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Abstract. Today text classification models have been widely used.
However, these classifiers are found to be easily fooled by adversar-
ial examples. Fortunately, standard attacking methods generate ad-
versarial texts in a pair-wise way, that is, an adversarial text can only
be created from a real-world text by replacing a few words. In many
applications, these texts are limited in numbers, therefore their cor-
responding adversarial examples are often not diverse enough and
sometimes hard to read, thus can be easily detected by humans and
cannot create chaos at a large scale. In this paper, we propose an end
to end solution to efficiently generate adversarial texts from scratch
using generative models, which are not restricted to perturbing the
given texts. We call it unrestricted adversarial text generation. Specif-
ically, we train a conditional variational autoencoder (VAE) with an
additional adversarial loss to guide the generation of adversarial ex-
amples. Moreover, to improve the validity of adversarial texts, we
utilize discrimators and the training framework of generative adver-
sarial networks (GANs) to make adversarial texts consistent with
real data. Experimental results on sentiment analysis demonstrate the
scalability and efficiency of our method. It can attack text classifica-
tion models with a higher success rate than existing methods, and
provide acceptable quality for humans in the meantime.

1 Introduction

Today machine learning classifiers have been widely used to pro-
vide key services such as information filtering, sentiment analysis.
However, recently researchers have found that these ML classifiers,
even deep learning classifiers are vulnerable to adversarial attacks.
They demonstrate that image classifier [10] and now even text clas-
sifier [26] can be fooled easily by adversarial examples that are de-
liberately crafted by attacking algorithms. Their algorithms gener-
ate adversarial examples in a pair-wise way. That is, given one input
x ∈ X , they aim to generate one corresponding adversarial exam-
ple x′ ∈ X by adding small imperceptible perturbations to x. The
adversarial examples must maintain the semantics of the original in-
puts, that is, x′ must be still classified as the same class as x by hu-
mans. On the other hand, adversarial training is shown to be a useful
defense method to resist adversarial examples [31, 10]. Trained on a
mixture of adversarial and clean examples, classifiers can be resistant
to adversarial examples.

In the area of natural language processing (NLP), existing meth-
ods are pair-wise, thus heavily depend on input data x. If attackers

1 Ant Financial Services Group, Emails: {yankun.ryk, jianbin.ljb,
jun.zhoujun, shuang.yang, yuan.qi}@anfin.com

2 Zhejiang University, Email: siliang@zju.edu.cn
3 University of Southern California, Email: xiangren@usc.edu

* Corresponding author.

human: negative. ML model: positive

S1

S2

…

you’ll trudge out of the theater a movie 
that is a matter of a dangerous form

just plain silly and cloying cinema

…

human: negative. ML model: positive

S1
not gives you considered
unnerving feeling, no great actors 
and/or expensive production

human: negative. ML model: negative

still gives you an eerie feeling, no
great actors or expensive production

human: negative. 

no need for real-world texts

Pair-wise 
replacement
attack methods

(a)

Our attack 
method(b)

Original
Inputs:

Adversarial
Texts:

Figure 1. An illustration of adversarial text generation. (a) Given one nega-
tive text which is also classified as negative by a ML model, traditional meth-
ods replace a few words (yellow background) in the original text to get one
paired adversarial text, which is still negative for humans, but the model pre-
diction changes to positive. (b) Our unrestricted method does not need in-
put texts. We only assign a ground-truth class - negative, then our method
can generate large-scale adversarial texts. which are negative for humans, but
classified as positive by the ML model.

want to generate adversarial texts which should be classified as a
chosen class with pair-wise methods, they must first collect texts la-
beled as the chosen class, then transform these labeled texts to the
corresponding adversarial examples by replacing a few words. As
the amount of labeled data is always small, the number of generated
adversarial examples is limited. These adversarial examples are of-
ten not diverse enough and sometimes hard to read, thus can be easily
detected by humans. Moreover, in practice, if attackers aim to attack
a public opinion monitoring system, they must collect a large number
of high-quality labeled samples to generate a vast amount of adver-
sarial examples, otherwise, they can hardly create an impact on the
targeted system. Therefore, pair-wise methods only demonstrate the
feasibility of the attack but cannot create chaos on a large scale.

In this paper, we propose an unrestricted end to end solution to ef-
ficiently generate adversarial texts, where adversarial examples can
be generated from scratch without real-world texts and are still mean-
ingful for humans. We argue that adversarial examples do not need
to be generated by perturbing existing inputs. For example, we can
generate a movie review that does not stem from any examples in
the dataset at hand. If the movie review is thought to be a positive
review by humans but classified as a negative review by the targeted
model, the movie review is also an adversarial example. Adversarial
examples generated in this way can break the limit of input number,
thus we can get large scale adversarial examples. On the other hand,
the proposed method can also be used to create more adversarial ex-
amples for defense. Trained with more adversarial examples often
means more robustness for these key services.

The proposed method leverages a conditional variational autoen-
coder (VAE) to be the generator which can generate texts of a desired
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class. To guide the generator to generate texts that mislead the tar-
geted model, we access the targeted model in a white-box setting and
use an adversarial loss to make the targeted model make a wrong pre-
diction. In order to make the generated texts consistent with human
cognition, we use discrimators and the training framework of gener-
ative adversarial networks (GANs) to make generated texts similar
as real data of the desired class. After the whole model is trained, we
can sample from the latent space of VAE and generate infinite ad-
versarial examples without accessing the targeted model. The model
can also transforms a given input to an adversarial one.

We evaluate the performance of our attack method on a sentiment
analysis task. Experiments show the scalability of generation. The
adversarial examples generated from scratch achieve a high attack
success rate and have acceptable quality. As the model can gener-
ate texts only with feed-forwards in parallel, the generation speed is
quite fast compared with other methods. Additional ablation stud-
ies verify the effectiveness of discrimators, and data augmentation
experiments demonstrate that our method can generate large-scale
adversarial examples with higher quality than other methods. When
existing data at hand is limited, our method is superior over the pair-
wise generation.

In summary, the major contributions of this paper are as follows:

• Unlike the existing literature in text attacks, we aim to construct
adversarial examples not by transforming given texts. Instead, we
train a model to generate text adversarial examples from scratch.
In this way, adversarial examples are not restricted to existing in-
puts at hand but can be generated from scratch on a large-scale.

• We propose a novel method based on the vanilla conditional VAE.
To generate adversarial examples, we incorporate an adversarial
loss to guide the vanilla VAE’s generation process.

• We adopt one discrimator for each class of data. When training,
we train the discrimators and the conditional VAE in a min-max
game like GANs, which can make generated texts more consistent
with real data of the desired class.

• We conduct attack experiments on a sentiment analysis task. Ex-
perimental results show that our method is scalable and achieves a
higher attack success rate at a higher speed than recent baselines.
The quality of generated texts is also acceptable. Further ablation
studies and data augmentation experiments verify our intuitions
and demonstrate the superiority of scalable text adversarial exam-
ple generation.

2 Related Work

There has been extensive studies on adversarial machine leaning, es-
pecially on deep neural models [31, 10, 16, 28, 1]. Much work fo-
cuses on image classification tasks [31, 10, 5, 11, 33]. [31] solves the
attack problem as an optimization problem with a box-constrained L-
BFGS. [10] proposes the fast gradient sign method (FGSM), which
perturbs images with noise computed as the gradients of the inputs.

In NLP, perturbing texts is more difficult than images, because
words in sentences are discrete, on which we can not directly perform
gradient-based attacks like continuous image space. Most methods
adapt the pair-wise methods of image attacks to text attacks. They
perturb texts by replacing a few words in texts. [24, 9, 6] calculate
gradients with respect to the word vectors and perturb word embed-
ding vectors with gradients. They find the word vector nearest to
the perturbed vector. In this way, the perturbed vector can be map
to a discrete word to replace the original one. These methods are
gradient-based replacement methods.
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Figure 2. The architecture of the whole model. In the training phase, G gen-
erates an adversarial text x′ to reconstruct the original text x, and feed x′ toD
and f to make f predict differently on x and x′. After trained, the model can
generate large-scale adversarial texts based on sampled latent space vector z
and a chosen class c without original texts x.

Other attacks on texts can be summarized as gradient-free replace-
ment methods. They replace words in texts with typos or synonyms.
[16] proposes to edit words with tricks like insertion, deletion and
replacement. They choose appropriate words to replace by calcu-
lating the word frequency and the highest gradient magnitude. [15]
proposes five automatic word replacement methods, and use mag-
nitude of gradients of the word embedding vectors to choose the
most important words to replace. [26] is based on synonyms sub-
stitution strategy. Authors introduce a new word replacement order
determined by both the word saliency and the classification proba-
bility. However, these replacement methods still generate adversar-
ial texts in a pair-wise way, which restrict the adversarial texts to
the variants of given real-world texts. Besides, the substitute words
sometimes change text meanings. Thus existing adversarial text gen-
eration methods only demonstrate the feasibility of the attack but
cannot create chaos on a large scale.

In order to tackle the above problems, we propose an unrestricted
end to end solution to generate diverse adversarial texts on a large
scale with no need of given texts.

3 Methodology

In this section, we propose a novel method to generate adversarial
texts for the text classification model on a large scale. Though trained
with labeled data in a pair-wise way, after it is trained, our model
can generate an unlimited number of adversarial examples without
any input data. Moreover, like other traditional pair-wise generation
methods, our model can also transform a given text into an adversar-
ial one. Unlike the existing methods, our model generates adversarial
texts without querying the attacked model, thus the generation pro-
cedure is quite fast.

3.1 Overview

Figure 2 illustrates the overall architecture of our model. The model
has three components: a generator G, discrimators D, and a targeted
model f . G and D form a generative adversarial network (GAN).
When training, we feed an original input to the generator G, which
transforms x to an adversarial output x′. The procedure can be de-
fined as follows:

G(x) : x ∈ X → x′ (1)

G aims to generate x′ to reconstruct x. Then, we feed the gener-
ated x′ to the targeted model f , and f will classify x′ as a certain
class, which we hope is a wrong label. Thus we have the following
equation:

f(x′) = yt ∈ Y (2)
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Figure 3. The generator G. When training, we need input texts to train G
After G is trained, we only need to sample z from the latent space, and use
the decoder to generate adversarial texts unrestrictedly without original texts.

where yt 6= f(x) and Y is the label space of the targeted classifica-
tion model.

In order to keep x′ being classified as the same class as x by hu-
man, we add one discrimator for each class y ∈ Y . With the help
of the min-max training strategy of GAN framework, each class y’s
discrimator can make x′ close to the distribution of real class y data,
thus x′ is made to be compatible with human congnition.

We now proceed by introducing these components in further de-
tails.

3.2 Generator

In this subsection, we describe the generator G for text generation.
We use the variational autoencoder (VAE) [14, 27] as the generator.
The VAE is a generative model based on a regularized version of the
standard autoencoder. This model supposes the latent variable z is
sampled from a prior distribution.

As shown in Figure 2, the VAE is composed of the encoder
qθ(z|x) and the decoder pτ (x|z), where τ is the parameters of p
and θ is the parameters of q. qθ is a neural network. Its input is a text
x, its output is a latent code z. qθ encodes x into a latent represen-
tation space Z , which is a lower-dimensional space than the input
space. pτ is another neural network. Its input is the code z, it outputs
an adversarial text x′ to the probability distribution of the input data
x.

In our model, we adopt the gated recurrent unit (GRU) [7] as the
encoder and the decoder. As in Figure 3, The input x is a sentence
of words, we formulate the input for neural networks as follows: for
a word at the position i in a sentence, we first transform it into a
word vector vi by looking up a word embedding table. The word
embedding table is randomly initialized and is updated during the
model training. Then the word embedding vectors are fed into the
GRU encoder. In the i-th GRU cell, a hidden state hi is emitted.

We use hN to denote the last GRU cell’s hidden state, where N is
the length of the encoder input. In order to get latent code z, we feed
hN into two linear layers to get µ and σ respectively. Following the
Gaussian reparameterization trick [14], we sample a random sample
ε from a standard Gaussian (µ =

−→
0 , σ =

−→
1 ), and compute z as:

z = µ+ σ ◦ ε (3)

Computed in this way, z is guaranteed to be sampled from a Gaussian
distributionN (µ, σ2).

Then, we can decode z to generate an adversarial text x′. Before
feeding z to the decoder, we adopt a condition embedding ck to guide
the decoder to generate text x′ of a certain class yk, which can be
chosen arbitrarily. Suppose in a text classification task, there are |Y|
classes. Specifically, we randomly initialize a class embedding table
as a matrix C ∈ R|Y|×d and look up C to get the corresponding em-
bedding ck of class yk. Then, we feed [z, ck] into a linear layer to get

another vector representation. The vector encodes the information of
the input text and a desired class.

The decoder GRU uses this vector as the initial state to generate
the output text. Each GRU cell generates one word. The computation
process is similar to that of the GRU encoder, except the output layer
of each cell. The output Oi of the i-th GRU cell is computed as:

ui =Wh · hi (4)

Oi,k =
eui,wk∑|V|
j=1 e

ui,wj
(5)

where Wh ∈ Rdhi×|V| is the transformation weights, V is the word
vocabulary, wk ∈ V and ui,Oi ∈ R|V|. Oi,k is the probability of
the i-th GRU cell emitting the k-th word wk in the vocabulary.

In the training phase, the GRU cell chooses the word index with
the highest probability to emit:

wk = argmax
k

Oi,k (6)

When training, the loss function of the VAE is calculated as:

LV AE(θ, φ) =− Eqθ(z|x)(log pτ (x|z))
+ αKL(qθ(z|x)||p(z))

(7)

The first term is the reconstruction loss, or expected negative log-
likelihood. This term encourages the decoder to learn to reconstruct
the data. So the output text is made to be similar to the input text.
The second term is the Kullback-Leibler divergence between the la-
tent vector distribution qθ(z|x) and p(x). If the VAE were trained
with only the reconstruction objective, it would learn to encode its in-
puts deterministically by making the variances in q(z|x) vanishingly
small [25]. Instead, the VAE uses the second term to encourages the
model to keep its posterior distributions close to a prior p(z), which
is generally set as a standard Gaussian.

In the training phase, the input to the GRU decoder is the input
text, appended with a special<GO> token as the start word. We add
a special <EOS> token to the input text as the ground truth of the
output text. The <EOS> token represents the end of the sentence.
When training the GRU decoder to generate texts, the GRU decoder
tends to ignore the latent code z and only relies on the input to emit
output text. It actually degenerates into a language model. This situ-
ation is called KL-vanishing. To tackle the KL-vanishing problem in
training GRU decoder, we adopt the KL-annealing mechanism [2].
KL-annealing mechanism gradually increase the KL weight α from
0 to 1. This can be thought of as annealing from a vanilla autoencoder
to a VAE. Also, we randomly drop the input words into the decoder
with a fixed keep rate k ∈ [0, 1], to make the decoder depend on the
latent code z to generate output text.

Notably, if we randomly sample z from a standard Gaussian, the
decoder can also generate output text based on z. The difference is
that there is no input to the GRU decoder, but we can send the word
generated by the i-th GRU cell to the (i + 1)-th GRU cell as the
(i + 1)-th input word. Specifically, in the inference phase, we use
beam-search to generate words. The initial input word to the first
GRU cell is the <GO> token. When the decoder emits the <EOS>
token, the decoder stops generating new words, and the generation
of one complete sentence is finished.

In this way, after G is trained, theoretically, we can sample infinite
z from the latent space and generate infinite output texts based on
these z. This is part of the superiority of our method.
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Algorithm 1 Text Adversarial Examples Generation
Input: Training data of different classes X0, ..., X|Y|−1

Output: Text Adversarial Examples

1: Train a VAE by minimizing LV AE on X0, ..., X|Y|−1 with KL-
annealing mechanism and word drop

2: Initialize G with the pretrained VAE
3: Initialize the targeted model with a pretrained TextCNN
4: Freeze the weights of the targeted model
5: repeat
6: for yk = y0, y1, ..., y|Y|−1 do
7: sample a batch of n texts {xi}ni=0 of class yk from Xk

8: G generates {x′}ni=0 with condition ck

9: Compute Lkdisc = 1
n

n∑
i=1

logDk(x) +

1
n

n∑
i=1

log(1−Dk(x′))

10: end for
11: Update weights of D0, D1, ..., D|Y|−1 by minimizing

−
∑|Y|−1
k=1 L

k
disc

12: Update weights of G by minimizing Ljoint
13: until convergence
14: if With inputs for the encoder then
15: Encode inputs and decode the corresponding adversarial

texts
16: else
17: Randomly sample z ∈ N (0, 1) and choose a class yk ∈ Y
18: The decoder takes [z, ck] and generates the adversarial

text from scratch

3.3 Targeted Model

Since the TextCNN model has good performances and is quite fast,
it is one of the most widely used methods for text classification task
in industrial applications [34]. As we aim to attack models used in
practice, we take the TextCNN model [13] as our targeted model.

Suppose we set the condition of the VAE to be yk, the decoder
generates the output text x′, then we feed the text into the targeted
model, and the targeted model will predict a probability Ptarget(yi)
for each candidate class yi. We conduct targeted attack and aim to
cheat the targeted model to classify x′ as class yt (yt 6= yk), we can
get the following adversarial loss function:

Ladv = −Epτ (x|z)(logPtarget(yt)) (8)

This is a cross entropy loss that maximize the probability of class yt.
Recall that words in the adversarial text x′ are computed in Equa-

tion 6, in which Function argmax is not derivative. So we can not
directly feed the word index computed in Equation 6 into the targeted
model. In this paper, we utilize the Gumbel-Softmax [12] to make
continuous value approximate discrete word index. The embedding
matrix W fed to TextCNN is calculated as:

Õi,k =
exp(log((ui,wk ) + gk)/t)∑|V|
j=1 exp(log((ui,wj ) + gk)/t)

(9)

Wi = Õi · E (10)

where E ∈ R|V |×dw is the whole vocabulary embedding matrix, ui
is from Equation 4, gk is drawn fromGumbel(0, 1) distribution [12]
and t is the temperature.

3.4 Discrimator Model
Until this point, ideally, we suppose the generated x′ should have
many same words as x of class yk (thus be classified as yk by hu-
mans) and be classified as class yt by the targeted model. But this
assumption is not rigorous. Most of the time, x′ is not classified as yk
by humans. In natural language texts, even a single word change may
change the whole meaning of a sentence. A valid adversarial exam-
ple must be imperceptible to humans. That is, humans must classify
x′ as class yk.

Suppose Xk is the distribution of real data of class yk and Xk′ is
the distribution of generated adversarial data transformed from x ∈
X . We utilize the idea of GAN framework to make x′ similar to data
from Xk. Thus x′ will be classified as yk by humans and classified
as yt at the same time.

Specifically, we adopt one discrimator Dk for each class yk ∈ Y .
Dk aims to distinguish the data distribution of real labeled data x of
class yk and adversarial data x′ generated by G with desired class yk:

Lkdisc = Ex∼Xk [log(Dk(x))] + Ex′∼Xk′ [log(1−Dk(x′))] (11)

The overall training objective is a min-max game played between
the generator G and the discrimators L0

disc, L1
disc, ..., L|Y|−1

disc , where
|Y| is the total number of classes:

min
G

max
Dk
Lkdisc (12)

Dk tries to distinguish Xk and Xk′, while G tries to fool Dk to
make x′ ∈ Xk′ be classified as real data byDk. Trained in this adver-
sarial way, the generated adversarial text distribution Xk′ is drawn
close to distributionXk, which is of class yk. Thus x′ is mostly likely
to be similar to data from Xk and is classfied as yk by human as a
result.

We implement the discrimators with multi-layer perceptions
(MLPs). Because argmax function is not derivable, similar to Equa-
tion 9 and 10 in Section 3.3, we first use Gumbel-Softmax to trans-
form the decoder output ui from Equation 4 into a fixed-sized matrix
V = [w1, w2, . . . , wm]T . Then, Dk calculate the probability of a
text being true data of class yk as:

Dk(x) = MLP(V ) (13)

3.5 Model Training
Combining Equations 7, 8, 12, we obtain the joint loss function for
model training:

Ljoint = LV AE + φLadv +
|Y|−1∑
k=1

Lkdisc (14)

We first train the VAE and the targeted model f with training data.
Then we freeze weights of the targeted model and initialize the G’s
weights with the pretrained VAE’s weights. At last, the generator
G and all the discrimators L0

disc, L1
disc, ..., L|Y|−1

disc are trained in a
min-max game with loss Ljoint. The whole training process is sum-
marized in Algorithm 1.

4 Experiments
We report the performances of our method on attacking TextCNN on
sentiment analysis task, which is an important text classification task.
Sentiment analysis is widely applied to helping a business understand
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the social sentiment of their products or services by monitoring on-
line user reviews and comments [23, 4, 21]. In several experiments,
we evaluate the quality of the text adversarial examples for sentiment
analysis generated by the proposed method.

Experiments are conducted from two aspects. Specifically, we first
follow the popular settings and evaluate our model’s performances
of transforming an existing input text into an adversarial one. We
observe that our method has higher attack success rate, generates flu-
ent texts and is efficient. Besides, we also evaluate our method on
generating adversarial texts from scratch unrestrictedly. Experimen-
tal results show that we can generate large-scale diverse examples.
The generated adversarial texts are mostly valid, and can be utilized
to substantially improve the robustness of text classification models.

We further report ablation studies, which verifies the effectiveness
of the discrimators. Defense experiment results demonstrate that gen-
erating large-scale can help to make model more robust.

4.1 Experiment Setup and Details

Experiments are conducted on two popular public benchmark
datasets. They are both widely used in sentiment analysis [32, 19, 8]
and adversarial example generation [15, 29, 30].

Rotten Tomatoes Movie Reviews (RT) [22]. This dataset consists
of 5, 331 positive and 5, 331 negative processed movie reviews. We
divide 80% of the dataset as the training set, 10% as the development
set and 10% as the test set.

IMDB [17]. This dataset contains 50,000 movie reviews from on-
line movie websites. It consists of positive and negative paragraphs.
25,000 samples are for training and 25,000 are for testing. We held
out 20% of the training set as a validation set as [15].

4.2 Comparing With Pair-wise Methods

In most of the existing work [26, 18, 1], text adversarial examples
are generated through a pair-wise way. That is, first we should take a
text example, and then transform it into an adversarial instance.

To compare with the current methods fairly, we limit our method to
pair-wise generation. In this experiment, we set φ = 9. Specifically,
we first feed an input text into the GRU encoder, and set the condition
ck as the ground-truth class of the text. After that, the decoder can
decode [z, ck] to get the adversarial output text.

We choose four representative methods as baselines:

• Random: Select 10% words randomly and modify them.
• Fast Gradient Sign Method (FGSM) [10]: First, perturbation is

computed as εsign(5xJ), where J is the loss function and x is
the word vectors. Then, search in the word embedding table to
find the nearest word vector to the perturbed word vector. FGSM
is the fastest among gradient-based replacement methods.

• DeepFool [20]: This is also a gradient-based replacement method.
It aims to find out the best direction, towards which it takes the
shortest distance to cross the decision boundary. The perturbation
is also applied to the word vectors. After that, nearest neighbor
search is used to generate adversarial texts.

• TextBugger [15]: TextBugger is a gradient-free replacement
method. It proposes strategies such as changing the word’s
spelling and replacing a word with its synonym, to change a word
slightly to create adversarial texts. Gradients are only computed to
find the most important words to change.

Attack Success Rate. Following the existing literature [10, 20, 15],
we evaluate the attack success rate of our method and four baseline
methods.

Table 1. Attack success rate of transforming given texts in a pair-wise way.

Method RT IMDB
Random 1.5% 1.3%
FGSM+NNS 25.7% 36.2%
DeepFool+NNS 28.5% 23.9%
TextBugger 85.1% 90.5%
Ours (φ = 5) 87.1% 92.8%

We summarize the performances of of our method and all base-
lines in Table 1. From Table 1, we can observe that randomly chang-
ing 10% words is not enough to fool the classifier. This implies the
difficulty of attack. TextBugger and our method both achieve quite
high attack success rate. While our method performs even better than
TextBugger, which is the state-of-the-art method.

We show some adversarial examples generated by our method and
TextBugger to demonstrate the differences in Figure 4.

We can observe that TextBugger mainly changes the spelling of
words. The generated text becomes not fluent and easy to be detected
by grammar checking systems. Also, though humans may guess the
original meanings, the changed words are treated as out of vocabu-
lary words by models. For example, TextBugger changes the spelling
of ‘awful’, ‘cliches’ and ‘foolish’ in Figure 4. These words are im-
portant negative sentiment words for a negative sentence. It is natural
that changing these words to unknown words can change the predic-
tion of models. Unlike TextBugger, our method generates meaningful
and fluent contents. For example, in the first example of Figure 4, we
replace ‘read the novel’ with ‘love the book’, the substitution is still
fluent and make sense to both humans and models.
Generation Speed. It takes about one hour and about 3 hours to
train our model on RT dataset and IMDB dataset respectively. We
also evaluate the time cost of generating one adversarial example.
We take the FGSM method as the representative of gradient-based
methods, as FGSM is the fastest among them. We measure the time
cost of generating 1, 000 adversarial examples and calculate the av-
erage time of generating one. Results are shown in Table 2.

Table 2. Time cost of generating one adversarial text.

Method FGSM+NNS TextBugger Ours (φ = 5)

Time 0.7s 0.05s 0.014s

We can observe that our method is much faster than others. That
is mainly because our generative model is trained beforehand. After
the model is trained, the generation of one batch just requires one
feed-forward.

4.3 Unrestricted Adversarial Text Generation
As mentioned in Section 3.2, after our model is trained, we can ran-
domly sample z from latent space, choose a desired class yk ∈ Y ,
get the embedding vector ck of yk, then feed [z, ck] to the decoder to
generate adversarial texts unrestrictedly with no need of labeled text.
Attack Success Rate. When training, we can tune φ in Equation 14
to affect the model. After trained with different φ, we observe the
generated texts are different. We randomly generate 50,000 exam-
ples and compute the proportion of adversarial examples with differ-
ent φ. The results are shown in Figure 5(a). Notice if we set φ = 0,
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Dataset: RT. Method: Ours(𝜙 = 9). Ground-truth: Positive. Original prediction: 0.95 Positive.  Adversarial prediction: 0.68 Negative. 

Text: Inside one the films conflict like powered plot there is a decent moral trying to get out but its not that it’s the tension first that keeps makes you in feel your seat affleck and jackson are 
good is magnificent sparring partners

Dataset: IMDB. Method: Ours(𝜙 = 9). Ground-truth: Negative. Original prediction: 0.98 Negative.  Adversarial prediction: 0.94 Positive. 

Text: i read the novel love the book some years ago and i liked loved it a lot when i saw the read this movie i couldnt believe was cared it they changed was thrown everything i liked
expected about the novel book even the plot i wonder what if did isabel allende author did say about the this movie but i think it sucks

Dataset: IMDB. Method: TextBugger. Ground-truth: Negative. Original prediction: 0.99 Negative.  Adversarial prediction: 0.81 Positive. 

Text: I love these awful awf ul 80's summer camp movies. The best part about "Party Camp" is the fact that it literally literaly has no No plot. The cliches clichs here are limitless: the nerds vs. 
the jocks, …, the secretly horny camp administrators, and the embarrassingly embarrassing1y foolish fo0lish sexual innuendo littered throughout. This movie will make you laugh, but never 
intentionally. I repeat, never.

Figure 4. Adversarial texts generated in a pair-wise way. In texts, the crossed out contents are from the original texts, while the red texts are the substitute
contents in the adversarial examples.
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Figure 5. The attack success rate, perplexity and validity of unrestricted adversarial text generation from scratch. Randomly sample z to generate adversarial
texts from scratch with different φ. Note that when φ = 0, the model is a vanilla VAE

Dataset: RT. Method: Vanilla VAE (𝜙 = 0). Chosen Emotional Class: Negative. Model prediction: 0.53 Positive.

Text: this is the kind of movie that might have been benefited from a movie that is not more than a movie

Dataset: IMDB. Method: Vinilla VAE (𝜙 = 0). Chosen Emotional Class : Positive. Model prediction: 0.54 Negative.  

Text: i had never heard of this movie until the end of the first half hour or minutes we were glued to the edge of your seat throughout the entire movie i thought it was going to be a good 
idea to see a movie about a bunch of people trying to find out what happened to their … see if you want to see a movie that is going to happen next to the end

Dataset: RT. Method: Ours (𝜙 = 1). Chosen Emotional Class : Positive. Model prediction: 0.99 Negative

Text: theres no reason to be disappointed

Dataset: RT. Method: Ours (𝜙 = 7). Chosen Emotional Class : Negative. Model prediction: 0.89 Positive

Text: sandra bullock fish out into a dark and poorly executed story about about about which he doesnt manage to be a joyful teacher

Dataset: IMDB. Method: Ours (𝜙 = 1). Chosen Emotional Class : Negative. Model prediction: 0.97 Positive

Text: this was the first time i saw this movie when i was a kid i was expecting it to be the first time i saw this movie i was thoroughly impressed with this movie was that it was so bad 

Dataset: IMDB. Method: Ours (𝜙 = 7). Chosen Emotional Class : Positive. Model prediction: 0.93 Negative

Text: a lot of fun to watch this movie is about a virus who crashes in the himalayas unlucky enough to take a trip to the old house in the woods in the himalayas unlucky enough to be a 
photographer and wanted to prevent the freezing man in a limb in a limb in a limb in a limb in a limb in his assignment to stop him he decides to take him out of his apartment with his wife

Figure 6. Adversarial examples generated from scratch unrestrictedly. Humans should classify adversarial texts as the chosen emotional class yk .

the model is a vanilla VAE and it is not trained continually after pre-
trained.

From Figure 5(a), we can observe that the attack success rate of the
vanilla VAE is only 10.3% and 20.1% respectively, this implies that
only randomly generating texts can hardly fool the targeted model.
When φ is greater than 0, the attack success rate is consistently better
than the vanilla VAE. This reflects the importance of Ladv .

Also, the attack success rate increases as φ becomes larger. It is
because the larger φ is, the more important role Ladv will plays in
the final joint loss Ljoint. So, the text generator G is more easily
guided by the Ladv to generate an adversarial example.

To evaluate the quality of the generated adversarial texts with dif-
ferent φ, we adopt three metrics : perplexity, validity and diversity.

Perplexity. Perplexity [3] is a measurement of how well a probability
model predicts a sample. A low perplexity indicates the language
model is good at predicting the sample. Given a pretrained language

model, it can also be used to evaluate the quality of texts. Similarly,
a low perplexity indicates the text is more fluent for the language
model. We compute perplexity as:

Perplexity = − 1

|word_num|
∑
x∈X′

V∑
j=1

logP (x′j |x′0, ..., x′j−1)

(15)
where V is the number of words in one sentence. P (x′j) is the prob-
ability of j-th word in x′ computed by the language model.

We train a language model with the training data of IMDB and RT,
and use it as P in Equation 15. We measure and compare the perplex-
ity of the generated 50,000 texts and data of the original training set.
Results are shown in Figure 5(b). We can observe that the perplex-
ity is only a bit higher than the original data’s, which means that the
quality of generated texts are acceptable. Also, as φ gets larger, the
perplexity gets bigger. This is perhaps because Ladv can distort the
generated texts.
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Figure 7. Defense with adversarial training in different settings. (a) and (b) On RT and IMDB datasets, data augmentation with adversarial data generated
from scratch under different φ. (c) On RT dataset, accuracy of models trained with equal size of augmentation adversarial data, which is generated in pair-wise
way and unrestricted generation way respectively.

Validity. If we feed [z, ck] to the decoder, then a valid generated
adversarial text is supposed to be classified as class yk by humans but
be classified as class yt 6= yk by the targeted model. We randomly
select 100 generated texts for each φ and manually evaluate their
validity. The results are shown in Figure 5(c).

From Figures 5(c), we can observe that the validity rates of our
method on both datasets are higher than 70% and much higher than
that of the vanilla VAE. This implies our methods can generate high-
quality and high-validity texts with high attack success rate.

Diversity. We first generate one million adversarial texts. To com-
pare generated texts with train data, we extract all 4-grams of train
data and generated texts. On average, for each generated text, less
than 18% of 4-grams can be found in all 4-grams of train data on all
datasets. This shows that there exists some similarity and our model
can also generate texts with different words combinations. To com-
pare generated texts with each other, we suppose that if over 20% of
4-grams of one generated text don’t exist at the same time in any one
of the other generated texts, the text is one unique text. We observe
more than 70% of generated texts are unique. This proved that the
generated texts are diverse.

Adversarial Examples. We show some valid adversarial examples
generated by our method in Figure 6. We can view that the adversar-
ial examples generated by the vanilla VAE is more likely neutral, and
the confidence of the targeted model is not huge. On the contrary, the
generated examples of our method have high confidence of the tar-
geted model. This shows Ladv is important to attack success rate.
Besides, the fluency and validity of texts generated by our method
are acceptable.

4.4 Ablation Study
In this section, we further demonstrate the effectiveness of discrima-
tors. We now report the ablation study.

We first remove discrimators and Ldisc, then train our model. We
compare it with the model trained with Ljoint in a min-max game.
We evaluate their attack success rate, perplexity and validity. Results
are show in Table 3.

Table 3. Performance of our model trained with and without Ldisc.

Dataset Method Attack Success
Rate Perplexity Validity

RT with Ldisc 90.2% 2.79 75%
without Ldisc 94.1% 7.32 15%

IMDB with Ldisc 93.9% 2.88 73%
without Ldisc 94.3% 7.41 12%

The attack success rates of models trained with and without Ldisc
are close. But the validity of the model trained without Ldisc is much
lower than that of the model with Lfilter . The reason of this phe-
nomenon is as follows. When training the generator G with only
LV AE and Ladv , suppose we want to generate positive adversarial
texts and the targeted model must classify it as negative, the easiest
way to achieve this goal is to change a few words in the generated text
to negative words, such as "bad". But texts generated this way can not
fool humans. If we add discrimators to draw distribution of adversar-
ial texts close to the distribution of real data, this phenomenon can
be controlled. This shows that discrimators and the min-max game
minmaxLkdisc can improve the validity greatly.

4.5 Defense With Adversarial Training

Using the adversarial examples to augment the training data can
make models more robust, this is called adversarial training.

On RT dataset, we randomly generate 4k adversarial texts to aug-
ment the training data and 1k to test the model. On IMDB dataset, we
randomly generate 10k, of which 8k for training and 2k for testing.
Results are shown in Figure 7(a) and Figure 7(b).

Through adversarial data augmentation, test accuracy on the orig-
inal test data is stable. Also, the accuracy on the adversarial data is
improved greatly (from 0 to> 90%). It implies that adversarial train-
ing can make models more robust without hurting its effectiveness.

Then, on RT dataset, we first augment training data with adversar-
ial examples generated by pair-wise generation. The adversarial ex-
amples are generated through transforming training data. Note that
we have 8k training data in RT dataset. When we set bigger φ, the
attack success rate is higher, so we can generate more adversarial ex-
amples in the pair-wise way. But with any φ, unrestricted generation
from scratch can result in infinite adversarial data. We compare the
adversarial data augmentation performances of pair-wise and unre-
stricted generation from scratch. We use the same number of adver-
sarial examples generated by the two modes, and hold out 20% of
generated data for testing. Results are shown in Figure 7(c).

We can see that with pair-wise generation, if training data is lim-
ited, we need to generate more adversarial examples to improve the
adversarial test accuracy. Higher adversarial test accuracy requires
higher φ. But higher φ results in bigger perplexity, which means low
text quality. Differently, with unrestricted generation from scratch,
we can generate infinite adversarial texts using very small φ, with
high fluency and similar adversarial test accuracy. Thus, under simi-
lar adversarial test accuracy, the text fluency of pair-wise generation
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is worse than that of unrestricted generation from scratch. This indi-
cates the advantage of our proposed method.

5 Conclusion

In this paper, we have proposed a scalable method to generate ad-
versarial texts from scratch attacking a text classification model. We
add an adversarial loss to enforce the generated text to mislead the
targeted model. Besides, we use discrimators and GAN-like train-
ing strategy to make adversarial texts mimic real data of the desired
class. After the generator is trained, it can generate diverse adver-
sarial examples of a desired class on a large scale without real-world
texts. Experiments show that the proposed method is scalable and can
achieve higher attack success rate at a higher speed compared with
recent methods. In addition, it is also demonstrated that the gener-
ated texts are of good quality and mostly valid. We further conduct
ablation experiments to verify effects of discrimators. Experiments
of data augmentation indicate that our method generates more di-
verse adversarial texts with higher quality than pair-wise generation,
which can make the targeted model more robust.
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