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Abstract. Question Generation (QG) is the task of generating ques-
tions from a given document. Its aims to generate relevant and natural
questions, answered by a given answer. However, existing approach-
es for QG usually fail to utilize the rich text structure that could com-
plement the simple word sequence. Meantime, Cross-entropy based
training has notorious limitations, such as exposure bias and incon-
sistency between train and test measurement. To address the issues,
we propose a novel Reinforcement Learning (RL) based Semantics-
Reinforced architecture, named SiriQG, for QG task. In SiriQG, we
propose a hierarchical attention fusion network, for better modeling
of both answer information and passage information by integrating
explicit syntactic constraints into attention mechanism, and for better
understanding the internal structure of the passage and the connec-
tion between answer, which makes it better to fuse different levels of
granularity (i.e., passages and questions). Last, we also introduce a
hybrid evaluator with using a mixed objective that combines both RL
loss and cross-entropy loss to ensure the generation of semantically
and syntactically question text. To evaluate the performance, we test
our SiriQG model on well-known dataset for QG. Extensive exper-
imental results demonstrated that proposed SiriQG can obtained a
significant increase in accuracy comparing existing models based on
public dataset, and it consistently outperformed all tested baseline
models including the state-of-the-arts (SOTA) techniques.

1 INTRODUCTION

Question Generation (QG) is a very important yet challenging prob-
lem in NLP. The task is to syntactically generate correct, semantical-
ly sound and appropriate questions from various input formats, such
as a structured database, text, or a knowledge base. More recently,
neural network based techniques such as sequence-to-sequence (Se-
q2Seq) learning have achieved great success on various NLP tasks,
including Question Generation. Recently, Learning to ask [4] pro-
poses a Seq2Seq model with attention for question generation from
text. [25] (in an approach referred to as QG) encoded ground-truth
answers and employed bi-directional RNN in a Seq2Seq setting. Be-
sides, they use the context matching and copy mechanism [23] to
capture interactions between its context within the passage and the
given ground-truth.

These models, however, do not make use of the rich text structure,
such syntactic knowledge, which can help to complement question
generation. Cross-entropy sequence training has infamous drawback-
s including sensitivity bias and inconsistency between train and test
measurement [14, 21, 29]. In order to overcome these problems, sev-
eral recent QG models seek to optimize the evaluation metrics with
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using RL approach. However, the jointly mixed objective functions
with both semantic and syntactic constraints to guide question gen-
eration are generally not considered. When generating a question,
previous neural QG approaches did not take the answer information
into account. Recent works [2, 11], have discussed different ways to
use the answers to make the problems more important. However, the
potential semantine relationships between the answer and passage
are neglected, and the global interactions between them thus fail ex-
plicitly to model.

To address all of the aforementioned problems, we propose an RL
based Semantics-Reinforced architecture, named SiriQG, for Ques-
tion Generation task. The main contributions of this paper are three
fold.

• First, we propose introduce an effective Hierarchical Attention Fu-
sion network, for better modeling of both answer information and
passage information by integrating explicit syntactic constraints
into attention mechanism, and for better understanding the inter-
nal structure of the passage and the connection between answer,
which makes it better able to fuse different levels of granularity;

• Second, we output a question using an LSTM Question Decoder.
Also our hybrid evaluator is trained by optimizing a mixed objec-
tive function combining both RL loss and cross-entropy loss;

• Last, we conduct extensive experiments on well-known dataset-
s for QG. Our proposal is end-to-end trainable, and outperform-
s previous state-of-the-art methods by a great margin on both
SQuAD and MS MARCO datasets.

2 OUR APPROACH
We will describe in details the architecture of our SiriQG. As show
in Figure 1, our proposed SiriQG contains four major components as
follows:

• Hierarchical Attention Fusion Network
• LSTM Question Decoder
• Hybrid Evaluator

2.1 Hierarchical Attention Fusion Network
Answer information is essential to creating high-quality, relevan-
t questions from a Passage. However, most existing attention models
that without explicit constraint attend to all words, often neglect po-
tential semantic relations, which leads to an inaccurate focus on some
dispensable words. Thus we propose a Hierarchical Attention Fusion
Network (HAF), for better modeling of both answer information and
passage information by integrating explicit syntactic constraints in-
to attention mechanism, and for effectively incorporating the answer
information into the passage information by performing attention at
both contextualized hidden state level and word-level level.
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Figure 1. An illustration of the architecture for our SiriQG.

We first present proposed HAF architecture that is a hierarchical
multi-stage attention fusion process, consisting of three layers. We
will discuss each component in detail.

2.1.1 Encoder

To encode input tokens into representations, we take pre-trained LM-
s, such as BERT, as the encoder. In SiriQG, we take BERTLARGE as
encoder. To get global contextualized representation, for each differ-
ent candidate answer, we concatenate its corresponding passage and
question with it to form one sequence and then feed it into the en-
coder. Let P = [p1, p2, ..., pm], A = [a1, a2, ..., ak] respectively
denote the sequences of passage and answer, where pi, ai are tokens.
The adopted encoder with encoding function Encoder(·) takes the
concatenation of P and A as input,

E = Encode(P ⊕A) (1)

In detail, following the implementation of pre-trained LMs, we or-
ganize the input X for pre-trained LMs, as the following sequence:
[CLS]P[SEP]A[SEP], where, the first token is the special token
[CLS] and the sequences are separated by the [SEP] token. The
output E will then be fed to both vanilla self-attention layer and
proposed syntax-enhanced attention layer for obtaining the syntax-
guided representation.

2.1.2 Syntax-enhanced Attention Layer

First, we train a syntactic (dependency) parser to build each sen-
tence’s dependency structures that are then supplied to the SiriQG,
as a token-aware attention guidance. Specifically, we only restrict
attention between the word and all the ancestor head words to use
the relationship between headword and the dependent words that
are given by the syntax dependency tree of the sentence. That word
we want only to deal with syntactic words in a sentence, ancestor

head words in the child’s word view. In detail, Let input sequence
X = {x1, x2, ..., xn}, in which n denotes the token sequence length,
first we construct a dependency tree with syntactic parser, and for
each word xi, we select the ancestor node set Ri from the depen-
dency tree. Then, we learn a sequence of DOI mask D, which is
organized as a matrix (n × n), and the elements in each row repre-
sent the row-index word dependency mask. If token xi is the token
sj’s ancestor node, D[i, j]=1, 0 otherwise.

Then, to take advantage of the syntax structure information, we
propose a mask-self-attention, seen as an extension of self-attention.
Formally, the mask-self-attention is,

headi = Attention(hWQ
i , hW

K
i , hW

V
i )

Attention(Q,K, V ) = softmax(
D · (QKT )√

d
)V

(2)

where we project the representation E directly from the last layer of
the BERT encoder into the distinct query Q, key K and value V , re-
spectively.WQ

i ,W
K
i , HW

V
i are the weights to learn. d is the hidden

size of headi for scaling attention weights. Each layer is constructed
by multi-head self-attention:

MultiHead(H) = f(Concat(head1, ..., headI)) (3)

where MultiHead(·) denotes multi-head attention. H is the hidden
representation from last layer. f(·) is a non-linear transformation,
and the function Concat(·, ·) is to concatenate all the headi. Finally,
the output H ′ denoted as H ′ = {h1, h2, ..., hn}.

2.1.3 Bi-attention Aggregation Layer

Finally, we integrate two contextual vectors for answer prediction: i)
a syntax-enhanced context vector from proposed syntax-enhanced at-
tention layer; ii) a vanilla BERT context vector directly from the last
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layer of the BERT encoder. The final model output H̄ is computed
by:

H̃ = Self−attention(H)

H̃ = Bi−attention(H̃,H ′)
(4)

2.2 GRU Question Decoder
The decoder model takes the context-rich embedding that is previ-
ously computed. Following pointer-generator network [23], our de-
coding framework is a Bi-LSTM, in detail, we adopt an attention-
based [15] Bi-LSTM decoder with coverage mechanisms [6, 27] and
copy mechanism [7, 26, 28]. At each decoding time-step t, a mecha-
nism of attention learns to attend to the most relevant input sequence
words, and computes the context representation h∗t that is based on
the attention memory, the current coverage vector ct, and the current
decoding state st. Besides, the probability of generation pgen is cal-
culated from the decoder input yt−1, the decoder state st, and the
context representation h∗t . We then use pgen as a switch to choose
between copying a word from the input or generating a word from
the vocabulary. We keep a decoder vocabulary that is an extended
vocabulary dynamically, and is an union of all words that appear in
a batch of source passages ore answers, and the usual vocabulary.
Also, to encourage the decoder to make use of the diverse compo-
nents of the input text, we finally use a coverage vector ct, the sum
of attention distributions over prior decoder time steps. Meantime,
a coverage loss is measured to penalize attending to the same loca-
tions of the input text repeatedly. In addition, to allow the decoder
to use the different input components, we also employ the coverage
mechanism, which acknowledges other contextually important (and
possibly rare) passage words that the answer needs to conform to,
while not repeating words redundantly. At each step, we keep a cov-
erage vector ct that is the sum of the attention distributions during
prior decoder steps. Also, a coverage loss is calculated to penalize
attending to the same locations repeatedly.

2.3 Hybrid Evaluator
To solve the loss limit using cross-entropy that is based sequence
training, existing QG models [6, 11, 26] often optimize evaluation
metrics with reinforcement directly. However, they fail to generate
syntactically and semantically valid text. To address potential prob-
lems, we propose a hybrid evaluator that has a mixed objective,
which combines both RL losses and cross-entropy to ensure the gen-
eration of syntactically coherent and semantically meaningful text.

For the reinforcement learning part, inspired by [25, 32], we intro-
duce a pretrained question paraphrasing classification approach, to
evaluate to paraphrasing probability and provide accurate rewards.
Because paraphrasing is about semantic similarity rather than super-
ficial phrase matching or word matching, it more fairly treats ques-
tion paraphrases. Specifically, first we train a question paraphrasing
model using Quora Question Pairs dataset5. We then adopt it as an
environment and during training the question generation model will
interact, and finally we take the paraphrasing probability of question
generated and the ground-truth as a reward. To apply this reward,
we use the RL algorithm learning a generation policy that is defined
by the question generation model parameters. Specifically, we use
the self-critical sequence training (SCST) algorithm [22] for opti-
mizing evaluation metrics directly. During training, at each iteration,

5 https://tinyurl.com/y2y8u5ed

the model will generate 2 output sequences: the baseline output Q̂
that is obtained by greedy search and the sampled output Qs that
is produced by sampling. We define r(Q) as a reward of the out-
put Q, which is calculated with certain reward metrics in accordance
with the corresponding ground-truth sequenceQ∗. Formally, the loss
function is defined as

∇θLRL = −(r(Qs)− r(Q̂))∇θlogPθ(Qs) (5)

We train the model in 2 stages. During training phase, we first use a
regular cross-entropy loss training model, defined as

LML =
∑
t

(−logP (y∗t |X, y∗<t)) + λcLcov (6)

where y∗t is the word for the t-th position element of the output se-
quence of the ground-truth. λc is the coverage hyper-parameter and
the coverage loss Lcov is defined as:

Lcov =
∑
t

(min(ati, wcv
t
i)) (7)

where ati is the word for the t-th position element of the attention
on input sequence at the time step t. For words already predicted
we maintain a word coverage vector wcv as the sum of all attention
distributions which range over time-step from 0 to t-1, and at the
time-step t, wcvt =

∑t−1
t′=0 a

t′ . We use scheduled teacher forcing
[1] to alleviate the exposure bias problem. Next, we fine-tune the
model through optimizing a hybrid objective that combines both RL
loss and cross-entropy loss. Formally, loss function defined as,

L = γLRL + (1− γ)LML (8)

where ratio factor γ controls the trade-off between RL loss and
cross-entropy loss. In text summarization and machine translation
[18, 30, 32], a similar mixed objective function approach has also
been adopted. We adopt beam search to generate final predictions
during prediction.

3 EXPERIMENTS
3.1 Dataset
We use two question answering datasets, SQuAD6 [20] and MS Mar-
co7 [17] as the target datasets. These constitute a comprehensive set
of data used to evaluate QG task.

SQuAD is a large-scale question answering dataset that contain-
s 107,785 questions with 536 passages, which is posed by human
crowd-workers on a variety of Wikipedia articles, in which answer
span is in a Wikipedia passage. We construct a dataset for our QG
task based on the dev dataset and training dataset of the accessible
SQuAD.

• Split1: We manintain the SQuAD training set and split the SQuAD
development set into our development and test set with the ratio
1:1, randomly. Split1 is based on sentence level, which is similar
to [25, 33];

• Split2: We split the SQuAD training set into development set and
training set with the ratio of 1:9, randomly. Also, we use the
SQuAD development set as the test set. Split2 is based on arti-
cle level, which is similar to [4, 34];

6 https://rajpurkar.github.io/SQuAD-explorer/
7 http://www.msmarco.org/leaders.aspx
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Table 1. Automatic evaluation results on the SQuAD.

Split1 Split2
Bleu1 Bleu2 Bleu3 Blue4 Meteor Rouge-L Bleu1 Bleu2 Bleu3 Blue4 Meteor Rouge-L

NQG++ [34] 42.36 26.33 18.46 13.51 18.18 41.60 - - - - - -
seq2seq+GAN[31] 44.42 26.03 17.60 13.36 17.70 40.42 - - - - - -
MPQG [24] - - - 13.91 - - - - - 13.98 18.77 42.72
ASs2s [8] - - - 16.17 - - - - - 16.20 19.92 43.96
L2A [4] - - - - - - 43.09 25.96 17.50 12.28 16.62 39.75
CGC-QG [12] - - - - - - 40.45 23.52 15.68 11.06 17.43 43.16
s2sa-amg[33] 45.69 30.25 22.16 16.85 20.62 44.99 45.07 29.58 21.60 16.38 20.25 44.48
G2S [2] - - - 17.94 21.76 46.02 - - - 18.30 - -
SiriQG (ours) 47.68 32.51 24.39 19.30 22.91 47.52 48.10 32.8 24.81 20.04 23.42 47.67

Notes: Results in question generation on SQuAD split1 and split2, respectively.

MS MARCO is the human generated reading comprehension
dataset that is from a million search queries from Bing. In MS MAR-
CO, each query is linked to passages from several documents form
Bing, and the dataset mentions from these paragraphs a list of the
basic truth answers. Similar to [33], we further extract a subset of
MS MARCO in which the answers are sub spans of passages, and
divide the original training set randomly into sets of training set and
development set.

We run Stanford CoreNLP [16] for pre-processing. We first lower-
case all the data, and extract a sentence that contains an answer
phrase, and we use it as the input passage. If the answer spans several
phrases, we extract those phrases and use them as the input passage
to concatenate. Stanford CoreNLP is used for extracting sentences
from the questions. If CoreNLP extracts multiple words as question
sentences, we use the entire word as the question expression. Table 2
shows the details of the both datasets that are used for training, de-
velopment, and test, respectively.

Table 2. Statistics of the evaluation datasets.

SQuAD-1 SQuAD-2 MS MARCO
# Train 87,488 77,739 51,000
# Dev 5,267 9,749 6,000
# Test 5,272 10,540 7,000
# passages 126 127 60
# questions 11 11 6
# answers 3 3 15

Notes: The statistics of both datasets used in our experiments. The
# passages, # questions and # answers denote the size of the average
length of passages, questions and answers of corresponding dataset
respectively.

3.2 Baseline Models
As benchmarks, we compare proposed SiriQG against several previ-
ous models on QG task. The baseline methods in our experiments
include: NQG++, Seq2seq+GAN, QG+QA, MPQG, ASs2s, L2A,
CGC-QG, s2sa-amg, and G2S.

• NQG++ [34] is an Seq2Seq model based on attention, which is
equipped with a feature-rich encoder and copy mechanism to en-
code answer position, NER, and POS information;

• Seq2seq+GAN: [31] proposed a generation model based on
GAN, which can better learn representations, and capture the di-
versity with the observed variables;

• QG+QA [5] is a Seq2Seq model, combining supervised learning
and reinforcement learning for QG task.

• MPQG [24] is a Seq2Seq model, matching the answer with the
document for QA task.

• ASs2s is an answer-separated Seq2Seq model that is proposed by
[8], which separately treats the passage and the answer.

• L2A [4] is a seminal question generation model.
• CGC-QG [12] is a QG model using multi-task learning frame-

work, learning the accurate boundaries between generation and
copying.

• s2sa-amg [33] proposed a Seq2Seq model containing a maxout
pointer decoder and a self attention encoder to encode the context
of question.

• G2S [2] proposed a novel graph-to-sequence (Graph2Seq) model
based on reinforcement learning (RL) for QG task.

3.3 Evaluation Metrics
Following most of previous QG works, we use six automatic metrics
as our evaluation metrics: Bleu1, Bleu2, Bleu3, Bleu4, METEOR,
and ROUGE-L. In order to have an empirical comparison, we also
use Bleu, METEOR and ROUGE to evaluate the QG models:

• Bleu: It is used to evaluate the average n-gram accuracy on a series
of reference sentences;

• METEOR: It is a recall-oriented metric to measure the similarity
of references and generations;

• ROUGE-L: It measures the longest common sub-sequence recall
form the sentences generated compared with references;

On these metrics, a question that is syntactically and structurally
similar to the human level score high, which indicates relevance to
the passage and answer. We also perform human evaluation between
benchmarks and our SiriQG on SQuAD split-2, besides automated
evaluation.

3.4 Implementation Details
For the syntactic parser, we adopt the biaffine attention dependency
parser from [3], and use Penn Treebank to annotate our task datasets.
By joint learning of constituent parsing [9], we re-train the dependen-
cy parser using BERT as sole input, achieving high accuracy on PTB.
For model implementation, in order to avoid extra influence and fo-
cus on the intrinsic performance of proposed SiriQA, we follow the
same fine tuning procedure as BERT. At decoding stage, we utilized
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beam search (beam size: 10), until each stack beam generation the
<EOS> token.

3.5 Experimental Results
We show and compare results with evaluation metrics in Table 1 and
Table 3. As can be seen, our SiriQG model outperforms the two base-
line datasets, SQuAD and MS MARCO, on all evaluation metrics,
and yields the state-of-the-art overall accuracy.

SQuAD Results. We report the overall performance of proposed
SiriQG along with the benchmark approaches on SQuAD split1 and
split2, respectively. The detailed results on GLUE are depicted in
Table 1. As illustrated in Table 1, our SiriQG achieves much better
results and outperforms previous best score on all of the 12 automatic
evaluation metrics, all achieving new state-of-the-art (SOTA) results,
in details, on Split1, improving from 17.94 to 19.30 in Bleu-4, 21.76
to 22.91 in Meteor, 46.02 to 47.52 in Rouge-L; on Split2, improving
from 18.30 to 20.04 in Bleu-4, 20.25 to 23.42 in Meteor, 44.48 to
47.67 in Rouge-L.

MS MARCO Results. Table 3 shows the performances on three e-
valuation metrics, Blue4, METEOR and ROUGE-L, on MS MACRO
dataset. From the data in Table 3, it is apparent that proposed SiriQG
consistently significantly outperforms prior works on all of three e-
valuation metrics. Compared to the best previous reported result, we
obtain an absolute improvement of 5.08 in Bleu4, 4.73 in Meteor and
4.92 in Rouge-L, and achieve the SOTA over all 3 accuracy. To better
comparison, we also re-implemented MPQG model based on its re-
leased source code. As expected, SiriQG are much better than our re-
implemented MPQG, which is a Seq2Seq model, just matching the
answer with the passage for QA task. The experimental results indi-
cate that our SiriQG is more consistently effective, and demonstrate
that our proposed semantics-reinforced method is highly effective.

Table 3. Automatic evaluation results on the MS MARCO.

Blue4 Meteor Rouge-L
L2A [4] 10.46 - -
QG+QA [5] 11.46 - -
s2sa-amg [33] 17.24 - -
MPQG† 15.03 20.10 43.98
SiriQG (ours) 20.11 24.83 48.90

Notes: † indicates our reimplemented model using released source
code. We reimplemented the MPQG model in our experiments on
MS MARCO.

4 ABLATION STUDY AND ANALYSES
In this section, we perform ablation experiments on the SQuAD
dataset to investigate key features of our proposed SiriQG. We fur-
ther perform the comprehensive ablation analyses to systematical-
ly assess the impact of different model components (e.g., syntax-
enhanced attention, evaluator) for our proposed full SiriQG model.
Specifically, in ablation, we examine how model performance is af-
fected when : i) we remove the syntax-enhanced attention mechanis-
m in the encoder, just passing the vanilla self-attention representation
to the decoder; ii) we use just one loss evaluator for optimizing e-
valuation. Ablation experimental results confirmed that components
make the contribution to the overall performance in our proposed
model. As shown in Table 4, without using syntax-enhanced attention
mechanism, the performance drops significantly, suffering a more
than drop of 5.8 points, showing syntax-attention effectiveness. By

integrating explicit syntactic constraints into attention mechanism,
our SiriQG model can better model both answer information and pas-
sage information, which helps effectively incorporates answer infor-
mation into the passage information, and makes it better able to fuse
different levels of granularity. Besides, we can see the advantages of
using hybrid evaluator. The Bleu4 obviously drops from 20.04% to
17.99% when cross-entropy loss evaluator, to 18.31% when reduc-
ing question paraphrasing RL loss evaluator. Experimental results
showed the benefits of using hybrid loss evaluator. The hybrid eval-
uator has a considerable impact on the performance.

Table 4. Ablation study on the SQuAD split-2 test set.

Bleu-4
SiriQG 20.04
SiriQG w/o syntax-enhanced attention 14.18 (-5.86)
SiriQG w/o question paraphrasing evaluator 17.99 (-2.05)
SiriQG w/o cross-entropy loss evaluator 18.31 (-1.63)

5 HUMAN EVALUATION

In addition, we perform a human evaluation to measure the quality of
the questions produced by proposed SiriQG. We performed a small
human assessment on the SQuAD split-1 training data, 80 random
samples per model. We then asked 8 English speakers to evaluate
the quality of generated questions from QG models. In each sample,
given a triple that contains a Passage, an Answer and an output gener-
ated by baseline models. By answering the following three questions,
they were asked to rate the output of the model:

1) Is the generated question correct syntactically?
2) Is the generated question correct semantically?
3) Is the question generated relevant to the source passage?

The evaluation question obtained is evaluated on a 1-5 scale by all
eight human evaluators, where a higher score is a better quality (i.e.,
1 for Bad, 2 for Marginal, 3 for Acceptable, 4 for Better, 5 for Excel-
lence). We report the average from all evaluators as the final score.

First, following [4], we use Naturalness and Difficulty as our hu-
man evaluation metrics: i) Naturalness, measuring the grammaticali-
ty and fluency; ii) Difficulty, indicating the reasoning and the syntac-
tic divergence that are needed to answer the question. As shown in
Table 5, we compare proposed SiriQG to the baseline L2A, and find
that SiriQG significantly outperforms L2A [4].

Table 5. Human evaluation results on Naturalness and Difficulty
evaluation metrics (5 for the best).

Naturalness Difficulty
Human Performance 4.00 2.87
L2A [4] 3.36 3.03
MPQG † 3.42 3.08
SiriQG (ours) 3.71 3.36

Notes: † indicates our reimplemented model using its released
source code. we reimplemented the MPQG in our experiments on
SQuAD split1. The majority of previous models, except for LTA
[4] and our reimplemented MPQG, does not perform human eval-
uations, and we do not have the code to replicate outputs for most
concurrent methods.

Furthermore, we conduct a further human comparison to rate the
generated questions quality, evaluation metrics: relevance, semantics
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and syntax. As shown in Table 6, we can see that SiriQG consistent-
ly outperforms the strong benchmark MPQG. More remarkably, our
proposal is obtained great results even compared to the ground-truth.

Table 6. Human evaluation results on Syntax, Semantics and
Relevance evaluation metrics (5 for the best).

Syn. Sem. Rel.
Human Performance 4.78 4.80 4.34
MPQG † 4.29 4.15 3.32
SiriQG (ours) 4.75 4.71 4.20

Notes: The Syn., Sem. and Rel. denote syntactically correct, se-
mantically correct and relevant score, respectively. † indicates our
reimplemented model using its released source code. we reimple-
mented the MPQG in our experiments on SQuAD split1.

6 CASE STUDY

In Table 7, we also show an example that illustrates the quality of the
text generated by different ablated systems. As shown in Table 7,
integrating explicit syntactic constraints into attention mechanism
helps SiriQG to better model both answer information and passage
information, and thus makes it better able to fuse different levels of
granularity and makes the generated a question that is syntactically
and structurally similar to the human level.

Table 7. An example of generated question and ground-truth question in
SQuAD.

Passage:
... The appearance of the Bible in French language was important to the
important to the spread of the protestant movement and development
of the reformed church in France. The country had a long history of
struggles with the papacy by the time the protestant reformation finally
arrived. Around 1294, a French version of the scriptures was prepared
by the Roman Catholic priest, guards de Moulin...
Gold:
When did the first French language Bible appear?
SiriQG (full):
When was the appearance of the Bible in French language?
SiriQG w/o syntax-enhanced attention:
When did a French version of the scriptures was prepared ?

Notes: Answers are underlined. The cyan sentence indicates additional
background that is used by a human for generating the Question. The o-
live sentences contain answers.

7 RELATED WORK

Neural network-based models represent the SOTA in question gen-
eration (QG) from a given document. Inspired by neural MT, [5]
suggested a Seq2Seq model, combining supervised learning and re-
inforcement learning for QG task. [31] proposed to add linguistic
features to each word and to encode the most appropriate answer
to the document when generating questions. Given in the training
data, [8] encoded ground-truth answers, using the copy mechanis-
m to employ matching context to capture the interactions between
its context within the document and the answer. [10] proposed a
cross lingual training method that generating questions from text in
low resource languages automatically. [2] proposed a novel graph-to-
sequence (Graph2Seq) model based on reinforcement learning (RL)

for QG task. [12] is a QG model using multi-task learning frame-
work, learning the accurate boundaries between generation and copy-
ing. [34] is a Seq2Seq model based on attention, which is equipped
with a feature-rich encoder and copy mechanism to encode answer
position, NER, and POS information;

Deep Reinforcement Learning, very recently, has successfully
been applied to NLP tasks, such as Text Summarization, [19, 32].
On the other hand, question generation also involves deciding query
type, i.e. when, what, etc., being selective on which keywords to copy
from the passage into the question text, and leave remaining key-
words from the answer. It is required to develop a specific generative
probabilistic model. [12] is a QG model using multi-task learning
framework, learning the accurate boundaries between generation and
copying. [13, 33] proposed a Seq2Seq model containing a maxout
pointer decoder and a self-attention encoder to encode the context of
question. In comparison, we create a semantics-reinforced network
model to predict the main text for generating questions, which helps
to better understand the internal structure of Answer and Passage.

8 CONCLUSION
We proposed a novel RL based semantics-reinforced networks to ad-
dress the challenging Question Generation (QG) task. Our proposed
method, named SiriQG, in which the answer information is utilized
by an effective hierarchical fusion attention, which can better model
of both answer information and passage information by integrating
explicit syntactic constraints into attention mechanism, and makes
it better to fuse different levels of granularity. Also we introduce a
hybrid evaluator with a mixed objective that combines both RL loss
and cross-entropy loss to ensure the generation of semantically and
syntactically question text. Future studies on QG will focus on the
following aspects: i) We further consider automatic selection of ap-
propriate interrogative phrases such that the answerers can reach the
target answer easily; ii) To reduce that risk, we will use textual en-
tailment to verify whether the generated questions are consistent with
the source passages.
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