〉
Output: Ordered nodes list OK

1: OK = {i, j}
2: RK = NK − {i, j}
3: M〈k : 〈wavg, havg〉〉 ←Map for node information
4: for all v ∈ RK do
5: hi = min(dist(v, i))
6: hj = min(dist(v, j))

7: wv
avg = 1

2

(
1
hi

∑hi
p=0 w

i
p + 1

hj

∑hj

p=0 w
j
p

)
8: hv

avg = 1
2
(hi + hj)

9: M ← (v : (1/wv
avg, h

v
avg))

10: end for
11: sort the map based on havg

12: sort the map based on wavg for same havg

13: for v in M do
14: OK ← OK ∪ v
15: end for
16: if |OK | > K then
17: while |OK | = K do
18: remove nodes from bottom
19: end while
20: end if
21: return 〈OK〉

4.2 Subgraph Extraction

Subgraph extraction is a process of collecting nodes, which relate to
the target link. SEAL constructed the subgraph based on the h-hop
neighbors for the target nodes i and j. The entire nodes of the sub-
graph in SEAL might not have a great influence on both nodes i and
j. At the same time, only a few of them might be common for both
the nodes i and j. This is a major drawback of SEAL. As SEAL
highly relies on the number of hops h, when the hop number in-
creases, the number of nodes in the subgraph subsequently increases.
This leads to memory and computation cost issues.

Instead of constructing the subgraphs based on the hops, PLACN
introduces an approach to construct the subgraph only with the com-
mon neighbors of both nodes i and j. It drives the subgraphs with
the set of nodes which interact with both nodes i and j. The num-
ber of nodes K in the subgraph 〈S〉 can be approximately estimated,
which is explained in the previous section. The process of subgraph
extraction of 〈S〉 is described in algorithm 1.

In algorithm 1, for a given link between i and j from graph G, we
first collect their first order common neighbors Γ1(i) ∩ Γ1(j) to a
node list NK . Then, we add vertices in (Γ2(i) ∩ Γ2(j)), (Γ3(i) ∩
Γ3(j)), ..., iteratively until |NK | ≥ K, where Γp(q) is the pth order
neighbor nodes of node q.

At the end of algorithm 1, the number of nodes in NK might be
equal to K, or |NK | > K. However, maintaining the consistency of
the size of each subgraph is crucial to train the ConvNets. Therefore,
we remove some nodes from |NK | until |NK | = K. For this proce-
dure, we adopt a different strategy which we explain in the subgraph
labeling section. As a result, the size of each subgraph will be K.

For example, as shown in figure 1, we are trying to extract the
subgraph for target link AB when the size of the subgraph K = 6.
First order common neighbors are {2, 6}, and second-order common
neighbors are {5, 7}. So, the extracted subgraph for the target link
AB has the list of vertices {A,B, 2, 5, 6, 7}.

Figure 3. The representation of constructing feature matrices: labeled
subgraph (the leftmost figure) for a positive target link, and enlarged

representation of an adjacency matrix of weight (the rightmost figure)

Note that if two nodes are from disconnected components of the
network, we will have both the source and destination node in the
subgraph. So, the subgraph will never be empty. We will calculate
the heuristics for source and destination nodes. Other information
for (k − 2) nodes will be zero in the feature matrices.

4.3 Subgraph Labeling

Subgraph labeling is a process of ordering the nodes in a sequence.
This process is essential to maintain the information uniformly
among all subgraphs because machine learning models read data se-
quentially. The method used in SEAL, Double-Radius Node Label-
ing, labeled the subgraph nodes based on the number of hops be-
tween nodes i and j. This leads to a problem where the common
neighbors in the same order will receive the same label. Because
each subgraph that has the same common neighbor could be labeled
in different ways, the adjacency matrices of the subgraphs become
inconsistent. In PLACN, we propose a new strategy to process the
subgraph labeling consistently as below.

Algorithm 2 describes the overall process for the subgraph label-
ing. After the extraction of the subgraph, nodes i and j belong to
the target link. They will be the first two labeled positions of an
ordered vertices list OK . For each remaining node in RK , where
RK = NK − {i, j}, we need to calculate the average hop and av-
erage path weight with i and j. So, we first evaluate the minimum
number of hops (i.e. the shortest path) hi and hj from i and j for
RK respectively. Then using equation 2, we calculate the average
weight for each node in RK .

wv
avg =

1

2

 1

hi

hi∑
p=0

wi
p +

1

hj

hj∑
p=0

wj
p

 (2)

where
∑hi

p=0 w
i
p evaluates the total weight of the shortest path be-

tween node v ∈ RK and i. Since each node in RK has considerable
influence on link ij, we combine the average weight of the shortest
path from i and j. Similarly, we calculate the average hop for each
node in Rk using the following equation 3.

hv
avg =

1

2
(hi + hj) (3)

At this point, every node in RK has both the average weight
(wavg) and average hop (havg) values. We first order them based
on the havg values. If any two nodes x, y ∈ RK have the same
average hop, that is hx

avg = hy
avg , we then order them based on

wavg in descending order and store them in the ordered list OK . As
we discussed in the subgraph labeling, the adjacency matrix of each

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Figure 4. The architecture of PLACN model.

subgraph must maintain the same size K. Therefore, if |OK | > k,
we discard the nodes from the bottom until |OK | = k.

For example, figure 2 illustrates the labeling process for the ex-
tracted subgraph for the target link AB. The leftmost figure shows
the extracted graph for the target link AB. So, we label the nodes
in target link AB as 1 and 2 in the next diagram. The remaining
nodes show the calculated average hop and average weight. The third
diagram shows the labeling based on average hop, where hD

avg =
hE
avg = 1.5 and hF

avg = hH
avg = hC

avg = 1.0. Now, we check wavg

for {C,F,H} = {2.5, 2.0, 3.0} and {D,E} = {1.75, 1.5}, then
label them as shown in the rightmost figure. Eventually, every node
in the subgraph will have a unique label.

4.4 Constructing Feature Matrices
As discussed in the preliminary section we consider five heuristic
features including CN, JC, AA, PA, and RA. Each adjacency matrix
of the subgraph can be represented as ACN

(ij) , A
JC
(ij), A

AA
(ij), A

PA
(ij) and

ARA
(ij) ordered in sequence of the name for each of the heuristic meth-

ods. In addition to this, we include an adjacency matrix of the graph
weight, where diagonal values are zeros. SEAL considers only this
adjacency matrix without including weight and feature vector for the
target link. PLACN constructs the heuristic feature matrices for each
vertex in the subgraph. For this purpose, we use the information from
the entire graph G. As illustrated in figure 3, the middle figure rep-
resents the sample adjacency matrices for the labeled subgraph. The
red box in the rightmost figure indicates the target link and its value.
We always assign zero to the positive target link in the adjacency ma-
trix of the weighted graph. The reason is that when we test PLACN
model, positive links should not contain any information of the link’s
existence. PLACN needs to learn both the positive and negative links
without the links’ existing information.

4.5 Training Convolutional Neural Network
In the above sections we discussed the subgraph extraction for the
target link, subgraph labeling, and constructing adjacency matrices
for heuristic features of the subgraph. Following this, PLACN incor-
porates the ConvNet as a classifier. In order to train the classifier,
we construct a dataset with all existing links, where the node pair
i, j ∈ V such that (i, j) ∈ E, for the positive link class. To avoid the

class imbalance problem, we used downsampling technique to create
a negative link class. So, we randomly sampled the negative links,
where random node pairs i, j ∈ V such that (i, j) /∈ E, as the same
number of the positive links to create negative links class.

In the next step of PLACN, the adjacency matrices are normal-
ized between 0 and 1 for each layer. Figure 5 exhibits the graphi-
cal representation of randomly selected normalized data from USAir
Network. We then apply convolution operation, average pooling, and
flatten the matrices to feed into a fully connected neural network.
Figure 4 illustrates the overall architecture of PLACN model.

Since this is a binary classification problem, we set the binary
cross-entropy loss function in ConvNet. The formula for the binary
cross-entropy loss function can be written as:

BCE = −
c′=2∑
i=1

tilog(f(si))

= −tilog(f(s1))− (1− ti)log(f(s1))

where c′ is the number of classes, s1 and t1 are score and the
groundtruth label for the class c1.

Dataset |V | |E|
Ave node

Degree

USAir 332 2126 12.81

NS 1589 2742 3.45

PB 1222 16714 27.36

Yeast 2375 11693 9.85

C.ele 297 2148 14.46

Power 4941 6594 2.67

Router 5022 6258 2.49

Table 1. The statistical information of each real-world networks.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Figure 5. The representation of randomly selected data from USAir network.

5 EXPERIMENTAL RESULTS

We conduct the experiments with real-world networks to evaluate
PLACN and use AUC (Area Under Curve) as evaluation metrics.

5.1 Datasets

We use seven real-world datasets in our experiments: USAir is a
transportation network of US airlines [9], NS is a co-authorship in-
formation of researchers on network science [29], PB is a US polit-
ical web-blogger connectivity data in 2005 [1], Yeast is a network
of interactions between yeast proteins [34], C.ele is a neural network
of neurons in C. elegans, a type of worm [37], Power is the power
grid of the western US [37], and Router is a router level map of the
Internet [32].

Table 1 comprises the statistical information of each network. We
split each dataset into a training set (90%) and testing set (10%) from
both positive and negative links classes.

5.2 Comparing with Other Methods

We first compare PLACN with seven popular heuristic methods
based on topological structures:

• Common Neighbors (CN): similarity-based method, which
counts the number of neighbors that the two nodes have in
common [28].

• Jaccard Coefficient (JF): similar concept as CN, but it is a
normalized form of common neighbours.

• Preferential attachment (PA): measure to indicate that new
links will be more likely to connect higher-degree nodes than
lower ones [8].

• Adamic-Adar (AA): similarity measure between two nodes
by weighting fewer neighbors more heavily [2].

• Resource allocation (RA): It is similar to AA. However, RA
punishes the high-degree common neighbors more heavily
than AA [41].

• Katz index: It considers all paths between two nodes and
weighs shorter ones more heavily. [17].

• PageRank (PR): It ranks a node in a graph which is propor-
tional to the likelihood that the node will be reached through
a random walk on the graph [23].

For Katz, we set the damping factor β to 0.001 [39]. For
PageRank, we set the damping factor d to 0.85 [11]. Then,
we compare with two state-of-the-art, which used subgraphs:
WLNM and SEAL. For WLMN, we use the implementation at
https://github.com/muhanzhang/LinkPrediction. For SEAL, we use
the source code at https://github.com/muhanzhang/SEAL.

We then compare PLACN with four state-of-the-art latent feature
methods:

• Stochastic block model (SBM): an adaptation of mixture
modeling to relational data [4].

• node2vec (N2V): Word-to-vector approach with biased ran-
dom walk [13].

• LINE: Network embedding method with objective function
that preserves both the first-order and second-order proxim-
ities [33].

• Variational graph auto-encoder (VGAE): a framework for
unsupervised learning on graph-structured data based on the
variational auto-encoder [19], is also uses subgraphs on their
model.

For MF, we use the libFM software [31]. For SBM, we use the
implementation of [3] at http://tuvalu.santafe.edu/ aaronc/wsbm/ us-
ing a latent group number 12. For N2V, we use the implementation
at https://github.com/eliorc/node2vec. For LINE, we use the imple-
mentation at https://github.com/tangjianpku/LINE. For VGAE, we
use the source code at https://github.com/tkipf/gae. For node2vec and
LINE, we use the same setting as described in SEAL.

5.3 Experimental Setup

For the proposed PLACN model we test seven real-world networks
with the calculated optimal K value of each network, as discussed
in the previous section. In the ConvNet we use one convolution layer
with 32 filters of size 4×4. We then apply the average pooling of size
2 × 2. In the following fully connected neural network two hidden
layers with 128 neurons are used. We train our neural network for
50 epochs. During the training, we use 10% training set for the val-
idation and saved the model, which has lowest validation lost as the
best model. Finally, we use our saved model to predict the test data.
We repeat the above process for 10 times and calculated the average
AUC (µAUC ) and standard deviation (σAUC ).
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Dataset CN JC PA AA RA Katz PR WLNM SEAL PLACN

USAir 94.04±1.02 89.82±1.49 89.76±1.23 94.91±1.28 95.79±0.98 92.92±1.34 93.96±1.17 95.95±1.10 96.33±0.82 98.36±0.24

NS 93.94±1.08 94.37±0.95 69.05±1.93 94.76±1.03 94.35±0.99 95.02±0.94 94.89±1.08 98.61±0.49 98.91±0.32 99.53±0.13

PB 92.08±0.31 87.39±0.46 90.28±0.37 92.30±0.39 92.51±0.26 92.89±0.45 93.60±0.38 93.49±0.47 94.70±0.34 96.67±0.44

Yeast 89.41±0.59 89.32±0.66 82.17±1.20 89.31±0.59 89.45±0.72 92.29±0.58 92.76±0.55 95.62±0.52 97.96±0.47 98.87±0.30

C.ele 84.97±1.72 80.19±1.47 74.83±1.94 87.01±1.38 87.49±1.41 86.42±1.71 90.32±1.52 86.18±1.72 90.15±0.86 96.08±0.26

Power 58.86±0.75 58.79±0.83 44.37±1.00 58.83±0.92 58.81±0.84 65.42±1.51 66.03±1.59 84.76±0.98 88.50±1.17 98.78±0.38

Router 56.58±0.41 56.39±0.46 47.62±1.51 56.39±0.51 56.39±0.51 38.62±1.42 38.82±1.31 94.41±0.88 96.45±0.96 98.40±0.38

Table 2. Comparison of AUC with heuristic methods, WLMN and SEAL.

Figure 6. The representation of constructing feature matrices.

5.4 Results

Overall PLACN achieves a significant improvement compared to
other methods in networks of different characteristics. In terms of
AUC, PLACN performs remarkably better in Power and Router net-
works, in which the baseline and latent methods achieve below 80%,
and recent state-of-the-art methods, WLNM and SEAL achieve up to
85% and 90% respectively. Moreover, PLACN has the AUC higher
than 95% among all tested networks. Tables 2 and 3 represent the
comparison of other methods with PLACN.

Tables 2 represents the AUC performance in the form of µAUC ±
σAUC . For all seven networks we calculated the K value and tested
the AUC by varying K for the extracting subgraphs as shown in fig
6. After we calculate K values, the AUC graph tends to converge for
most cases. This pattern shows that the calculated K is the minimal
optimal value for the different networks. Therefore, our formula for
K is suitable in most cases. However, if the calculated K < 5, we
assume K = 5, and process because it will consist of at least 3
common neighbors in subgraph.

When comparing the complexity of our algorithms, we evaluated
based on 4 aspects: subgraph extraction, subgraph node labeling, fea-
ture extraction and classifier. In terms of subgraph extraction, the
complexity of our algorithm (O(n)) is equal to SEAL. In graph la-
beling, SEAL uses a hash function, which led to duplicate labels for
the same order common neighbors. Our algorithm uses sorting based
on the average hop and weight, which has the complexity of Klog(K)
(where K is sub-graphing factor). Even though our labeling method
requires sorting, it tends to solve a key issue that is inconsistency
in subgraphs. While SEAL includes the high-order heuristics, such
as Katz, Pagerank and Simrank, which have the complexity O(n3),

PLACN didn’t include them. At the same time, PLACN is able to
outperform only with the low-order heuristics. Finally, SEAL used
DCGNN as a classifier that considered sort pooling as their aggrega-
tion layer, which required an additional time for computations. Our
model reduces the cost while calculating the heuristics in the classifi-
cation process, and trade-off the cost in labeling to keep consistency.
PLACN therefore can be considered to have the same complexity as
SEAL.

Dataset SBM N2V LINE VGAE PLACN

USAir 94.85±1.14 91.44±1.78 81.47±10.71 89.28±1.99 98.36±0.24

NS 92.30±2.26 91.52±1.28 80.63±1.90 94.04±1.64 99.53±0.13

PB 93.90±0.42 85.79±0.78 76.95±2.76 90.70±0.53 96.67±0.44

Yeast 91.41±0.60 93.67±0.46 87.45±3.33 93.88±0.2 98.87±0.30

C.ele 86.48±2.60 84.11±1.27 69.21±3.14 81.80±2.18 96.08±0.26

Power 66.57±2.05 76.22±0.92 55.63±1.47 71.20±1.65 98.78±0.38

Router 85.65±1.93 65.46±0.86 67.15±2.10 61.51±1.22 98.40±0.38

Table 3. Comparison of AUC with Latent feature methods.

6 Conclusions
Link prediction is currently a popular research field and used in many
application domains. Although heuristic methods are simple and
show good results, intensive guess work is needed to manually match
the right heuristic to the corresponding network type since the same
heuristic will not always perform well in different networks. The
state-of-the-art approaches failed to analyze the impact of common
nodes on the target link. We implemented a novel framework PLACN
that solved these issues by creating a new subgraph extracting algo-
rithm and a new node labeling algorithm to learn from different net-
works automatically. We also derived an equation for sub-graphing
factor K, which helps to determine subgraph size rather than relying
on a user-defined value. These characteristics provide autonomy in
our framework to learn and adopt the topological patterns of differ-
ent networks. We tested our model with six state-of-the-art methods
and baseline methods. The results showed that PLACN performs sig-
nificantly better than the state-of-the-art methods as well as baseline
methods and set new state-of-the-art performance. PLACN also en-
ables new paths to further research on recommendation systems and
knowledge graph completions.
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