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Abstract. We consider the problem of locating a single facility on
a vertex in a given graph based on agents’ preferences, where the do-
main of the preferences is either single-peaked or single-dipped, de-
pending on whether they want to access the facility (a public good)
or be far from it (a public bad). Our main interest is the existence
of deterministic social choice functions that are Pareto efficient and
false-name-proof, i.e., resistant to fake votes. We show that regard-
less of whether preferences are single-peaked or single-dipped, such
a social choice function exists (i) for any tree graph, and (ii) for a cy-
cle graph if and only if its length is less than six. We also show that
when the preferences are single-peaked, such a social choice func-
tion exists for any ladder (i.e., 2×m grid) graph, and does not exist
for any larger (hyper)grid.

1 INTRODUCTION

Social choice theory analyzes how collective decisions are made
based on the preferences of individual agents. Its typical applica-
tion field is voting, where each agent reports a preference ordering
over a set of alternatives and a social choice function selects one.
One of the most well-studied criteria for social choice functions is
robustness to agents’ manipulations. An SCF is said to be truthful if
no agent can benefit by telling a lie, and false-name-proof if no agent
can benefit by casting multiple fake votes. The Gibbard-Satterthwaite
theorem implies that any deterministic, truthful, and Pareto efficient
social choice function must be dictatorial. Also, it is known that any
false-name-proof social choice function must be randomized [7].

Overcoming such negative results has been a crucial research di-
rection, and there have been a bunch of research directions that over-
come those negative results. One of the most popular approaches is
to restrict agents’ preferences. For example, when their preferences
are restricted to being single-peaked, the well-known median voter
schemes are truthful, Pareto efficient, and anonymous [17], and their
strict subclass, called target rule, is also false-name-proof [27]. The
model where agents’ preferences are single-peaked has also been
called the facility location problem, where each agent has an ideal
point on an interval, e.g., on a street, and a social choice function lo-
cates a public good, e.g., a train station, to which agents want to stay
close.
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Moulin [17], as well as many other works on facility location prob-
lems, considered an interval as the set of possible alternatives, where
any point in the interval can be chosen by a social choice function. In
several practical situations, however, the set of possible alternatives
is discrete and has slightly more complex underlying network struc-
ture, which the agents’ preferences also respect. For example, when
we are choosing the server to store the corrected data among a cluster
network, whose nodes usually have an acyclic structure, i.e., a tree
graph. To avoid the risk of data loss, each client machine in the net-
work prefers that the data is stored in a server close from it; in each
hop, an error occurs with a certain probability, and thus the farther the
data server is, the less happy the client is. In multi-criteria voting with
two criteria, each of which has only three options, the underlying net-
work is a three-by-three grid. When we need to choose a time-slot to
organize a joint meeting, the problem resembles choosing a point on
a discrete cycle; people living in different countries are setting up a
1h meeting, each person has the ideal (or the worst) time slot, and
the potential time slots/outcomes are, say, 0am, 1am, ..., 11pm in
GMT, which form a discrete cycle with 24 vertices. Dokow et al. [8]
studied truthful social choice functions on discrete lines and cycles.
Ono et al. [20] considered false-name-proof social choice functions
on a discrete line. However, there has been very few works on false-
name-proof social choice functions on more complex structures (see
Section 2).

In this paper we tackle the following question: for which graph
structures does a false-name-proof and Pareto efficient social choice
function exist? When the mechanism designer can arbitrarily modify
the network structure of the set of possible alternatives, the prob-
lem is simplified. The network structure, however, is a metaphor of
a common feature among agents’ preferences, where modifying the
network structure equals changing the domain of agents’ preferences.
This is almost impossible in practice because agents’ preferences are
their own private information. The mechanism designer, therefore,
first faces the problem of verifying whether, under a given network
structure (or equally, a given preference domain), a desirable social
choice function exists.

Locating a bad is another possible extension of the facility loca-
tion problem, where a social choice function is required to locate
a public bad, e.g., a nuclear plant or a disposal station, which each
agent wants to avoid. Agents’ preferenes are therefore assumed to be
single-dipped, which is sometimes called obnoxious. Actually, some
existing works have studied truthful facility location with single-
dipped preferences [5]. Nevertheless, to the best of our knowledge,
no work has dealt with both false-name-proofness and more complex
structures than a path, such as cycles.

Table 1 summarizes our contribution. Regardless of whether the
preferences are single-peaked or single-dipped, there is a false-name-
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Table 1. Summary of our contributions. 3 indicates a false-name-proof and Pareto efficient social choice function, and 7 indicates that no such social choice
function exists. It remains open to clarify whether such a social choice function exists for general hypergrid graphs when agents’ preferences are single-dipped.

Tree Cycle Ck Hypergrid

Single-Peaked Any 3 [18] k ≤ 5 3 (Thm. 3) Ladder 3 [18]

k ≥ 6 7 (Thm. 4) Other 7 (Thm. 5 and 6)

Single-Dipped Any 3 (Thm. 7) k ≤ 5 3 (Thm. 8) Open

k ≥ 6 7 (Thm. 9)

proof and Pareto efficient social choice function for any tree graph
and any cycle graph of length less than six, and there is no such so-
cial choice function for any larger cycle graph. For hypergrid graphs,
when preferences are single-peaked, such a social choice function
exists if and only if the given hypergrid graph is a ladder, i.e., of
dimension two and at least one of which has at most two vertices.

2 RELATED WORKS

In the literature of facility location (and social choice with single-
peaked preferences), one of the most popular direction is to design
and analyze truthful social choice functions. Moulin [17] proposed
generalized median voter schemes, which are the only determinis-
tic, truthful, Pareto efficient, and anonymous social choice functions.
Procaccia and Tennenholtz [21] proposed a general framework of
approximate mechanism design, which evaluates the worst case per-
formance of truthful social choice functions from the perspective
of competitive ratio. Recently, some models for locating multiple
heterogenous facilities have also been studied [23, 11, 3]. Wada et
al. [29] considered the agents who dynamically arrive and depart.
Some research also considered facility location on grids [25, 9] and
cycles [1, 2, 8]. Melo et al. [16] overviewed applications in practical
decision making.

Over the last decade, false-name-proofness has also been scruti-
nized in various mechanism design problems [30, 4, 26, 31, 28],
as a refinement of truthfulness for such open and anonymous en-
vironments, as the internet. Bu [6] clarified a connection between
false-name-proofness and population monotonicity in general social
choice problems. Todo et al. [27] provided a complete characteriza-
tion of false-name-proof and Pareto efficient social choice functions
for the facility location problem with single-peaked preferences on
a continuous line. Lesca et al. [14] also addressed false-name-proof
social choice functions that are associated with monetary compensa-
tion. Sonoda et al. [24] considered the case of locating two homoge-
neous facilities on a continuous line and a circle. Ono et al. [20] stud-
ied some discrete structures, but focused on randomized social choice
functions and clarifies the relation between false-name-proofness and
population monotonicity.

One of the most similar works to this paper is Nehama et al. [18],
which also clarified the network structures under which false-name-
proof and Pareto efficient social choice functions exist for single-
peaked preferences. One clear difference from ours is that, in their
paper they proposed a new class of graphs, called ZV-line, as a gen-
eralization of path graphs. In our paper, on the other hand, we in-
vestigate well-known existing structures, namely tree, hypergrid, and
cycle graphs. ZV-line graphs contain any tree and ladder (i.e., 2×m-
grid for arbitrary m ≥ 2), but do not cover any other graphs consid-
ered in this paper, such as larger (hyper-)grid graphs and cycle graphs
of lengths not equal to four.

Locating a public bad has also been widely studied in both eco-
nomics and computer science fields, which essentially equals to con-
sider single-dipped preferences. Manjunath [15] characterized truth-
ful social choice functions on an interval. Lahiri et al. [13] stud-
ied the model for locating two public bads. Feigenbaum and Sethu-
raman [10] considered the cases where single-peaked and single-
dipped preferences coexist. Nevertheless, all of these works just fo-
cused on truthful social choice functions. To the best of our knowl-
edge, this paper is the very first work that considers false-name-proof
facility location when agents’ preferences are single-dipped.

3 PRELIMINARIES

In this section, we describe the formal model of the facility location
problem considered in this paper. Let Γ := (V,E) be an undirected
and connected graph, defined by the set V of vertices and the set
E of edges. The distance function d : V 2 → N≥0 is such that for
any v, w ∈ V , d(v, w) := #{e ∈ E|e ∈ s(v, w)}, where s(v, w)
is the shortest path between v and w. We say that a graph Γ′ :=
(V ′, E′) has another graph Γ := (V,E) as a distance-preserving
induced subgraph if Γ′ has Γ as an induced subgraph, where the
corresponding pair of two vertices are represented as v ≡ v′, and for
any pair v, w ∈ V and their corresponding vertices v′, w′ ∈ V ′, i.e.,
v ≡ v′ and w ≡ w′, it holds that d(v′, w′) = d(v, w). For these Γ
and Γ′, let us also denote V ′|Γ := {v′ ∈ V ′ | ∃v ∈ V, v′ ≡ v}, and
U ≡ U ′ for U ⊆ V and U ′ ⊆ V ′|Γ if ∀u ∈ U , ∃u′ ∈ U ′ such that
u ≡ u′.

In this paper we focus on three classes of graphs, namely tree,
cycle, and hypergrid. A tree graph is an undirected, connected and
acyclic graph. A special case of tree graphs is called as a path graph,
in which only two vertices have a degree of one and all the others
have a degree of two. Indeed, tree graphs are a simplest generaliza-
tion of path graphs, so that most of the properties of path graphs,
such as the uniqueness of the shortest path between two vertices,
carries over to tree graphs. A cycle graph is an undirected and con-
nected graph that only consists of a single cycle. When a cycle graph
has k vertices, we refer to it as Ck, and its vertices are labeled, in a
counter-clockwise order, from v1 to vk.

A hypergrid graph is a Cartesian product of more than one path
graphs. When a hypergrid Γ is a Cartesian product of k path graphs,
we call it a k-dimensional (k-D, in short) grid. In this paper, a 2-D
grid is sometimes represented by the number of vertices on each path,
as l×m-grid. In a given k-D grid graph, each vertex v is represented
as a k-tuple (vk′)1≤k′≤k. Note that the 2-D 2 × 2-grid is a cycle
graph C4.

LetN be the set of potential agents, andN ⊆ N be a set of agents
who actually participate into the problem. Each agent i ∈ N has a
type θi ∈ V . When an agent i has type θi, agent i is said to be located
on vertex θi. Let θ := (θi)i∈N ∈ V |N| denote a profile of the agents’
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types (or type profile in short), and θ−i := (θi′)i′ 6=i denote the type
profile without i’s type. Given θ, let I(θ) :=

⋃
i∈N θi ⊆ V be the

set of vertices on which at least one agent is located. Also, given θ
and v ∈ I(θ), let θ−v be the type profile obtained by removing all
the agents located on v from θ. By definition, I(θ−v) = I(θ) \ {v}.

Given Γ and v ∈ V , let %v indicate the preference of the agent
located on v over the set V of alternatives, where�v and∼v indicate
the strict and indifferent parts of %v respectively, each of which is
represented as a binary relation. A preference %v is single-peaked
(resp. single-dipped) under Γ if, for any w, x ∈ V , w �v x if and
only if d(v, w) < d(v, x) (resp. d(v, w) > d(v, x)), and w ∼v x if
and only if d(v, w) = d(v, x). That is, an agent located on v strictly
prefers alternativew, which is strictly closer to (resp. farther from) v,
than alternative x, and is indifferent between these alternatives when
they are in the same distance from v. By definition, for each type θi,
the single-peaked (resp. single-dipped) preference is unique.

A deterministic social choice function maps a type profile to a ver-
tex. Since each agent may pretend to be multiple agents in our model
of facility location, a social choice function must be defined over type
profiles of different sizes. To describe this feature, we define a social
choice function f = (fN )N⊆N as a family of functions, where each
fN is a mapping from V |N| to V . When a set N of agents partici-
pates, the social choice function f uses function fN to determine the
outcome. The function fN takes profile θ of types jointly reported by
N as an input, and returns fN (θ) as an outcome. We denote fN as f
if it is clear from the context. We further assume that a social choice
function f is anonymous, i.e., for any input θ and its permutation θ′,
f(θ′) = f(θ) holds.

Here we define two desirable properties of social choice functions,
false-name-proofness and Pareto efficiency, which are in our main
interest of this paper.

Definition 1 (False-Name-Proofness). A social choice function f is
said to be false-name-proof if for any N , any θ, any i ∈ N , any
θi ∈ V , any θ′i ∈ V , any Φi ⊆ N \ N , and any θΦi ∈ V |Φi|, it
holds that

f(θ) %i f(θ′i, θΦi , θ−i).

The set Φi indicates the set of identities added by i for the manip-
ulation. The property coincides with the canonical truthfulness when
Φi = ∅, i.e., agent i only uses one identity.

Definition 2 (Pareto Efficiency). An alternative v ∈ V is said to
Pareto dominate w ∈ V under θ if both

• v %i w for all i ∈ N , and
• v �j w for some j ∈ N

hold. a social choice function f is said to be Pareto efficient if for
any N and any θ, no alternative v ∈ V Pareto dominates f(θ).

Given θ, let PE(θ) ⊆ V indicate the set of all alternatives that are
not Pareto dominated by any alternative.

The following theorem on a general property of false-name-proof
and Pareto efficient social choice functions has recently been pro-
vided by the authors’ another paper [19], which justifies to focus on
a special class of false-name-proof and Pareto efficient social choice
functions. a social choice function f is said to ignore duplicate bal-
lots (or satisfies IDB in short) if for any pair θ, θ′, I(θ) = I(θ′)
implies f(θ) = f(θ′). In words, any social choice function that sat-
isfies IDB cares about whether there exists at least one agent on each
vertex, but does not care about how many agents are located in each
vertex.

Theorem 1 (Okada et al. [19]). Assume that the domain of agents’
preferences are either single-peaked or single-dipped. If there is a
false-name-proof and Pareto efficient social choice function f that
does not satisfy IDB, we then can find another false-name-proof and
Pareto efficient social choice function f ′ that also satisfies IDB and
such that for any N , any i ∈ N and any θ,

f ′(θ) ∼i f(θ).

That is, for any social choice function f violating IDB, we can
find another social choice function f ′ that is indifferent with f , for
any possible input θ, from the perspective of any participating agent.
Therefore, in what follows, we focus on such false-name-proof and
Pareto efficient social choice functions f ′ that also satisfies IDB.

4 SINGLE-PEAKED PREFERENCES
In this section, we focus on single-peaked preferences, i.e., every
agent prefers to have the facility closer to her. It is already known
that for any tree graph, and thus for any path graph, a false-name-
proof and Pareto efficient social choice function exists.

Theorem 2 (Nehama et al. [18]). Assume that agents’ preferences
are single-peaked. For any tree graph, there is a false-name-proof
and Pareto efficient social choice function.

An example of such a social choice function is the target rule [12],
originally proposed for an interval, i.e., a continuous line such as
[0, 1]. It is shown that the target rule is false-name-proof and Pareto
efficient for any tree metric [27]. Almost the same proof works for
any tree graph.

In the following two subsections, we investigate the existence of
such social choice functions for cycle and hypergrid graphs. The two
lemmata presented below are useful to prove the impossiblity re-
sults for single-peaked preferences. Lemma 1 intuitivelty shows that,
when there is no social choice function that is truthful and Pareto
efficient simultaneously for a distance-preserving induced subgraph,
then the impossiblity carries over to the original graph. Lemma 2
shows that, when the current alternative is still Pareto efficient af-
ter removing a preference, then the alternative must be still chosen.
Notice that both lammata does not assume any specific structure of
the graphs, i.e., does hold not only for grids and cycles but also for
general structures.

Lemma 1. Let Γ = (V,E) be an arbitrary graph. Assume that
agents’ preferences are single-peaked under Γ and there is no truth-
ful and Pareto efficient social choice function for Γ. Then, for any
graph Γ′ = (V ′, E′) that contains Γ as a distance-preserving in-
duced subgraph, there is no truthful and Pareto efficient social choice
function.

Proof. Consider an arbitrarily chosen social choice function f ′ for
Γ′. Because (i) Γ′ has Γ as a distance-preserving induced subgraph
and (ii) agents’ preferences are single-peaked, for any profile θ′ on
V ′|Γ and corresponding profile θ on V such that I(θ) = I(θ′), it
holds that

PE(θ′) ≡ PE(θ),

that is, the structure of the set of Pareto efficient alternatives are to-
tally the same. Therefore, for the arbitrarily chosen social choice
function f ′ for Γ′, its behavior for the set of profiles θ′ such that
I(θ′) ⊆ V ′|Γ must be equal to a social choice function f for Γ, i.e.,
there exists a social choice function f for Γ such that

∀θ′ s.t. I(θ) ⊆ V ′|Γ, ∀θ s.t. I(θ) = I(θ′), f(θ) ≡ f ′(θ′).
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By the assumption, such a social choice function f for Γ is not truth-
ful and Pareto efficient simultaneously. Therefore, f ′ also violate one
of the properties.

Lemma 2. Let Γ be an arbitrary graph. Assume that agents’ prefer-
ences are single-peaked under a graph Γ. Then, for any false-name-
proof social choice function f , any θ and any v ∈ I(θ),

[f(θ) ∈ I(θ) ∧ f(θ) ∈ I(θ−v)]⇒ [f(θ−v) = f(θ)].

Proof. Assume for the sake of contradiction that the alternative cho-
sen by the social choice function f changes after the removal of such
v, i.e.,

f(θ−v) 6= f(θ).

Here,
f(θ) ∈ I(θ)

implies that there is some agent, say i, located at f(θ), who incurs the
cost of zero when θ is reported and is still present when v is removed.
Since

f(θ) 6= f(θ−v)

and agents’ preferences are single-peaked, such an agent i incurs the
cost of more than zero when v is removed. Thus, the agent i located
at f(θ) has an incentive to add identities at v, so that the situation
becomes identical to the case of θ, which contradicts the assumtion
that f is false-name-proofness.

4.1 Single-Peaked Preferences on Cycles

In this section, we show that, under single-peaked preferences, there
is a false-name-proof and Pareto efficient social choice function for
Ck if and only if k ≤ 5.

For the if direction, to explain the existence of such social choice
functions, we first define a class of social choice functions, called se-
quential Pareto rules. Given cycleCk, a sequential Pareto rule has an
ordering σ of all the alternatives in Ck, which is given independently
from agents’ preferences θ. For a given θ, it sequentially checks, in
the order specified by σ, whether the first (second, third, and so on)
alternative is Pareto efficient, and terminates when it finds a Pareto
efficient one. By definition, any sequential Pareto rule is automati-
cally Pareto efficient.

For a continuous circle, any truthful and Pareto efficient social
choice function is dictatorial [22]. Since choosing such a dictator in
a non-manipulable manner, when there is uncertainty on identities,
is quite difficult, false-name-proof and Pareto efficient social choice
functions are not likely to exist for a continuous circle. Our results
in this section thus demonstrate the power of the discretization of
the alternative space; by discretizing the set of alternatives so that at
most five alternatives exist along with a cycle, we can avoid falling
into the impossibility.

Dokow et al. [8] showed that any truthful and onto social choice
function is nearly dictatorial for a cycleCk with k ≥ 22. In this paper
we clarify a stricter threshold on such an impossibility when agents
can pretend to be multiple agents; false-name-proof social choice
functions exist for a cycle Ck if and only if k ≤ 5. Theorem 3 shows
the if direction, and Theorem 4 shows the only if direction.

Theorem 3. Let Γ be a cycle graph Ck s.t. 3 ≤ k ≤ 5. When pref-
erences are single-peaked, there is a false-name-proof and Pareto
efficient social choice function.

v1

v2 v3

v1

v2 v3

v4

v1

v2

v3 v4

v5

Figure 1. Sequential Pareto rules for C3, C4, and C5. The arrows indicate
the associated ordering σ, according to which the Pareto efficiency condition

will be checked one by one.

f

v1

v2

v3

v4

v5

v6

Profile θ

v1

v2

fv3

v4

v5

v6

Profile θ′

v1

v2

v3

v4

f

v5

v6

Profile θ′′

v1

v2

v3

v4

v5

v6

Profile θ∗

Figure 2. Type profiles used for C6 in the proof of Theorem 4. On each
gray vertex there is some agent, and the vertex with label f must be chosen

under the profile. The proof derives a contradiction on θ∗.

Proof. It is obvious that any sequential Pareto rule is false-name-
proof for C3. For C4, the sequential Pareto rule with the ordering
v1 → v3 → v2 → v4 is false-name-proof, which is actually the
same rule mentioned by Nehama et al [18]. Finally, for C5, the se-
quential Pareto rule with the ordering v1 → v2 → v5 → v3 → v4

is false-name-proof, which was also informally mentioned in [18].
These rules are described in Fig. 1.

One might think that a sequential Pareto rule associated with any
possible ordering is false-name-proof. However, the following ex-
ample shows that the ordering must be carefully chosen to guaran-
tee false-name-proofness (and truthfulness as well). Characterizing
false-name-proof and Pareto efficient social choice functions for a
given cycle graph remains open.

Example 1. Consider C5 and a sequential Pareto rule f associated
with ordering v1 → v2 → v3 → v4 → v5. Assume that there
are three agents, whose types are θ = (v3, v4, v5). Since PE(θ) =
{v3, v4, v5}, v3 is chosen as an outcome when all the agents reports
truthfully, where the agent located at v5 incurs the cost of 3. However,
she can benefit by reporting v1 as her type, since PE(v1, v3, v4) =
V , and thus f(v1, v3, v4) = v1 reduces her cost to 1.
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f

v1

v2

v3

v4 v5

v6

v7

Profile θ

v1

v2

v3

v4

f

v5

v6

v7

Profile θ(1)

v1

f

v2

v3

v4 v5

v6

v7

Profile θ(2)

v1

v2

v3

v4 v5

v6

v7

Profile θ∗

Figure 3. Type profiles used for C7 in the proof of Theorem 4. On each
gray vertex there is some agent, and the vertex with label f must be chosen

under the profile. The proof derives a contradiction on θ∗.

Theorem 4. Let Γ be a cycle graph Ck s.t. k ≥ 6. When preferences
are single-peaked, there is no false-name-proof and Pareto efficient
social choice function.

The impossibility for C6 is important because we will use it in the
proof of Theorem 6 in the next subsection. Due to space limitations,
we show the proof for C6 and C7.

Proof. Assume for the sake of contradiction that a false-name-proof
and Pareto efficient social choice function f exists for C6, and as-
sume w.l.o.g. that f(θ) = v1 for any profile θ s.t. I(θ) = V (see the
top-left cycle of Fig. 2).

For C6: Consider a type profile θ′ s.t.

I(θ′) = {v2, v3, v4, v5}

(see the top-right cycle of Fig. 2). From Pareto efficienty, it must be
the case that

f(θ′) ∈ PE(θ′) = {v2, v3, v4, v5}.

If f(θ′) = v2, then agents at v5 have an incentive to add fake iden-
tities at both v1 and v6. If f(θ′) = v4 or f(θ′) = v5, then agents at
v2 have an incentive to add fake identities at both v1 and v6. There-
fore, false-name-proofness implies that f(θ′) = v3. Let θ∗ then be
a type profile s.t. I(θ∗) = {v3, v4, v5}, i.e., the antipodal to the ver-
tex v1 = f(θ) and its two neighbors. Since θ∗ can be obtained by
removing v2 from θ′ and f(θ′) = v3 ∈ I(θ∗), Lemma 2 implies

f(θ∗) = v3.

We then consider another profile θ′′ s.t.

I(θ′′) = {v3, v4, v5, v6}

(see the bottom-left cycle of Fig. 2). From symmetry and Lemma 2,

f(θ∗) = v5,

which contradicts f(θ∗) = v3. Almost the same argument holds for
any larger even k.

For C7: Consider a type profile θ(1) s.t.

I(θ(1)) = {v3, v4, v5, v6}

(see the top-right cycle of Fig. 3). From Pareto efficienty, it must be
the case that

f(θ(1)) ∈ PE(θ(1)) = {v3, v4, v5, v6}.

If f(θ(1)) = v6, then agents at v3 have an incentive to add fake
identities at v1, v2 and v7. If f(θ(1)) = v3, then agents at v6 have
an incentive to add fake identities at v1, v2 and v7. Therefore, false-
name-proofness implies that

f(θ(1)) ∈ {v4, v5}.

From the symmetry between v4 and v5 in the profile θ(1), assume
w.l.o.g. that f(θ(1)) = v5. From Lemma 2, removing v6 from
θ(1) does not change the outcome. That is, for θ∗ s.t. I(θ∗) =
{v3, v4, v5}, it must be the case that

f(θ∗) = v5.

Then let us consider another profile θ(2) s.t.

I(θ(2)) = {v2, v3, v4, v5}

(see the bottom-left cycle of Fig. 3). Since f is false-name-proof and
Pareto efficient, f(θ(2)) 6∈ {v4, v5}; otherwise agents located on v2

would add fake identities so that the outcome changes to v1. Simi-
larly, f(θ(2)) 6= v3; otherwise, it must be the case that f(θ∗) = v3,
which yields a contradiction. Thus,

f(θ(2)) = v2.

However, f(θ(2)) = v2 implies

f(θ∗) 6= v5;

otherwise agents located on v3 would add fake identities so that the
outcome changes to v2. This also yields a contradiction. Almost the
same argument holds for any larger odd k.

4.2 Single-Peaked Preferences on Hypergrids
The facility location on a hypergrid graph is a reasonable simplifica-
tion of multi-criteria voting [25], where each candidate has a pledge
for each criteria, such as taxation and diplomacy, that is embeddable
on a hypergrid. Each voter then has the most/least preferred point on
the hypergrid.

In this section, we completely clarify under which condition on a
given hypergrid graph a false-name-proof and Pareto efficient social
choice function exists when agents’ preferences are single-peaked.

It is already known that, when preferences are single-peaked, a
false-name-proof and Pareto efficient social choice function exists
for any 2 × m-grid [18]. Theorem 5 complements their result; no
such social choice function exists for any other 2-D grid. Theorem 6
further shows that this impossibility carries over into any k-D grid
with k ≥ 3.

Lemma 3. Let Γ be the 2 × 3-grid, where the set of vertices
V = {v1,1, v1,2, v1,3, v2,1, v2,2, v2,3}. Assume that agents’ pref-
erences are single-peaked under Γ and there is a false-name-proof
and Pareto efficient social choice function f . Then, for any θ s.t.
I(θ) = V , f(θ) must be one of the four corners of Γ, i.e., f(θ) ∈
{v1,1, v1,3, v2,1, v2,3}.
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Figure 4. Four type profiles used in the proof of Lemma 3. On each gray
vertex there is some agent, and the vertex with label f must be chosen under

the profile. The proof derives a contradiction on θ∗.
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Profile θ′′ Profile θ∗

Figure 5. Five type profiles used in the proof of Lemma 4. On each gray
vertex there is some agent, and the vertex with label f must be chosen under

the profile. The proof derives a contradiction on θ∗.

Proof. Asssume w.l.o.g. that f(θ) = v1,2 (see the top-left
grid in Fig. 4). We construct a type profile θ′ s.t. I(θ′) =
{v1,1, v2,1, v2,2, v2,3}. Since f is false-name-proof, f(θ′) = v2,1

(see the top-right grid in Fig. 4). We also construct another profile
θ′′ s.t. I(θ′′) = {v1,3, v2,1, v2,2, v2,3}. Since f is false-name-proof,
f(θ′′) = v2,3 (see the bottom-left grid in Fig. 4). Finally, let θ∗ be the
profile constructed by removing all the agents located on v1,1, v1,2,
and v1,3. By applying Lemma 2 to those profiles, we obtain both
f(θ∗) = v2,1 and f(θ∗) = v2,3, which yield a contradiction.

Now we are ready to present the general impossibility results for
general 2-D grids (Theorem 5) and hypergrids (Theorem 6), which
are our main contribution in this subsection.

Theorem 5. Let Γ be an l × m-grid, where l,m ≥ 3. When pref-
erences are single-peaked, there is no false-name-proof and Pareto
efficient social choice function.

Proof. Lemma 4 below shows that, for the 3 × 3-grid, there is no
false-name-proof and Pareto efficient social choice function. Since
any l × m-grid Γ, for arbitrary l,m ≥ 3, contains the 3 × 3-grid
graph as a distance-preserving induced subgraph, the impossiblity
carries over into Γ according to Lemma 1.

Figure 6. The three-dimensional 2× 2× 2-grid, also known as a binary
cube, contains C6 (emphasized by bold edges) as a distance-preserving

induced subgraph, which consists of the grayed vertices.

Lemma 4. Let Γ be the 2-D 3 × 3-grid. When preferences are
single-peaked, there is no false-name-proof and Pareto efficient so-
cial choice function.

Proof. Assume that a false-name-proof and Pareto efficient social
choice function f exists for the 3 × 3-grid. From Lemmata 2 and 3,
for any θ s.t. I(θ) = V , f(θ) ∈ {(1, 1), (1, 3), (3, 1), (3, 3)} holds.
From symmetry, assume w.l.o.g. that f(θ) = (1, 1) (see the top-left
grid in Fig. 5).

We now remove all the agents located at (1, 1) from the above
profile θ, and refer to the profile as θ′. Since f is false-name-proof
and Pareto efficient, f(θ′) = (2, 2). Here, let θ′′ be the profile that
further removes all the agents located at (1, 2), (1, 3), (2, 2), and
(2, 3) from θ′. Note that I(θ′′) = {(2, 1), (3, 1), (3, 2), (3, 3)}, and
thus f(θ′′) = (3, 1) holds by the same argument. We also con-
sider another profile, θ′′′, which is obtained by removing all the
agents at (1, 2), (2, 1), and (2, 2) from θ′. Note that I(θ′′′) =
{(1, 3), (2, 3), (3, 1), (3, 2), (3, 3)}, and f(θ′′′) = (3, 3) by the
same argument.

Then we construct θ∗ by removing all the agents in the vertices
except for (3, 1), (3, 2), and (3, 3) from θ′. Since θ∗ is reachable
from both θ′′ and θ′′′, Lemma 2 implies f(θ∗) = (3, 1) and f(θ∗) =
(3, 3), which yields a contradiction.

Theorem 6. Let Γ be an arbitrary k(> 2)-D grid. When preferences
are single-peaked, there is no false-name-proof and Pareto efficient
social choice function.

Proof. We can easily observe that the three-dimensional 2× 2× 2-
grid, a.k.a. the binary cube, contains C6 as a distance-preserving in-
duced subgraph, e.g., the subgraph induced from the grayed vertices
in Fig. 6. As we showed in Theorem 4 in the previous subsection,
there is no false-name-proof and Pareto efficient social choice func-
tion for C6. Therefore, by Lemma 1, no such social choice function
exists for the 2× 2× 2-grid. Any other larger grid (possibly of more
than three dimensions) contains the three-dimensional 2×2×2-grid,
and thus the impossibility carries over by Lemma 1.

5 SINGLE-DIPPED PREFERENCES

As we already mentioned in Section 2, this paper is the very first
work that considers false-name-proof social choice function for dis-
crete facility location problem when agents’ preferences are single-
dipped. We therefore begin with the discussion on tree graphs.

5.1 Single-Dipped Preferences on Trees

For the case of a public bad, where agents’ preferences are single-
dipped, we can find a false-name-proof and Pareto efficient social
choice function.
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Figure 7. The bold edges construct a longest path π∗. For the profile
where some agent exists on each of the gray vertices, the social choice
function described in the proof of Theorem 2 returns a as an outcome.

Theorem 7. Let Γ be an arbitrary tree graph. When preferences are
single-dipped, there is a false-name-proof and Pareto efficient social
choice function.

Proof. Consider the social choice function described as follows.
First, choose an arbitrary longest path π∗ of a given tree, whose ex-
tremes are called a and b. Then, return a as an outcome if at least one
agent strictly prefers a to b; otherwise return b as an outcome.

For each agent i, either a or b is one of the most preferred alter-
native; otherwise, the path from the most preferred point of i to one
of the two extremes is strictly longer than π∗, which violates the as-
sumption that π∗ is a longest path. In Fig. 7, the agents at the bottom
left gray vertex most prefer b, while agents at the middle or top-right
gray vertices most prefer a. It is therefore obvious that the above so-
cial choice function is Pareto efficient, since either a or b is the most
preferred alternative for each agent, and the choice between a and b
is made by a unanimous voting, guaranteeing that the outcome is the
most preferred for at least one agent. Furthermore, such a unanimous
voting over two alternatives is obviously false-name-proof.

5.2 Single-Dipped Preferences on Cycles
We next consider locating a public bad on a cycle. Single-dipped
preferences quite resemble single-peaked preferences for cycle
graphs, especially for sufficiently large ones. Actually, in this sub-
section we provide almost the same results with the case of single-
peaked preferences.

Theorem 8. Let Γ be a cycle graph Ck s.t. 3 ≤ k ≤ 5. When
preferences are single-dipped, there is a false-name-proof and Pareto
efficient social choice function.

Proof. For C3, it is easy to see that any seuqential Pareto rule is
false-name-proof. For C4, the domain of single-dipped preferences
coincides with the domain of single-peaked preferences, since the
point diagonal from a dip point can be considered as a peak point.
Therefore, the sequential Pareto rule with ordering v1 → v3 →
v2 → v4 is false-name-proof, as shown in Theorem 3. Finally, for
C5, the sequential Pareto rule with ordering v1 → v2 → v5 →
v3 → v4 is false-name-proof.

Theorem 9. Let Γ be a cycle graph Ck s.t. k ≥ 6. When preferences
are single-dipped, there is no false-name-proof and Pareto efficient
social choice function.

Proof. The identical proof of Theorem 4 applies for any even k ≥ 6,
since a single-dipped preference over a cycle of even length, with a
dip point v, coincides with the single-peaked one with the peak point
that is antipodal to v.

We therefore focus on odd k ≥ 7. Due to space limitations, we
assume for the sake of contradiction that a false-name-proof and
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v4 v5

v6

v7

Profile θ

v1

v2

f
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v4 v5
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v4 v5
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f(θ∗) = v4

f(θ∗) = v5

Figure 8. Type profiles used for C7 in the proof of Theorem 9. On each
gray vertex there is some agent, and one of the vertices with label f must be

chosen under the profile. The proof derives a contradiction on θ∗.

Pareto efficient social choice function f exists for C7, and w.l.o.g.
that f(θ) = v1 for any θ s.t. I(θ) = V .

Consider a type profile θ′ s.t. I(θ′) = {v1, v2, v6, v7} (see the
top-right cycle in Fig. 8). Since f is false-name-proof and Pareto effi-
cient, f(θ′) must be either v3 or v4; otherwise some agent has incen-
tive to add fake identities. Furthermore, for the profile θ∗ s.t. I(θ∗) =
{v1, v2, v7}, PE(θ∗) = {v4, v5} holds. Therefore, f(θ∗) = v4

holds; otherwise the agent located at v7 has incentive to add fake
identity on v6, which moves the facility to either v3 or v4.

On the other hand, for another profile θ′′ s.t. I(θ′′) =
{v1, v2, v3, v7} (see the bottom-left cycle in Fig. 8), f(θ′′) must
be either v5 or v6 due to symmetry. Therefore, for the above θ∗,
f(θ∗) = v5 must hold, which contradicts the condition of f(θ∗) =
v4. Almost the same argument holds for any larger odd k.

6 CONCLUSIONS
We tackled whether there exists a false-name-proof and Pareto effi-
cient social choice function for the facility location problem under
a given graph. We gave complete answers for path, tree, and cy-
cle graphs, regardless whether the preferences are single-peaked or
single-dipped. For hypergrid graphs, an open problem remains for
single-dipped preferences. When such social choice functions exist,
completely characterizing their class of such social choice functions
is crucial future work, as many other works did for continuous struc-
ture [17, 22, 27]. Investigating randomized social choice functions is
another interesting direction.
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[5] Salvador Barberà, Dolors Berga, and Bernardo Moreno, ‘Domains,
ranges and strategy-proofness: the case of single-dipped preferences’,
Social Choice and Welfare, 39(2), 335–352, (2012).

[6] Nanyang Bu, ‘Unfolding the mystery of false-name-proofness’, Eco-
nomics Letters, 120(3), 559–561, (2013).

[7] Vincent Conitzer, ‘Anonymity-proof voting rules’, Proc. the Fourth
Workshop on Internet and Network Economics (WINE ’08), pp. 295–
306, (2008).

[8] Elad Dokow, Michal Feldman, Reshef Meir, and Ilan Nehama, ‘Mech-
anism design on discrete lines and cycles’, Proc. the 13th ACM Confer-
ence on Electronic Commerce (EC ’12), pp. 423–440, (2012).

[9] Bruno Escoffier, Laurent Gourvès, Nguyen Kim Thang, Fanny Pascual,
and Olivier Spanjaard, ‘Strategy-proof mechanisms for facility location
games with many facilities’, Proc. the Second International Conference
on Algorithmic Decision Theory (ADT ’11), pp. 67–81, (2011).

[10] Itai Feigenbaum and Jay Sethuraman, ‘Strategyproof mechanisms for
one-dimensional hybrid and obnoxious facility location models’, Proc.
the 2015 AAAI Workshop on Incentive and Trust in E-Communities,
(2015).

[11] Chi Kit Ken Fong, Minming Li, Pinyan Lu, Taiki Todo, and Makoto
Yokoo, ‘Facility location game with fractional preferences’, Proc. the
32nd AAAI Conference on Artificial Intelligence (AAAI ’18), pp. 1039–
1046, (2018).

[12] Bettina Klaus, ‘Target rules for public choice economies on tree net-
works and in euclidean spaces’, Theory and Decision, 51(1), 13–29,
(2001).

[13] Abhinaba Lahiri, Hans Peters, and Ton Storcken, ‘Strategy-proof lo-
cation of public bads in a two-country model’, Mathematical Social
Sciences, 90, 150–159, (2017).

[14] Julien Lesca, Taiki Todo, and Makoto Yokoo, ‘Coexistence of utilitar-
ian efficiency and false-name-proofness in social choice’, Proc. the 13th
International Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS ’14), pp. 1201–1208, (2014).

[15] Vikram Manjunath, ‘Efficient and strategy-proof social choice when
preferences are single-dipped’, International Journal of Game Theory,
43(3), 579–597, (2014).

[16] M. Teresa Melo, Stefan Nickel, and Francisco Saldanha-da-Gama, ‘Fa-
cility location and supply chain management – A review’, European
Journal of Operational Research, 196(2), 401–412, (2009).
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